Two-Stage Detection Algorithm for Plum Leaf Disease and Severity Assessment Based on Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Processing
2.2. Overall Algorithm Workflow
2.3. Plum Leaf Detection Model Based on YOLOv8
2.4. Leaf Disease Segmentation Model Based on MOC_UNet
2.4.1. U-Net Model
2.4.2. Omni-Dimensional Dynamic Convolution Module
2.4.3. Multi-Scale Convolutional Attention Module
2.4.4. Combined Loss
2.5. Disease Severity Assessment
2.6. Experimental and Evaluation Indicators
3. Results
3.1. Plum Leaf Detection Results
3.2. Leaf Disease Segmentation Results
3.3. The Results of the Disease Severity Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.; Zhang, S.; Wang, B. Plant disease detection and classification by deep learning—A Review. IEEE Access 2021, 9, 56683–56698. [Google Scholar] [CrossRef]
- Wangchu, L.; Angami, T.; Mandal, D. Plum. In Temperate Fruits; Apple Academic Press: Palm Bay, FL, USA, 2021; pp. 297–331. [Google Scholar]
- Seethapathy, P.; Gothandaraman, R.; Gurudevan, T.; Malik, I.A. Diseases, Pests, and Disorders in Plum: Diagnosis and Man-agement. In Handbook of Plum Fruit; CRC Press: Boca Raton, FL, USA, 2022; pp. 133–176. [Google Scholar]
- Pennazio, S.; Roggero, P.; Conti, M. Yield losses in virus-infected crops. Arch. Phytopathol. Plant Prot. 1996, 30, 283–296. [Google Scholar] [CrossRef]
- Garcia, J.A.; Cambra, M. Plum pox virus and sharka disease. Plant viruses 2007, 1, 69–79. [Google Scholar]
- Neagu Frăsin, L. Integrated pestand disease management in sweet cherry and plum orchards. Ann. Food Sci. Technol. 2021, 22, 430. [Google Scholar]
- Jain, A.; Sarsaiya, S.; Wu, Q.; Lu, Y.; Shi, J. A review of plant leaf fungal diseases and its environment speciation. Bioengineered 2019, 10, 409–424. [Google Scholar] [CrossRef]
- Waggoner, P.E.; Green, J.S.A.; Smith, F.B. The aerial dispersal of the pathogens of plant disease. Philos. Trans. R. Soc. London. B Biol. Sci. 1983, 302, 451–462. [Google Scholar] [CrossRef]
- Applalanaidu, M.V.; Kumaravelan, G. A review of machine learning approaches in plant leaf disease detection and classification. In Proceedings of the 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 4–6 February 2021; pp. 716–724. [Google Scholar]
- Labusca, A.V.; Manoliu, A.; Oprica, L. Influence of the attack of the fungus Polystigma rubrum (pers.) dc (red leaf spot) on nutritional value of fruits in different plum cultivars. J. Exp. Mol. Biol. 2011, 12, 139. [Google Scholar]
- Blackman, V.H.; Welsford, E.J. The Development of the Perithecium of Polystigma rubrum, DC. Ann. Bot. 1912, 26, 761–767. [Google Scholar] [CrossRef]
- Guan, H.; Deng, H.; Ma, X.; Zhang, T.; Zhang, Y.; Zhu, T.; Zhou, H.; Gu, Z.; Lu, Y. A corn canopy organs detection method based on improved DBi-YOLOv8 network. Eur. J. Agron. 2024, 154, 127076. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, R.; Nie, C.; Wang, L.; Sun, J. Farmland segmentation from remote sensing images using deep learning methods. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XXII, Online, 21–25 September 2020; p. 1152809. [Google Scholar]
- Verma, S.; Kumar, P.; Singh, J.P. A Unified lightweight CNN-based model for disease detection and identification in corn, rice, and wheat. IETE J. Res. 2023, 1–12. [Google Scholar] [CrossRef]
- Rajeena PP, F.; Su, A.; Moustafa, M.A.; Ali, M. Detecting plant disease in corn leaf Using efficientNet architecture—An analytical approach. Electronics 2023, 12, 1938. [Google Scholar] [CrossRef]
- Tiwari, D.; Ashish, M.; Gangwar, N.; Sharma, A.; Patel, S.; Bhardwaj, S. Potato leaf diseases detection using deep learning. In Proceedings of the 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 13–15 May 2020; pp. 461–466. [Google Scholar]
- Iqbal, M.A.; Talukder, K.H. Detection of potato disease using image segmentation and machine learning. In Proceedings of the 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 4–6 August 2020; pp. 43–47. [Google Scholar]
- Yao, J.; Wang, Y.; Xiang, Y.; Yang, J.; Zhu, Y.; Li, X.; Li, S.; Zhang, J.; Gong, G. Two-stage detection algorithm for kiwifruit leaf diseases based on deep learning. Plants 2022, 11, 768. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Yao, J.; Yang, Y.; Yao, K.; Wu, C.; Yue, X.; Li, Z.; Ma, M.; Zhang, J.; Gong, G. Real-Time Detection Algorithm for Kiwifruit Canker Based on a Lightweight and Efficient Generative Adversarial Network. Plants 2023, 12, 3053. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Shahidi, T.R.; Alam, S.M.I.; Momen, S. Rice leaf disease detection using machine learning techniques. In Proceedings of the 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, 24–25 December 2019; pp. 1–5. [Google Scholar]
- Wang, Y.; Wang, H.; Peng, Z. Rice diseases detection and classification using attention based neural network and bayesian optimization. Expert Syst. Appl. 2021, 178, 114770. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Q.; Kong, S.; Xing, L.; Wang, Q.; Cong, X.; Zhou, Y. Real-time object detection method of melon leaf diseases under complex background in greenhouse. J. Real-Time Image Process. 2022, 19, 985–995. [Google Scholar] [CrossRef]
- Shu, H.; Liu, J.; Hua, Y.; Chen, J.; Zhang, S.; Su, M.; Luo, Y.J.M.T. A grape disease identification and severity es-timation system. Multimed. Tools Appl. 2023, 82, 23655–23672. [Google Scholar] [CrossRef]
- Divyanth, L.; Ahmad, A.; Saraswat, D.J.S.A.T. A two-stage deep-learning based segmentation model for crop disease quanti-fication based on corn field imagery. Smart Agric. Technol. 2023, 3, 100108. [Google Scholar] [CrossRef]
- Xiao, B.; Nguyen, M.; Yan, W.Q. Fruit ripeness identification using YOLOv8 model. Multimed. Tools Appl. 2023, 83, 28039–28056. [Google Scholar] [CrossRef]
- Li, X.; Sun, X.; Meng, Y.; Liang, J.; Wu, F.; Li, J. Dice loss for data-imbalanced NLP tasks. arXiv 2019, arXiv:1911.02855. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Cambridge, MA, USA, 20–23 June 1995; pp. 2980–2988. [Google Scholar]
- Li, C.; Zhou, A.; Yao, A. Omni-dimensional dynamic convolution. arXiv 2022, arXiv:2209.07947. [Google Scholar]
- Guo, M.-H.; Lu, C.-Z.; Hou, Q.; Liu, Z.; Cheng, M.-M.; Hu, S.-M. Segnext: Rethinking convolutional attention design for semantic segmentation. Adv. Neural Inf. Process. Syst. 2022, 35, 1140–1156. [Google Scholar]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of yolo algorithm developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Yao, J.; Qi, J.; Zhang, J.; Shao, H.; Yang, J.; Li, X. A real-time detection algorithm for kiwifruit defects based on YOLOv5. Electronics 2021, 10, 1711. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Lu, Y.; Chen, Y.; Zhao, D.; Chen, J. Graph-FCN for image semantic segmentation. In Proceedings of the International Symposium on Neural Networks, Moscow, Russia, 10–12 July 2019; pp. 97–105. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Zhu, X.; Cheng, Z.; Wang, S.; Chen, X.; Lu, G. Coronary angiography image segmentation based on PSPNet. Comput. Methods Programs Biomed. 2020, 200, 105897. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. Deeplab: Semantic image seg-mentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Zhang, Y.; Zhang, J.; Wang, Q.; Zhong, Z. Dynet: Dynamic convolution for accelerating convolutional neural networks. arXiv 2020, arXiv:2004.10694. [Google Scholar]
- Ma, J.; Zhang, Z.; Xiao, W.; Zhang, X.; Xiao, S.J.I.A. Flame and smoke detection algorithm based on ODConvBS-YOLOv5s. IEEE Access 2023, 11, 34005–34014. [Google Scholar] [CrossRef]
- Yang, B.; Bender, G.; Le, Q.V.; Ngiam, J. Condconv: Conditionally parameterized convolutions for efficient inference. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, X.; Liu, M.; Chen, D.; Yuan, L.; Liu, Z. Dynamic convolution: Attention over convolution kernels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11030–11039. [Google Scholar]
- Qian, L.; Qian, W.; Tian, D.; Zhu, Y.; Zhao, H.; Yao, Y. MSCA-UNet: Multi-Scale Convolutional Attention UNet for Automatic Cell Counting Using Density Regression. IEEE Access 2023, 11, 85990–86001. [Google Scholar] [CrossRef]
- Wang, C.; Du, P.; Wu, H.; Li, J.; Zhao, C.; Zhu, H. A cucumber leaf disease severity classification method based on the fusion of DeepLabV3+ and U-Net. Comput. Electron. Agric. 2021, 189, 106373. [Google Scholar] [CrossRef]
Confusion Matrix | Predicted Results | ||
---|---|---|---|
Positive | Negative | ||
Expected Results | Positive | TP | FN |
Negative | FP | TN |
Network Model | mIoU | mPA | mPrecision | mRecall | MCC |
---|---|---|---|---|---|
PSPNet | 67.71% | 76.40% | 83.46% | 76.40% | 0.7325 |
DeepLabV3+ | 84.69% | 91.29% | 91.82% | 91.29% | 0.8790 |
Segformer | 86.89% | 92.61% | 93.03% | 92.61% | 0.9001 |
HRNetv2 | 87.20% | 92.41% | 93.60% | 92.41% | 0.9033 |
U-Net | 89.73% | 94.35% | 94.62% | 94.35% | 0.9234 |
MOC_UNet | 90.93% | 95.21% | 95.17% | 95.21% | 0.9320 |
Combined Loss | ODConv | MSCA | MIOU | mPA | mPrecision | mRecall |
---|---|---|---|---|---|---|
89.73% | 94.35% | 94.62% | 94.35% | |||
√ | 90.44% | 95.01% | 94.83% | 95.01% | ||
√ | 90.33% | 94.61% | 95.05% | 94.61% | ||
√ | 89.99% | 94.47% | 94.81% | 94.47% | ||
√ | √ | 90.76% | 95.10% | 95.08% | 95.10% | |
√ | √ | 90.54% | 95.05% | 94.90% | 95.05% | |
√ | √ | 90.47% | 94.68% | 95.14% | 94.68% | |
√ | √ | √ | 90.93% | 95.21% | 95.17% | 95.21% |
Measurement Methods | Leaf1 | Leaf2 | Leaf3 |
---|---|---|---|
measured value | 0.66% | 2.19% | 12.46% |
PSPNet | 0.63% | 2.38% | 8.71% |
DeepLabV3+ | 0.97% | 2.39% | 12.51% |
Segformer | 0.73% | 2.48% | 12.51% |
HRNetv2 | 0.71% | 2.21% | 12.03% |
U-Net | 0.93% | 2.22% | 10.18% |
MOC_UNet | 0.69% | 2.21% | 12.43% |
Original Image | Segmentation Image | Labels | Value | Ratio | Disease Ratio |
---|---|---|---|---|---|
background | 418,965 | 41.14% | 1.89% | ||
Plum Leaf | 587,989 | 57.74% | |||
Plum red spot | 11,327 | 1.11% | |||
background | 476,665 | 38.78% | 9.14% | ||
Plum Leaf | 683,744 | 55.63% | |||
Plum red spot | 68,793 | 5.60% | |||
background | 322,539 | 36.93% | 21.40% | ||
Plum Leaf | 432,966 | 49.57% | |||
Plum red spot | 117,874 | 13.50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, C.; Yang, Z.; Li, P.; Liang, Y.; Fan, Y.; Luo, J.; Jiang, C.; Mu, J. Two-Stage Detection Algorithm for Plum Leaf Disease and Severity Assessment Based on Deep Learning. Agronomy 2024, 14, 1589. https://doi.org/10.3390/agronomy14071589
Yao C, Yang Z, Li P, Liang Y, Fan Y, Luo J, Jiang C, Mu J. Two-Stage Detection Algorithm for Plum Leaf Disease and Severity Assessment Based on Deep Learning. Agronomy. 2024; 14(7):1589. https://doi.org/10.3390/agronomy14071589
Chicago/Turabian StyleYao, Caihua, Ziqi Yang, Peifeng Li, Yuxia Liang, Yamin Fan, Jinwen Luo, Chengmei Jiang, and Jiong Mu. 2024. "Two-Stage Detection Algorithm for Plum Leaf Disease and Severity Assessment Based on Deep Learning" Agronomy 14, no. 7: 1589. https://doi.org/10.3390/agronomy14071589
APA StyleYao, C., Yang, Z., Li, P., Liang, Y., Fan, Y., Luo, J., Jiang, C., & Mu, J. (2024). Two-Stage Detection Algorithm for Plum Leaf Disease and Severity Assessment Based on Deep Learning. Agronomy, 14(7), 1589. https://doi.org/10.3390/agronomy14071589