Employing an Artificial Neural Network Model to Predict Citrus Yield Based on Climate Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Citrus Tree Descriptions
2.2. Measurements
2.2.1. Weather Information
2.2.2. Yield Determination
2.2.3. How to Determine the Accumulated Heat Units
2.2.4. Heat Use Efficiency (HUE) Calculation
2.3. Data Mining Techniques for Citrus Yield Prediction
2.4. A Multiple Linear Regression for Citrus Yield Prediction
2.5. Creating an ANN Model for Citrus Yield Estimating
2.6. ANN Model Performance Measures
2.7. Sensitivity Analysis
3. Results and Discussion
3.1. Weather Information
3.2. The Accumulated Heat Units
3.3. Fruit Yield
3.4. Relationship between Accumulated Heat Units and Fruit Yield
3.5. Heat Use Efficiency (HUE)
3.6. Predicting Citrus Yield Using ANN Model
3.7. Comparison of the Performance Criteria for Evaluation of Data Mining Algorithm, ANN Model, and MLR Model for Citrus Yield Prediction
3.8. Sensitivity Analysis Results
3.9. Applying Biases and Weights of the Developed ANN Model for Citrus Yield Prediction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Omar, A.E.-D.K.; Belal, E.B.; El-Abd, A.E.-N.A. Effects of foliar application with compost tea and filtrate biogas slurry liquid on yield and fruit quality of Washington navel orange (Citrus sinenesis Osbeck) trees. J. Air Waste Manag. Assoc. 2012, 62, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, A.E.; Khalifa, S.M.; Abdeen, S.A. Effect of magnetic water on yield and fruit quality of some mandarin varieties. Ann. Agric. Sci. Moshtohor 2015, 53, 657–666. [Google Scholar]
- Ennab, H.A. Effect of humic acid on growth and productivity of Egyptian lime trees (Citrus aurantifolia Swingle) under salt stress conditions. J. Agric. Res. Kafr El-Sheikh Univ. 2016, 42, 494–505. [Google Scholar]
- El-Shirbeny, M.A.; Ali, A.M.; Edriss, M.H.; Baghdady, G.A.; Dawood, A.S. The Effect of water and vegetation vigor on citrus production in Egypt using remotely sensed data and techniques. Int. J. Plant Soil Sci. 2016, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zayan, M.A.; Sayed, R.A.; El-Shereif, A.R.; ElZawily, H.M.A. Irrigation and fertilization programs for “Washington navel” orange trees in sandy soil under desert climatic conditions. 1-effect on soil properties, vegetative growth and yield. J. Agric. Res. Kafr El-Sheikh Univ. 2016, 42, 210–233. [Google Scholar]
- Amar, M.H. Genetic assessment of some Egyptian cultivated citrus and its relatives using retrotransposons and microsatellite. Egypt. J. Hortic. 2019, 46, 235–250. [Google Scholar] [CrossRef]
- Mossad, A.; Farina, V.; Bianco, R.L. Fruit yield and quality of ‘valencia’ orange trees under long-term partial rootzone drying. Agronomy 2020, 10, 164. [Google Scholar] [CrossRef]
- Zaky, M.A. Relationship between climatic indicators and some physiological stages of navel orange trees in West Delta, Egypt. Middle East J. Appl. Sci. 2020, 10, 665–672. [Google Scholar] [CrossRef]
- Fikry, A.M.; Radhi, K.S.; Abourehab, M.A.S.; Abou Sayed-Ahmed, T.A.M.; Ibrahim, M.M.; Mohsen, F.S.; Abdou, N.A.; Omar, A.A.; Elesawi, I.E.; El-Saadony, M.T. Effect of inorganic and organic nitrogen sources and biofertilizer on murcott mandarin fruit quality. Life 2022, 12, 2120. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.A.; Hafez, O.M.; Thabet, A.Y.I. Enhancing of fruit set %, yield and fruit quality of “Washington” navel orange by different agrochemical foliar sprays in application times. Middle East J. Appl. Sci. 2022, 12, 83–90. [Google Scholar] [CrossRef]
- Domínguez-Gento, A.; Di Giorgi, R.; García-Martínez, M.D.; Raigón, M.D. Effects of organic and conventional cultivation on composition and characterization of two citrus varieties ‘navelina’ orange and ‘clemenules’ mandarin fruits in a long-term study. Horticulturae 2023, 9, 721. [Google Scholar] [CrossRef]
- Hammam, M.M.A.; Abd-Elgawad, M.M.M.; Ruan, W.; El-bahrawy, A. Management of pests and pathogens affecting citrus yield in egypt with special emphasis on nematodes. Egypt. J. Agronematol. 2021, 20, 64–84. [Google Scholar] [CrossRef]
- Bankar, D.S.; Pawar, S.B.; Kadam, Y.E. Thermal utilization and heat use efficiency of green gram varieties under different sowing dates. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2270–2276. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, S.; Niwas, R. Thermal time and phenology of citrus in semi-arid conditions. J. Pharmacogn. Phytochem. 2017, 6, 27–30. [Google Scholar]
- Tian, H.; Wang, P.; Tansey, K.; Han, D.; Zhang, J.; Zhang, S.; Li, H. A deep learning framework under attention mechanism for wheat yield estimation using remotely sensed indices in the Guanzhong Plain, PR China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102375. [Google Scholar] [CrossRef]
- Robinson, J.C.; Human, N.B. Forecasting of banana harvest (‘Williams’) in the subtropics using seasonal variations in bunch development rate and bunch mass. Sci. Hortic. 1988, 34, 249–263. [Google Scholar] [CrossRef]
- Bharti; Das, P.; Banerjee, R.; Ahmad, T.; Devi, S.; Verma, G. Artificial neural network-based apple yield prediction using morphological characters. Horticulturae 2023, 9, 436. [Google Scholar] [CrossRef]
- Whitney, C.; Fernandez, E.; Schiffers, K.; Cuneo, I.F.; Luedeling, E. Forecasting yield in temperate fruit trees from winter chill accumulation. Acta Hortic. 2021, 1327, 397–404. [Google Scholar] [CrossRef]
- Ye, X.; Sakai, K.; Garciano, L.O.; Asada, S.-I.; Sasao, A. Estimation of citrus yield from airborne hyperspectral images using a neural network model. Ecol. Model. 2006, 198, 426–432. [Google Scholar] [CrossRef]
- Ye, X.; Sakai, K.; Manago, M.; Asada, S.-I.; Sasao, A. Prediction of citrus yield from airborne hyperspectral imagery. Precis. Agric. 2007, 8, 111–125. [Google Scholar] [CrossRef]
- Maheswari, P.; Raja, P.; Apolo-Apolo, O.E.; Pérez-Ruiz, M. Intelligent fruit yield estimation for orchards using deep learning based semantic segmentation techniques—A review. Front. Plant Sci. 2021, 12, 684328. [Google Scholar] [CrossRef]
- Bazrafshan, O.; Zamani, H.; Etedali, H.R.; Dehghanpir, S. Assessment of citrus water footprint components and impact of climatic and non-climatic factors on them. Sci. Hortic. 2019, 250, 344–351. [Google Scholar] [CrossRef]
- Kitchen, N.R.; Drummond, S.T.; Lund, E.D.; Sudduth, K.A.; Buchleiter, G.W. Soil electrical conductivity and topography related to yield for three contrasting soil-crop systems. Agron. J. 2003, 95, 483–495. [Google Scholar] [CrossRef]
- Døving, A.; Måge, F. Prediction of Strawberry Fruit Yield. Acta Agric. Scand. 2001 Sect. B—Plant Soil Sci. 2001, 51, 35–42. [Google Scholar] [CrossRef]
- Sajindra, H.; Abekoon, T.; Wimalasiri, E.M.; Mehta, D.; Rathnayake, U. An artificial neural network for predicting groundnut yield using climatic data. AgriEngineering 2023, 5, 1713–1736. [Google Scholar] [CrossRef]
- Adisa, O.M.; Botai, J.O.; Adeola, A.M.; Hassen, A.; Botai, C.M.; Darkey, D.; Tesfamariam, E. Application of artificial neural network for predicting maize production in South Africa. Sustainability 2019, 11, 1145. [Google Scholar] [CrossRef]
- Gopal, P.M.; Bhargavi, R. A novel approach for efficient crop yield prediction. Comput. Electron. Agric. 2019, 165, 104968. [Google Scholar] [CrossRef]
- Abdipour, M.; Ramazani, S.H.R.; Younessi-Hmazekhanlu, M.; Niazian, M. Modeling oil content of sesame (Sesamum indicum L.) using artificial neural network and multiple linear regression approaches. J. Am. Oil Chem. Soc. 2018, 95, 283–297. [Google Scholar] [CrossRef]
- Abdipour, M.; Younessi-Hmazekhanlu, M.; Ramazani, M.Y.H.; Omidi, A.H. Artificial neural networks and multiple linear regression as potential methods for modeling seed yield of safflower (Carthamus tinctorius L.). Ind. Crops Prod. 2019, 27, 185–194. [Google Scholar] [CrossRef]
- Göçmen, E.; Kuvvetlï, Y. Prediction of citrus fruits production using artificial neural networks and linear regression analysis. J. Sci. Technol. 2020, 13, 972–983. [Google Scholar] [CrossRef]
- Mansouri, A.; Fadavi, A.; Mortazavian, S.M.M. An artificial intelligence approach for modeling volume and fresh weight of callus–A case study of cumin (Cuminum cyminum L.). J. Theor. Biol. 2016, 397, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Boonprasom, P.; Bumroongitt, G. Prediction of tangerine yield using artificial neural network (ANN). CMU J. 2005, 4, 39–48. [Google Scholar]
- Matsumura, K.; Gaitan, C.F.; Sugimoto, K.; Cannon, A.J.; Hsieh, W.W. Maize yield forecasting by linear regression and artificial neural networks in Jilin, China. J. Agric. Sci. 2015, 153, 399–410. [Google Scholar] [CrossRef]
- Abrougui, K.; Gabsi, K.; Mercatoris, B.; Khemis, C.; Amami, R.; Chehaibi, S. Prediction of organic potato yield using tillage systems and soil properties by artificial neural network (ANN) and multiple linear regressions (MLR). Soil Tillage Res. 2019, 190, 202–208. [Google Scholar] [CrossRef]
- Duarte de Souza, P.V.; Pereira de Rezende, L.; Duarte, A.P.; Miranda, G.V. Maize Yield Prediction using Artificial Neural Networks based on a Trial Network Dataset. Eng. Technol. Appl. Sci. Res 2023, 13, 10338–10346. [Google Scholar] [CrossRef]
- Gupta, A.; Sarkar, K.; Dhakre, D.; Bhattacharya, D. Weather based crop yield prediction using artificial neural networks: A comparative study with other approaches. MAUSAM 2024, 74, 825–832. [Google Scholar] [CrossRef]
- Krupavath, K.; Babu, M.R.; Mani, A. Comparative Evaluation of Neural Networks in Crop Yield Prediction of Paddy and Sugarcane Crop. In The Digital Agricultural Revolution: Innovations and Challenges in Agriculture through Technology Disruptions; Bhatnagar, R., Tripathi, N.K., Bhatnagar, N., Panda, C.K., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Ebaid, H.M.; Farag, H.A.; El Falaky, A.A. Using GIS and Remote Sensing Approaches to Delineate Potential Areas for Runoff Management Applications in Egypt. Int. J. Environ. Sci. Eng. 2016, 7, 85–93. [Google Scholar]
- Nashwan, M.S.; Shahid, S. Symmetrical uncertainty and random forest for the evaluation of gridded precipitation and temperature data. Atmos. Res. 2019, 230, 104631. [Google Scholar] [CrossRef]
- Agustí, M. Citricultura, 2nd ed.; Mundi-Prensa: Madrid, Spain, 2003; p. 422. [Google Scholar]
- Abdel-Sattar, M.; EL-Tanany, M.; EL-Kouny, H.M. Reducing mineral fertilizers by using organic manure to improve Washington navel orange productivity and sandy soil characteristics. Alex. Sci. Exch. J. 2011, 32, 372–380. [Google Scholar]
- Hardy, S.; Khurshid, T. Calculating Heat Units for Citrus. NSW Government. Department of Primary Industries. Primefact. 2021. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0011/218972/Calculating-heat-units-for-citrus.pdf (accessed on 5 May 2024).
- Sarkar, S.; Saha, A.; Hazra, P.; Pandit, M.K. Temperature effects on phenological development and yield of Snapmelon. J. Appl. Hortic. 2013, 15, 38–42. [Google Scholar] [CrossRef]
- Li, A.; Liang, S.; Wang, A.; Qin, J. Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques. Photogramm. Eng. Remote Sens. 2007, 73, 1149–1157. [Google Scholar] [CrossRef]
- Maskey, M.L.; Pathak, T.B.; Dara, S.K. Weather Based Strawberry Yield Forecasts at Field Scale Using Statistical and Machine Learning Models. Atmosphere 2019, 10, 378. [Google Scholar] [CrossRef]
- Lata, K.; Chaudhari, B. Crop Yield Prediction Using Data Mining Techniques and Machine Learning Models for Decision Support System. J. Emerg. Technol. Innov. Res. (JETIR) 2019, 6, 391–396. [Google Scholar]
- Moussaid, A.; El Fkihi, S.; Zennayi, Y.; Lahlou, O.; Kassou, I.; Bourzeix, F.; El Mansouri, L.; Imani, Y. Machine Learning Applied to Tree Crop Yield Prediction Using Field Data and Satellite Imagery: A Case Study in a Citrus Orchard. Informatics 2022, 9, 80. [Google Scholar] [CrossRef]
- Das, U.; Islam, H.S.; Avi, K.P.; Adil, A.; Nandi, D. Comparative Analysis of Data Mining Techniques for Predicting the Yield of Agricultural Crops. Int. J. Inf. Technol. Comput. Sci. 2023, 4, 19–32. [Google Scholar] [CrossRef]
- Gandge, Y.; Sandhya. A study on various data mining techniques for crop yield prediction. In Proceedings of the 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 15–16 December 2017; pp. 420–423. [Google Scholar] [CrossRef]
- Paul, M.; Vishwakarma, S.K.; Verma, A. Analysis of Soil Behaviour and Prediction of Crop Yield Using Data Mining Approach. In Proceedings of the 2015 International Conference on Computational Intelligence and Communication Networks (CICN), Jabalpur, India, 12–14 December 2015; pp. 766–771. [Google Scholar] [CrossRef]
- The WEKA® Data Platform Delivers Uncompromising Speed, Simplicity, Scale, and Sustainability. Available online: https://www.weka.io/ (accessed on 7 July 2024).
- Cleary, J.G.; Trigg, L.E. K*: An Instance-based Learner Using an Entropic Distance Measure. In Proceedings of the 12th International Conference on Machine Learning, Tahoe City, CA, USA, 9–12 July 1995; pp. 108–114. [Google Scholar]
- Aha, D.; Kibler, D. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66. [Google Scholar] [CrossRef]
- Shevade, S.K.; Keerthi, S.S.; Bhattacharyya, C.; Murthy, K.R.K. Improvements to the SMO Algorithm for SVM Regression. IEEE Trans. Neural Netw. 2000, 11, 1188–1193. [Google Scholar] [CrossRef]
- Tso, G.K.; Yau, K.K. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy 2007, 32, 1761–1768. [Google Scholar] [CrossRef]
- Emamgholizadeh, S.; Parsaeian, M.; Baradaran, M. Seed yield prediction of sesame using artificial neural network. Eur. J. Agron. 2015, 68, 89–96. [Google Scholar] [CrossRef]
- Kashaninejad, M.; Dehghani, A.A.; Kashiri, M. Modeling of wheat soaking using two artificial neural networks (MLP and RBF). J. Food Eng. 2009, 91, 602–607. [Google Scholar] [CrossRef]
- Gago, J.; Martínez-Núñez, L.; Landín, M.; Gallego, P.P. Artificial neural networks as an alternative to the traditional statistical methodology in plant research. J. Plant Physiol. 2010, 167, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Brandić, I.; Pezo, L.; Bilandžija, N.; Peter, A.; Šurić, J.; Voća, N. Artificial neural network as a tool for estimation of the higher heating value of miscanthus based on ultimate analysis. Mathematics 2022, 10, 3732. [Google Scholar] [CrossRef]
- Mitić, J.; Vitković, N.; Trajanović, M.; Górski, F.; Păcurar, A.; Borzan, C.; Sabău, E.; Păcurar, R. Utilizing Artificial Neural Networks for Geometric Bone Model Reconstruction in Mandibular Prognathism Patients. Mathematics 2024, 12, 1577. [Google Scholar] [CrossRef]
- Vesta Services. Qnet 2000 Shareware; Vesta Services: Winnetka, IL, USA, 2000. [Google Scholar]
- Zhang, J.; Liu, Z.; Shi, Z.; Jiang, L.; Ding, T. Milk yield prediction and economic analysis of optimized rearing environment in a cold region using neural network model. Agriculture 2023, 13, 2206. [Google Scholar] [CrossRef]
- Niedbała, G.; Piekutowska, M.; Weres, J.; Korzeniewicz, R.; Witaszek, K.; Adamski, M.; Pilarski, K.; Czechowska-Kosacka, A.; Krysztofiak-Kaniewska, A. Application of artificial neural networks for yield modeling of winter rapeseed based on combined quantitative and qualitative data. Agronomy 2019, 9, 781. [Google Scholar] [CrossRef]
- Chang, J.R.; Hung, C.T.; Chen, D.H. Application of an artificial neural network on depth to bedrock prediction. Int. J. Comput. Intell. Res. 2006, 2, 33–39. [Google Scholar] [CrossRef]
- Nov, P.; Peansupap, V. Using Artificial Neural Network for Selecting Type of Subcontractor Relationships in Construction Project. Eng. J. 2020, 24, 73–88. [Google Scholar] [CrossRef]
- Abd El-Salam, A.M.E.; Salem, S.A.W.; Abdel-Rahman, R.S.; El-Behery, H.H.; Magd Elden, M.A. Effects of climatic changes on olive fly, Bactroceraoleae (Rossi) population dynamic with respect to the efficacy of its larval parasitoid in Egyptian olive trees. Bull. Natl. Res. Cent. 2019, 43, 173. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Adamowski, J.; Alazba, A.A.; El-Gindy, A.M. Rainwater harvesting for the management of agricultural droughts in arid and semi-arid regions. Paddy Water Environ. 2016, 14, 231–246. [Google Scholar] [CrossRef]
- Beheira, Egypt Climate. Available online: https://weatherandclimate.com/egypt/beheira (accessed on 4 June 2024).
- Sharara, F.; El-Shahawy, T.; El-Rokiek, K. Effect of prometryn/benzoic acid combination on weeds, seed yield and yield components in lentil (Lens culinaris L.). EJPAU 2011, 14, 2. [Google Scholar]
- Kanzaria, D.R.; Polara, N.D.; Patel, H.N.; Parasana, J.S.; Senjaliya, H.J.; Varu, D.K. Prediction of mango fruit maturity using growing degree days. Pharma Innov. J. 2022, 11, 1088–1091. [Google Scholar]
- Singh, R.S.; Vashishtha, B.B.; Prasad, R.N. Micrometeorology of ber (Zizyphus mauritiana) orchard grown under rained arid conditions. Indian J. Hortic. 1998, 55, 97–107. (In Rajasthan) [Google Scholar]
- Sengupta, B.; Kumar, N.; Chattopadhyay, T.K. Mango. In Text Book on Pomology; Kalyani Publishers: New Delhi, India, 1996; Volume II, pp. 1–39. [Google Scholar]
- Ananthanaryanan, K.K.; Pillai, O.A.A. Fruit maturity studies in mango at Kanyakumari (Tamil Nadu). South Indian Hort. 1968, 16, 56–57. [Google Scholar]
- Martín, R.M.; Mompie, E.J. Effect of temperatures in the performance of potato variety Romano (Solanum tuberosum L.). Cultiv. Trop. 2017, 38, 75–80, (Abstract In English). [Google Scholar]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10 Pt A, 4–10. [Google Scholar] [CrossRef]
- Kim, K.D.; Suh, J.T.; Lee, J.N.; Yoo, D.L.; Kwon, M.; Hong, S.C. Evaluation of factors related to productivity and yield estimation based on growth characteristics and growing degree days in highland Kimchi cabbage. Hortic. Sci. Technol. 2015, 33, 911–922. [Google Scholar] [CrossRef]
- Mutombo, N.M.-A.; Numbi, B.P. Development of a Linear Regression Model Based on the Most Influential Predictors for a Research Office Cooling Load. Energies 2022, 15, 5097. [Google Scholar] [CrossRef]
- Døving, A. Prediction of strawberry season and yield. In Proceedings of the International Workshop on Models for Plant Growth and Control of Product Quality in Horticultural Production, Potsdam, Germany, 25–28 August 2004; pp. 325–332. [Google Scholar]
- Hemalatha, S.; Sreelatha, D.; Anuradha, M.; Kumar, R.S. Crop weather relations in maize (Zea mays L.). J. Agrometeorol. 2013, 15, 165–166. [Google Scholar] [CrossRef]
- Naveen, S.A.; Kokilavani, S.; Ramanathan, S.P.; Dheebakaran, G.A.; AnittaFanish, S. Influence of weather parameters and thermal time approach on green gram at Coimbatore, Tamil Nadu. Int. J. Environ. Clim. Chang. 2020, 10, 1–5. [Google Scholar] [CrossRef]
- Devi, S.; Singh, M.; Aggarwal, R.K. Thermal requirements and heat use efficiency of pea cultivars under varying environments. Curr. World Environ. 2019, 14, 376–382. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Chakravarty, N.V.K.; Sharma, P.K.; Bhagavati, G.; Prasad, R.N.; Gupta, V.K.; Sutradhar, A.K.; Subbarao, Y.V.; Chopra, U.K. Relation of growing degree days with plant growth and yield in mustard varieties grown under a semi-arid environment. J. Agric. Phys. 2005, 5, 23–28. [Google Scholar]
- Dhankhar, S.K.; Singh, S. Thermal requirements for flowering and fruit yield attainment in advance lines of okra. J. Agrometeorol. 2013, 15, 39–42. [Google Scholar] [CrossRef]
- Masasi, B.; Taghvaenian, S.; Gowda, P.H.; Moriasi, D.N.; Starks, P.J. Assessment of heat unit availability and potential lint yield of cotton in Oklahoma. Appl. Eng. Agric. 2020, 36, 943–954. [Google Scholar] [CrossRef]
- Ram, H.; Singh, G.; Mavi, G.S.; Sohu, V.S. Accumulated heat unit requirement and yield of irrigated wheat (Triticum aestivum L.) varieties under different crop growing environment in central Punjab. J. Agrometeorol. 2012, 14, 147–153. [Google Scholar]
- Meshram, D.T.; Ram, C.; Singh, N.V.; Pal, R.K. Thermal requirement of pomegranate varieties growing in Maharashtra. Indian J. Hortic. 2016, 73, 327–333. [Google Scholar] [CrossRef]
- Thavaprakash, N.; Jagannatham, R.; Velayudham, K.; Gurusamy, L. Seasonal influence on phenology and accumulated heat units in relation to yield of baby corn. Int. J. Agric. Res. 2007, 2, 826–831. [Google Scholar] [CrossRef]
- Karahan, H.; Ayvaz, M.T. Simultaneous Parameter Identification of a Heterogeneous Aquifer System Using Artificial Neural Networks. Hydrogeol. J. 2008, 16, 817–827. [Google Scholar] [CrossRef]
- Niedbała, G.; Kozłowski, R.J. Application of Artificial neural networks for multi-criteria yield prediction of winter wheat. J. Agric. Sci. Technol. 2019, 21, 51–61. [Google Scholar]
- Karahan, H.; Cetin, M.; Can, M.E.; Alsenjar, O. Developing a New ANN Model to Estimate Daily Actual Evapotranspiration Using Limited Climatic Data and Remote Sensing Techniques for Sustainable Water Management. Sustainability 2024, 16, 2481. [Google Scholar] [CrossRef]
- Maier, H.R.; Dandy, G.C. Neural network based modelling of environmental variables: A systematic approach. Math. Comput. Model. 2001, 33, 669–682. [Google Scholar] [CrossRef]
- Cornell, J.A.; Berger, R.D. Factors that influence the value of the coefficient of determination in simple linear and nonlinear regression models. Phytopathology 1987, 77, 63–70. [Google Scholar] [CrossRef]
- Abd-Elrahman, A.; Wu, F.; Agehara, S.; Britt, K. Improving Strawberry Yield Prediction by Integrating Ground-Based Canopy Images in Modeling Approaches. ISPRS Int. J. Geo-Inf. 2021, 10, 239. [Google Scholar] [CrossRef]
- Onwude, D.; North, J.; Cronje, P.; Schouten, R.; Defraeye, T. Digital twins to quantify the impact of growing variability on the harvest quality of orange. Sci. Hortic. 2024, 331, 113129. [Google Scholar] [CrossRef]
- Dahikar, S.S.; Rode, S.V.; Deshmukh, P. An Artificial Neural Network Approach for Agricultural Crop Yield Prediction Based on Various Parameters. Int. J. Adv. Res. Electron. Commun. Eng. (IJARECE) 2015, 4, 94–98. [Google Scholar]
- Hessane, A.; EL Youssefi, A.; Farhaoui, Y.; Aghoutane, B.; Qaraai, Y. Artificial Intelligence Applications in Date Palm Cultivation and Production: A Scoping Review. In Artificial Intelligence and Smart Environment. ICAISE 2022. Lecture Notes in Networks and Systems; Farhaoui, Y., Rocha, A., Brahmia, Z., Bhushab, B., Eds.; Springer: Cham, Switzerland, 2023; Volume 635. [Google Scholar] [CrossRef]
- Moussaid, A.; El Fkihi, S.; Zennayi, Y.; Kassou, I.; Bourzeix, F.; Lahlou, O.; El Mansouri, L.; Imani, Y. Citrus yield prediction using deep learning techniques: A combination of field and satellite data. J. Open Innov. Technol. Mark. Complex. 2023, 9, 100075. [Google Scholar] [CrossRef]
- Díaz, I.; Mazza, S.M.; Combarro, E.F.; Giménez, L.I.; Gaiad, J.E. Machine learning applied to the prediction of citrus production. Span. J. Agric. Res. 2017, 15, e0205. [Google Scholar] [CrossRef]
- Mohammed, M.; Munir, M.; Aljabr, A. Prediction of Date Fruit Quality Attributes during Cold Storage Based on Their Electrical Properties Using Artificial Neural Networks Models. Foods 2022, 11, 1666. [Google Scholar] [CrossRef]
- Schalkoff, R.J. Artificial Neural Networks; McGraw-Hill Higher Education: New York, NY, USA, 1997; ISBN 007057118X. [Google Scholar]
- Citrus Tree Irrigation. Available online: https://www.rivulis.com/crop/citrus (accessed on 4 June 2024).
Period | Months | Citrus Cultivars | ||||
---|---|---|---|---|---|---|
Washington Navel Orange | Valencia Orange | Murcott Mandarin | Fremont Mandarin | Bearss Seedless Lime | ||
Previous season of harvesting | January | |||||
February | Flowering date at 25 February | |||||
March | Flowering date at 1 March | Flowering Date at 10 March | Flowering date at 15 March | Flowering date at 20 March | ||
April | ||||||
May | ||||||
Jun | ||||||
July | ||||||
August | ||||||
September | ||||||
October | ||||||
November | ||||||
December | ||||||
Season of harvesting | January | Harvesting date at 30 January | Harvesting date at 1 January | |||
February | ||||||
March | Harvesting date at 30 March | |||||
April | ||||||
May | Harvesting date at 15 May | |||||
June | ||||||
July | Harvesting date at 15 July |
Year | Precipitation | RH2M | T2M | T2M_MAX | T2M_MIN |
---|---|---|---|---|---|
(mm/day) | (%) | (°C) | (°C) | (°C) | |
2010 | 0.05 | 54.76 | 21.95 | 30.00 | 15.61 |
2011 | 0.17 | 59.56 | 20.55 | 27.97 | 14.58 |
2012 | 0.11 | 57.93 | 21.05 | 28.54 | 14.96 |
2013 | 0.10 | 57.64 | 20.98 | 28.56 | 14.68 |
2014 | 0.12 | 59.26 | 21.20 | 28.80 | 15.23 |
2015 | 0.29 | 59.16 | 21.15 | 28.46 | 15.32 |
2016 | 0.40 | 59.46 | 21.19 | 28.58 | 15.37 |
2017 | 0.56 | 61.90 | 20.55 | 27.92 | 14.72 |
2018 | 0.27 | 60.00 | 21.63 | 28.98 | 15.78 |
2019 | 0.18 | 58.12 | 21.09 | 28.66 | 15.04 |
2020 | 0.67 | 63.30 | 21.02 | 28.35 | 15.16 |
2021 | 0.69 | 60.49 | 21.55 | 29.11 | 15.52 |
2022 | 0.33 | 59.53 | 21.80 | 29.17 | 15.77 |
Overall average | 0.30 | 59.32 | 21.21 | 28.70 | 15.21 |
Standard deviation | ±0.22 | ±2.07 | ±0.43 | ±0.54 | ±0.40 |
Overall maximum | 0.69 | 63.30 | 21.95 | 30.00 | 15.78 |
Overall minimum | 0.05 | 54.76 | 20.55 | 27.92 | 14.58 |
Coefficient of variation (%) | 71.95 | 3.49 | 2.02 | 1.90 | 2.65 |
Date | Daily Maximum Air Temperature (°C) | Recalculated Daily Maximum Air Temperature (for Temperatures ≥ 35.0 °C) | Daily Minimum Air Temperature (°C) | Average Air Temperature (Maximum Air Temperature + Minimum Air Temperature ÷ 2) | Daily Heat Units (DHUs) (Average Air Temperature—Base Temperature of 13.0) | Accumulated Heat Units (Negative Values for DHUs Are Not Used) |
---|---|---|---|---|---|---|
1 | 36.5 | 35.0 | 17.6 | 26.3 | 13.3 | 13.3 |
2 | 35.2 | 35.0 | 19.9 | 27.5 | 14.5 | 27.8 |
3 | 34.1 | 34.1 | 17.0 | 25.6 | 12.6 | 39.0 |
4 | 40.1 | 35.0 | 21.5 | 28.2 | 15.2 | 39.0 |
5 | 20.6 | 20.6 | 12.8 | 16.7 | 3.7 | 42.7 |
6 | 15.2 | 15.2 | 7.6 | 11.4 | −1.6 | 0.0 |
7 | 33.4 | 33.4 | 17.8 | 25.6 | 12.6 | 55.4 |
8 | 19.2 | 19.2 | 6.6 | 12.9 | −0.1 | 0.0 |
9 | 23.4 | 23.4 | 13.4 | 18.4 | 5.4 | 60.8 |
10 | 29.3 | 29.3 | 22.0 | 25.7 | 12.7 | 73.4 |
11 | 25.1 | 25.1 | 12.5 | 18.8 | 5.8 | 79.3 |
Inputs | Output | ||||||||
---|---|---|---|---|---|---|---|---|---|
Washington Navel Orange | Valencia Orange | Murcott Mandarin | Fremont Mandarin | Bearss Seedless Lime | Precipitation | Air Relative Humidity | Air Temperature (T2M) | Accumulated Heat Units | Yield |
(mm/day) | (%) | (°C) | (°C day) | (t/ha) | |||||
1 | 0 | 0 | 0 | 0 | 0.04 | 54.85 | 21.95 | 3468.76 | 47.62 |
1 | 0 | 0 | 0 | 0 | 0.17 | 59.51 | 20.41 | 2951.37 | 52.44 |
0 | 1 | 0 | 0 | 0 | 0.28 | 59.35 | 21.00 | 3909.72 | 54.76 |
0 | 1 | 0 | 0 | 0 | 0.41 | 58.68 | 21.26 | 3641.37 | 62.02 |
0 | 0 | 1 | 0 | 0 | 0.28 | 59.35 | 21.00 | 3411.19 | 45.24 |
0 | 0 | 1 | 0 | 0 | 0.41 | 58.68 | 21.26 | 3247.41 | 45.24 |
0 | 0 | 0 | 1 | 0 | 0.11 | 58.79 | 21.16 | 3123.99 | 54.76 |
0 | 0 | 0 | 1 | 0 | 0.28 | 59.35 | 21.00 | 3177.72 | 52.44 |
0 | 0 | 0 | 1 | 0 | 0.41 | 58.68 | 21.26 | 3143.36 | 53.39 |
0 | 0 | 0 | 0 | 1 | 0.18 | 58.08 | 21.05 | 4527.33 | 47.62 |
0 | 0 | 0 | 0 | 1 | 0.66 | 62.94 | 20.87 | 3650.88 | 43.57 |
Citrus Cultivars | Slope (b) | Intercept (a) | Correlation Coefficient |
---|---|---|---|
Washington Navel orange | −0.013 | 91.358 | −0.228 |
Valencia orange | −0.002 | 67.251 | −0.051 |
Murcott mandarin | −0.007 | 66.632 | −0.328 |
Fremont mandarin | 0.001 | 48.266 | 0.044 |
Bearss Seedless lime | −0.011 | 96.920 | −0.376 |
Error Criterion | Training Dataset | Testing Dataset |
---|---|---|
RMSE (t/ha) | 2.60 | 2.80 |
MAE (t/ha) | 2.09 | 2.58 |
MAPE (%) | 4.17 | 5.41 |
Washington Navel Orange | Valencia Orange | Murcott Mandarin | Fremont Mandarin | Bearss Seedless Lime | Actual Yield | Predicted Yield | Relative Error (RE) |
---|---|---|---|---|---|---|---|
(t/ha) | (t/ha) | (%) | |||||
1 | 0 | 0 | 0 | 0 | 45.71 | 44.13 | 3.46 |
1 | 0 | 0 | 0 | 0 | 47.62 | 50.59 | 6.23 |
0 | 0 | 1 | 0 | 0 | 47.74 | 46.01 | 3.62 |
0 | 0 | 1 | 0 | 0 | 39.82 | 35.20 | 11.61 |
0 | 0 | 0 | 1 | 0 | 54.05 | 51.47 | 4.77 |
0 | 1 | 0 | 0 | 0 | 62.02 | 59.77 | 3.63 |
0 | 0 | 0 | 0 | 1 | 47.62 | 50.25 | 5.52 |
0 | 0 | 0 | 1 | 0 | 54.76 | 50.58 | 7.63 |
0 | 0 | 1 | 0 | 0 | 44.17 | 43.26 | 2.07 |
0 | 0 | 0 | 0 | 1 | 42.86 | 45.25 | 5.58 |
Statistical Criteria | Washington Navel orange | Valencia Orange | Murcott Mandarin | Fremont Mandarin | Bearss Seedless Lime |
---|---|---|---|---|---|
Multiple R | 0.389 | 0.602 | 0.919 | 0.752 | 0.785 |
R Square | 0.151 | 0.362 | 0.844 | 0.565 | 0.616 |
Adjusted R Square | −0.697 | −0.148 | 0.635 | 0.131 | 0.232 |
Standard error | 11.083 | 6.376 | 1.453 | 2.400 | 2.110 |
Observations | 9 | 10 | 8 | 9 | 9 |
Statistical Performance Criteria | KStar | Support Vector Regression | KNN | The Developed ANN Model |
---|---|---|---|---|
R2 | 0.196 | 0.474 | 0.481 | 0.83 |
Mean absolute error (t/ha) | 4.2101 | 4.1542 | 3.7347 | 2.58 |
Root mean squared error (t/ha) | 4.210 | 4.154 | 3.735 | 2.80 |
Total number of instances | 10 | 10 | 10 | 10 |
Hidden-Layer Neurons | W1 = Weight between Inputs and Hidden Layer | ||||||||
---|---|---|---|---|---|---|---|---|---|
Washington Navel Orange | Valencia Orange | Murcott Mandarin | Fremont Mandarin | Bearss Seedless Lime | Precipitation | Air Relative Humidity | Air Temperature | Accumulated Heat Units | |
(−) | (−) | (−) | (−) | (−) | (mm/day) | (%) | (°C) | (°C day) | |
1 | 0.02706 | 0.22408 | −0.19353 | −0.11105 | −0.20066 | 0.20048 | 0.00278 | 0.15329 | 0.16340 |
2 | 0.28227 | −0.14844 | 0.27830 | 0.22618 | 0.21042 | 0.21018 | 0.21475 | 0.00381 | 0.15014 |
3 | −0.07232 | 0.11441 | 0.36355 | 0.18868 | −0.21503 | −0.18590 | −0.81221 | −0.12274 | 0.10510 |
4 | −0.27945 | −0.38290 | 0.71432 | 0.21528 | 0.31424 | 0.25154 | 0.96701 | 0.06732 | −0.31144 |
5 | −0.26332 | −0.36614 | 0.13500 | −0.11270 | −0.09157 | 0.11206 | −0.23306 | −0.09903 | 0.12708 |
6 | −0.08161 | −0.09767 | 0.08355 | 0.14777 | 0.15837 | −0.03501 | −0.11089 | 0.23679 | 0.08912 |
7 | −0.45998 | −0.26918 | 0.40005 | −0.32375 | −0.12214 | 0.22730 | 1.01914 | 0.15166 | −0.10975 |
8 | 0.94677 | −0.77103 | 0.81968 | 0.35768 | 0.34135 | −3.54611 | −2.46647 | −1.01025 | 0.92721 |
9 | 0.08207 | 0.08019 | 0.05564 | −0.25251 | 0.12015 | −0.29556 | −0.01824 | 0.08736 | 0.11538 |
10 | −0.04099 | 0.28062 | 0.25125 | −0.12841 | −0.08456 | −0.42819 | −0.52102 | −0.19645 | 0.25919 |
11 | 0.05239 | 0.00071 | 0.19055 | 0.19843 | 0.02235 | −0.33817 | −0.79544 | −0.02883 | 0.33441 |
12 | 0.28484 | −0.19937 | −0.24565 | −0.21862 | 0.10723 | −0.16196 | 0.11796 | −0.13195 | 0.22028 |
13 | −0.34234 | −0.10479 | 0.32410 | −0.02516 | −0.21373 | 0.33522 | 0.90099 | 0.18882 | −0.17925 |
14 | −0.14330 | 0.05131 | 0.18515 | 0.33553 | 0.02950 | −0.21632 | −0.59631 | −0.21839 | 0.15359 |
15 | −0.14092 | −0.08120 | −0.27642 | −0.18628 | −0.03294 | −0.27182 | 0.09972 | −0.04396 | −0.19754 |
16 | 0.19962 | 0.26327 | 0.07834 | −0.09171 | −0.24753 | −0.49542 | −0.54730 | −0.45608 | 0.21690 |
17 | 0.04893 | 0.10915 | 0.30190 | 0.14554 | −0.08297 | −0.09957 | 0.16219 | 0.27333 | 0.24444 |
18 | 0.00806 | 0.15966 | −0.20215 | 0.27380 | 0.09650 | 0.41072 | 0.22583 | −0.14316 | 0.16863 |
19 | 0.04272 | 1.21867 | −1.66854 | −0.43737 | −1.12445 | −0.32190 | −1.25240 | 0.07940 | −0.51814 |
20 | 0.47787 | −0.07041 | −0.22739 | 0.33783 | 0.02179 | −0.29617 | −0.97773 | −0.50066 | 0.23493 |
Hidden-Layer Neurons | B1 = Hidden-Layer Biases | W2 = Weight between Output and Hidden Layer | B2 = Output-Layer Biases |
---|---|---|---|
1 | −0.20217 | −0.12134 | −0.09119 |
2 | 0.06348 | −0.18729 | |
3 | 0.34437 | 1.01165 | |
4 | 0.28102 | −1.18529 | |
5 | −0.22902 | 0.21718 | |
6 | −0.17880 | 0.07926 | |
7 | 0.21729 | −1.13711 | |
8 | 0.60097 | −3.40222 | |
9 | −0.00136 | 0.22969 | |
10 | 0.01510 | 1.00440 | |
11 | 0.19488 | 1.01497 | |
12 | −0.10589 | 0.04920 | |
13 | −0.11755 | −1.03328 | |
14 | 0.25557 | 0.83525 | |
15 | 0.17895 | 0.08788 | |
16 | 0.07469 | 1.10082 | |
17 | 0.19315 | −0.03648 | |
18 | −0.20713 | −0.34745 | |
19 | −0.53929 | 2.14854 | |
20 | 0.14833 | 1.34962 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almady, S.S.; Abdel-Sattar, M.; Al-Sager, S.M.; Al-Hamed, S.A.; Aboukarima, A.M. Employing an Artificial Neural Network Model to Predict Citrus Yield Based on Climate Factors. Agronomy 2024, 14, 1548. https://doi.org/10.3390/agronomy14071548
Almady SS, Abdel-Sattar M, Al-Sager SM, Al-Hamed SA, Aboukarima AM. Employing an Artificial Neural Network Model to Predict Citrus Yield Based on Climate Factors. Agronomy. 2024; 14(7):1548. https://doi.org/10.3390/agronomy14071548
Chicago/Turabian StyleAlmady, Saad S., Mahmoud Abdel-Sattar, Saleh M. Al-Sager, Saad A. Al-Hamed, and Abdulwahed M. Aboukarima. 2024. "Employing an Artificial Neural Network Model to Predict Citrus Yield Based on Climate Factors" Agronomy 14, no. 7: 1548. https://doi.org/10.3390/agronomy14071548
APA StyleAlmady, S. S., Abdel-Sattar, M., Al-Sager, S. M., Al-Hamed, S. A., & Aboukarima, A. M. (2024). Employing an Artificial Neural Network Model to Predict Citrus Yield Based on Climate Factors. Agronomy, 14(7), 1548. https://doi.org/10.3390/agronomy14071548