Generation of a Potato Radiation Mutation System to Analyse the Features of Radiation Mutant RM1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Culture Method of Potato Stem Cells
2.2. Radiation Mutation of Seedings
2.3. Preparation of Leaf Paraffin Sections
2.4. Transcriptome Analysis
2.5. Quantitative RT–PCR Analysis
2.6. Statistical Analysis
3. Results
3.1. Establishment of the Stem Tissue Culture System
3.2. Radiation and Regeneration of Potato Stem Calli
3.3. Detection of Morphological and Physiological Characteristics in RM1 Plants
3.4. GO and KEGG Analyses of Differentially Expressed Genes in RM1 Leaves
3.5. Verification of the Transcript Expression Levels of DEPs
4. Discussion
4.1. Mutagenic Effect of Radiation on Potato Plants
4.2. DEPs Related to Phytohormones
4.3. DEPs Related to Signal Transduction Pathways
4.4. DEPs Related to Transporters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Levaj, B.; Pelaić, Z.; Galić, K.; Kurek, M.; Ščetar, M.; Poljak, M.; Dite Hunjek, D.; Pedisić, S.; Balbino, S.; Čošić, Z.; et al. Maintaining the quality and safety of fresh-cut potatoes (Solanum tuberosum): Overview of Recent Findings and Approaches. Agronomy 2023, 13, 2002. [Google Scholar] [CrossRef]
- Bonnel, E. Potato breeding: A challenge, as ever! Potato Res. 2008, 51, 327–332. [Google Scholar] [CrossRef]
- Gosselin, B.; Mondy, N. lmplication of breeding programs on potato quality. J. Food Sci. 1986, 51, 251–252. [Google Scholar] [CrossRef]
- Swamy, N.R.; Ugandhar, T.; Praveen, M.; Rambabu, M.; Upender, M. Induction of streptomycin-resistant plantlets in solanum surattense through in vitro mutagenesis. Plant Cell Tissue Organ Cult. 2005, 80, 201–207. [Google Scholar] [CrossRef]
- Somalraju, A.; Ghose, K.; Main, D.; Bizimungu, B.; Fofana, B. Development of pre-breeding diploid potato germplasm displaying wide phenotypic variations as induced by ethyl methane sulfonate mutagenesis. Can. J. Plant Sci. 2019, 99, 138–151. [Google Scholar] [CrossRef]
- Ly, D.N.P.; Iqbal, S.; Fosu-Nyarko, J.; Milroy, S.; Jones, M.G.K. Multiplex CRISPR-Cas9 gene-editing can deliver potato cultivars with reduced browning and acrylamide. Plants 2023, 12, 379. [Google Scholar] [CrossRef] [PubMed]
- Mullins, E.; Milbourne, D.; Petti, C.; Prestwich, B.M.; Meade, C. Potato in the age of biotechnology. Trends Plant Sci. 2006, 11, 254–260. [Google Scholar] [CrossRef]
- Elias, R.; Till, B.J.; Mba, C. Optimizing tilling and ecotilling techniques for potato (Solanum tuberosum L.). BMC Res. Notes 2009, 2, 141. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.Q.; Yu, J.T.; Hu, Y.Y.; Bai, J.Q.; Feng, S. Comparative investigation of the effects of electron beam and X-ray irradiation on potato starch: Structure and functional properties. Int. J. Biol. Macromol. 2023, 236, 123909. [Google Scholar] [CrossRef]
- Safadi, B.; Arabi, M.I.E. Isolation and selection of potato mutants resistant to late blight. J. Genet. Plant. 2003, 57, 359–364. [Google Scholar]
- Das, A.; Gosal, S.S.; Sidhu, J.S.; Dhaliwal, H.S. Induction of mutations for heat tolerance in potato by using in vitroculture and radiation. Euphytica 2000, 114, 205–209. [Google Scholar] [CrossRef]
- Yaycili, O.; Alikamanoglu, S. Induction of salt-tolerant potato (Solanum tuberosum L.) mutants with gamma irradiation and characterization of genetic variations via RAPD-PCR analysis. Turk. J. Biol. 2012, 36, 405–412. [Google Scholar] [CrossRef]
- Safadi, B.A.; Ayyoubi, Z.; Jawdat, D. The effect of gamma irradiation on potato microtuber production in vitro. Plant Cell 2000, 61, 183–187. [Google Scholar]
- Love, S.L.; Baker, T.P.; Werner, B.K. Induced mutations for reduced tuber glycoalkaloid content in potatoes. Plant Breed. 1996, 115, 119–122. [Google Scholar] [CrossRef]
- Son, N.A.; Ha, N.T.N.; Sang, N.T.M.; Duc, L.D.D.; Trieu, L.N. Effects of low energy (160 keV) X-ray on microbial inactivation, sprouting inhibition and genetic variation in potato. Food Biosci. 2022, 1, 101555. [Google Scholar] [CrossRef]
- Kaur, R.; Sharma, S.P.; Kalia, A.; Kaur, N.; Manchanda, P. In vitro induction and selection of mutants obtained through gamma irradiation with improved processing traits in potato (Solanum tuberosum L.). Int. J. Radiat. Biol. 2024, 100, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Liqin, L.; Zou, X.; Deng, M.H.; Peng, J.; Lu, X.; Fang, C.C.; Wang, X.Y. Comparative morphology, transcription, and proteomics study revealing the key molecular mechanism of camphor on the potato tuber sprouting effect. Int. J. Mol. Sci. 2017, 18, 2280. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.H.; Guo, X.; Yang, Y.; Ye, P.; Xiong, X.Y.; Liu, J.; Dong, D.F.; Li, G.C. Gene profiling in late blight resistance in potato genotype SD20. Int. J. Mol. Sci. 2018, 19, 1728. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Pu, X.Q.; Jia, H.; Zhou, Y.; Ye, G.J.; Yang, Y.Z.; Na, T.C.; Wang, J. Transcriptome analysis reveals multiple effects of nitrogen accumulation and metabolism in the roots, shoots, and leaves of potato (Solanum tuberosum L.). BMC Plant Biol. 2022, 22, 282. [Google Scholar] [CrossRef]
- Silva, T.P.; Ferreira, A.N.; Albuquerque, F.S.; Barros, A.C.A.; Luz, J.M.R.; Gomes, F.S.; Pereira, H.J.V. Box–Behnken experimental design for the optimization of enzymatic saccharification of wheat bran. Biomass Convers. Biorefinery 2022, 12, 5597–5604. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Okamura, M.; Yasuno, N.; Ohtsuka, M.; Tanaka, A.; Shikazono, N.; Hase, Y. Wide variety of flower-color and -shape mutants regenerated from leaf cultures irradiated with ion beams. Nucl. Instrum. Methods Phys. Res. Sect. B 2003, 206, 574–578. [Google Scholar] [CrossRef]
- Love, S.I.; Bake, T. Mutation breeding for resistance to blackspot bruise and low temperature sweetening in potato cultivar Lehme Russet. Euphytica 1993, 70, 69–74. [Google Scholar] [CrossRef]
- Safadi, B.; Arabi, M.I.E. In vitro induction, isolation, and selection of potato mutants tolerant to salinity. Adv. Hart. Sci. 2007, 2, 127–132. [Google Scholar]
- Singh, B.; Datta, P.S. Gamma irradiation toimprove plant vigor, grain development and yieldattributes of wheat. Radiat. Phys. Chem. 2010, 79, 139–143. [Google Scholar] [CrossRef]
- Valli, B.; Trebbi, D.; Lizarazu, W.Z.; Monti, A.; Tuberosa, R.; Salvi, S. In vitro physical mutagenesis of giant reed (Arundo donax L.). GCB Bioenergy 2017, 9, 1380–1389. [Google Scholar] [CrossRef]
- Kapare, V.; Satdive, R.; Fulzele, D.P.; Malpathak, N. Impact of gamma irradiation induced variation in cell growth and phytoecdysteroid production in sesuvium portulacastrum. J. Plant Growth Regul. 2017, 36, 919–930. [Google Scholar] [CrossRef]
- Jong, M.; Wolters-Arts, M.; Schimmel, B.C.J.; Stultiens, C.L.M.; Groot, P.F.M.; Powers, S.J.; Tikunov, Y.M.; Bovy, A.G.; Mariani, C.; Vriezen, W.H.; et al. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development. J. Exp. Bot. 2015, 66, 3405–3416. [Google Scholar] [CrossRef]
- Guo, T.; Chen, K.; Qian, D.N.; Wei, Y.W.; Xiang, S.X.; Xuan, L.H. Tillering and small grain 1 dominates the tryptophan aminotransferase family required for local auxin biosynthesis in rice. J. Integr. Plant Biol. 2019, 62, 581–600. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, Y.T.; Feng, C.; Wei, Y.; Peng, X.; Guo, X.; Guo, X.W.; Zhai, Z.F.; Li, J.; Shen, X.S.; et al. Overexpression of MsGH3.5 inhibits shoot and root development through the auxin and cytokinin pathways in apple plants. Plant J. 2020, 103, 166–183. [Google Scholar] [CrossRef]
- Roumeliotis, E.; Kloosterman, B.; Oortwijn, M.; Lange, T.; Visser, R.G.F.; Bachem, C.W.B. Down regulation of StGA3ox genes in potato results in altered GA content and affect plant and tuber growth characteristics. J. Plant Physiol. 2013, 14, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Kloosterman, B.; Navarro, C.; Bjsterbosch, G.; Lange, T.; Prat, S.; Visser, R.G.F.; Bachem, C.W.B. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J. 2007, 52, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Nahirñak, V.; Rivarola, M.; Paniego, N.; Hopp, H.E.; Almasia, N.I. Genome-wide analysis of the snakin/GASA gene family in solanum tuberosum cv. Kennebec. Am. J. Potato Res. 2016, 93, 172–188. [Google Scholar] [CrossRef]
- Trapalis, M.; Li, S.F.; Parish, R.W. The arabidopsis GASA10 gene encodes a cell wall protein strongly expressed in developing anthers and seeds. Plant Sci. 2017, 260, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.N.; Jin, Y.; Liu, W.B.; Li, F.; Fang, J.; Yin, Y.H.; Qian, Q.; Zhu, L.H.; Chu, C.C. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J. 2009, 58, 803–816. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Wang, Z.Y.; Li, J.; Zhu, Q.; Lamb, C.; Ronald, P.; Chory, J. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 2000, 288, 2360–2363. [Google Scholar] [CrossRef] [PubMed]
- Manik, S.M.N.; Shi, S.; Mao, J.; Dong, L.; Su, Y.; Wang, Q.; Liu, H. The calcium sensor CBL-CIPK is involved in plant’s response to abiotic stresses. Int. J. Genom. 2015, 2015, 493191. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.J.; Wang, C.; Li, K.; Luan, S. The CBL-CIPK calcium signaling network: Unified paradigm from 20 years of discoveries. Trends Plant Sci. 2020, 25, 604–617. [Google Scholar] [CrossRef] [PubMed]
- Bi, G.; Zhou, Z.; Wang, W.; Li, L.; Rao, S.; Wu, Y.; Zhang, X.; Menke, F.L.H.; Chen, S.; Zhou, J.M. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in arabidopsis. Plant Cell 2018, 30, 1543–1561. [Google Scholar] [CrossRef]
- Robatzek, S.; Somssich, I.E. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev. 2002, 16, 1139–1149. [Google Scholar] [CrossRef]
- Chen, Y.F.; Li, L.Q.; Xu, Q.; Kong, Y.H.; Wang, H.; Wu, W.H. The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in arabidopsis. Plant Cell 2009, 21, 3554–3566. [Google Scholar] [CrossRef] [PubMed]
- Devaiah, B.N.; Karthikeyan, A.S.; Raghothama, K.G. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol. 2007, 143, 1789–1801. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Wang, L.; Zhang, J.L.; Yu, B.; Wang, J.; Wang, D. The MYB transcription factor StMYBA1 from potato requires light to activate anthocyanin biosynthesis in transgenic tobacco. J. Plant Biol. 2017, 60, 93–101. [Google Scholar] [CrossRef]
- Hwang, J.U.; Song, W.Y.; Hong, D.; Ko, D.; Yamaoka, Y.; Jang, S.; Yim, S.; Lee, E.; Khare, D.; Kim, K.; et al. Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol Plant. 2016, 9, 338–355. [Google Scholar] [CrossRef] [PubMed]
- Wanke, D.; Kolukisaoglu, H.U. An update on the ABCC transporter family in plants: Many genes, many proteins, but how many functions. Plant Biol. 2010, 12, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.J.; Wang, Y.F.; Frelet, A.; Leonhardt, N.; Klein, M.; Forestier, C.; Mueller-Roeber, B.; Cho, M.H.; Martinoia, E.; Schroeder, J.I. The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells. J. Biol. Chem. 2007, 282, 1916–1924. [Google Scholar] [CrossRef] [PubMed]
- Burla, B.; Pfrunder, S.; Nagy, R.; Francisco, R.M.; Lee, Y.; Martinoia, E. Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanismsin Arabidopsis. Plant Physiol. 2013, 163, 1446–1458. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, W.H. Regulation of potassium transport and signaling in plants. Curr. Opin. Plant Biol. 2017, 39, 123–128. [Google Scholar] [CrossRef]
- Gierth, M.; Maser, P. Potassium transporters in plants–involvement in K + acquisition, redistribution and homeostasis. FEBS Lett. 2007, 581, 2348–2356. [Google Scholar] [CrossRef]
- Mhamdi, M.; Abid, G.; Chikh-Rouhou, H.; Razgallah, N.; Hassen, A. Effect of genotype and growing season on nitrate accumulation and expression patterns of nitrate transporter genes in potato (Solanum tuberosum L.). Arch. Agron. Soil Sci. 2016, 11, 1508–1520. [Google Scholar] [CrossRef]
- Xu, B.; Long, Y.; Feng, X.Y.; Zhu, X.J.; Sai, N.; Chirkova, L.; Betts, A.; Herrmann, J.; Edwards, E.J.; Okamoto, M.; et al. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nat. Commun. 2021, 12, 1952. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Dou, N.; Zhang, H.; Wu, C.X. The versatile GABA in plants. Plant Signal. Behav. 2021, 16, e1862565. [Google Scholar] [CrossRef] [PubMed]
- Michaeli, S.; Fait, A.; Lagor, K.; Nunes-Nesi, A.; Grillich, N.; Yellin, A.; Bar, D.; Khan, M.; Fernie, A.R.; Turano, F.J.; et al. A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism. Plant J. 2011, 67, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.A.; Tyerman, S.D.; Xu, B.; Bose, J.; Kaur, S.; Conn, V.; Domingos, P.; Ullah, S.; Wege, S.; Shabala, S.; et al. GABA signaling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nat. Commun. 2015, 6, 7879. [Google Scholar] [CrossRef]
- Akama, K.; Takaiwa, F. C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells. J. Exp. Bot. 2007, 58, 2699–2707. [Google Scholar] [CrossRef]
TDZ (mg·L−1) | 2,4-D (mg·L−1) | GA3 (mg·L−1) | 30 D Shoot Regeneration Ratio/% | 20 D Callus | 30 D Cluster Buds | ||
---|---|---|---|---|---|---|---|
Colour | Quality | Stem | Leaf | ||||
2.50 | 0.10 | 5.00 | 87.01 | green | loose | strong | fleshy |
4.50 | 0.15 | 5.00 | 73.99 | green | compact | weak | slender |
2.50 | 0.05 | 0.50 | 91.21 | green | loose | strong | curly |
0.50 | 0.05 | 5.00 | 55.16 | yellow green | little compact | strong | fleshy |
0.50 | 0.10 | 0.50 | 51.98 | white green | compact | strong | fleshy |
2.50 | 0.15 | 9.50 | 79.93 | light green | compact | weak | slender |
4.50 | 0.05 | 5.00 | 81.06 | green | little loose | weak | slender |
2.50 | 0.05 | 9.50 | 77.94 | yellow green | loose | weak | slender |
4.50 | 0.10 | 0.50 | 88.16 | green | loose | strong | curly |
4.50 | 0.10 | 9.50 | 67.99 | light green | compact | weak | slender |
0.50 | 0.15 | 5.00 | 56.15 | white green | compact | strong | fleshy |
0.50 | 0.10 | 9.50 | 64.92 | light green | compact | weak | slender |
2.50 | 0.15 | 0.50 | 79.90 | light green | compact | strong | curly |
Name | Ue Thickness (μm) | Le Thickness (μm) | Pt Thickness (μm) | St Thickness (μm) | Leaf Thickness (μm) | Pt/St | CTR | SR |
---|---|---|---|---|---|---|---|---|
WT | 12.95 ± 1.40 b | 12.08 ± 0.89 bc | 37.75 ± 2.48 c | 61.06 ± 2.42 f | 123.84 ± 3.51 e | 0.63 ± 0.04 b | 0.30 ± 0.02 bc | 0.49 ± 0.01 bc |
RMI | 20.16 ± 1.55 a | 15.65 ± 1.05 a | 58.28 ± 2.06 b | 82.13 ± 2.89 e | 176.23 ± 3.37 d | 0.73 ± 0.04 a | 0.03 ± 0.01 ab | 0.47 ± 0.01 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Jiang, L.; Ren, B.; Lu, Y.; Lv, C.; Wang, C.; Lu, L.; Yang, S. Generation of a Potato Radiation Mutation System to Analyse the Features of Radiation Mutant RM1. Agronomy 2024, 14, 1547. https://doi.org/10.3390/agronomy14071547
Li L, Jiang L, Ren B, Lu Y, Lv C, Wang C, Lu L, Yang S. Generation of a Potato Radiation Mutation System to Analyse the Features of Radiation Mutant RM1. Agronomy. 2024; 14(7):1547. https://doi.org/10.3390/agronomy14071547
Chicago/Turabian StyleLi, Liqin, Linjuan Jiang, Bi Ren, Yifei Lu, Chengcheng Lv, Chenrui Wang, Liming Lu, and Shimin Yang. 2024. "Generation of a Potato Radiation Mutation System to Analyse the Features of Radiation Mutant RM1" Agronomy 14, no. 7: 1547. https://doi.org/10.3390/agronomy14071547
APA StyleLi, L., Jiang, L., Ren, B., Lu, Y., Lv, C., Wang, C., Lu, L., & Yang, S. (2024). Generation of a Potato Radiation Mutation System to Analyse the Features of Radiation Mutant RM1. Agronomy, 14(7), 1547. https://doi.org/10.3390/agronomy14071547