PMLPNet: Classifying Multi-Class Pests in Wild Environment via a Novel Convolutional Neural Network
Abstract
:1. Introduction
- (1)
- PMLPNet is proposed for multi-class pest classification, which integrates local and global contextual semantic features by designed token- and channel-mixing MLP structures.
- (2)
- The patch-based image input strategy not only improves the performance of PMLPNet, but also provides a basis for image heterogeneity analysis.
- (3)
- The GELU activation function improves the ability of PMLPNet to fit complex data distributions and enhances the capabilities of PMLPNet.
2. Materials and Methods
2.1. Dataset and Preprocessing
2.2. Overview of Our Method
ID | Pest Names | Number | ID | Pest Names | Number | ID | Pest Names | Number | ID | Pest Names | Number |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Aulacophora indica (Gmelin) | 78 | 11 | Corythucha ciliata (Say) | 90 | 21 | Halyomorpha halys (Stål) | 101 | 31 | Pieris rapae (Linnaeus) | 71 |
2 | Bemisia tabaci (Gennadius) | 147 | 12 | Corythucha marmorata(Uhler) | 98 | 22 | Iscadia inexacta (Walker) | 79 | 32 | Plutella xylostella (Linnaeus) | 69 |
3 | Callitettix versicolor (Fabricius) | 156 | 13 | Dicladispa armigera (Olivier) | 150 | 23 | Laodelphax striatellus (Fall en) | 61 | 33 | Porthesia taiwana Shiraki | 141 |
4 | Ceroplastes ceriferus (Anderson) | 100 | 14 | Diostrombus politus Uhler | 238 | 24 | Leptocorisa acuta (Thunberg) | 133 | 34 | Riptortus pedestris (Fabricius) | 110 |
5 | Ceutorhynchus asper Roelofs | 146 | 15 | Dolerus tritici Chu | 88 | 25 | Luperomorpha suturalis Chen | 101 | 35 | Scotinophara lurida (Burmeister) | 117 |
6 | Chauliops fallax Scott | 68 | 16 | Dolycoris baccarum (Linnaeus) | 87 | 26 | Lycorma delicatula (White) | 92 | 36 | Sesamia inferens (Walker) | 126 |
7 | Chilo supperssalis (Walker) | 93 | 17 | Dryocosmus KuriphilusYasumatsu | 50 | 27 | Maruca testulalis Gryer | 73 | 37 | Spilosoma obliqua (Walker) | 66 |
8 | Chromatomyia horticola(Goureau) | 114 | 18 | Empoasca flavescens (Fabricius) | 133 | 28 | Nezara viridula (Linnaeus) | 175 | 38 | Spodoptera litura (Fabricius) | 130 |
9 | Cicadella viridis (Linnaeus) | 138 | 19 | Eurydema dominulus (Scopoli) | 150 | 29 | Nilaparvata lugens (Stål) | 62 | 39 | Stollia ventralis (Westwood) | 72 |
10 | Cletus punctiger (Dallas) | 169 | 20 | Graphosoma rubrolineata (Westwood) | 116 | 30 | Phyllotreta striolata (Fabricius) | 187 | 40 | Strongyllodes variegatus (Fairmaire) | 135 |
2.3. Evaluation Metrics
3. Results
3.1. Experimental Settings
3.2. Comparison with State-of-the-Art Methods
3.3. Classification Performance of PMLPNet
3.4. Visualization Analysis
3.5. Ablation Experiment
3.6. Generalization Performance of PMLPNet
- (1)
- IP102 [41]. This is a crop pest and disease dataset for target classification and detection tasks, which contains more than 75,000 images of 8 crops: rice, corn, wheat, sugar beet, alfalfa, grape, citrus, and mango. In our experiment, we downloaded 8000 images involving 8 crops, with 1000 images for each crop. In our experiment with additional validation, we aim to verify the ability of the proposed model to distinguish leaf types from images.
- (2)
- PlantDoc [42]. This is a publicly available dataset published by the Indian Institute of Technology, includes 2598 leaf images involving 13 types of plants, and covers a wide variety of crops commonly found in agriculture. These images not only included healthy leaves but also focused on the performance of different diseases on leaves, covering 27 categories (17 diseases; 10 healthy). This dataset is used for image classification and object detection. In our study, our main goal was to verify the classification performance of the proposed model, so we only verified the classification performance of the model for leaf types on this dataset.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Estruch, J.J.; Carozzi, N.B.; Desai, N.; Duck, N.B.; Warren, G.W.; Koziel, M.G. Transgenic plants: An emerging approach to pest control. Nat. Biotechnol. 1997, 15, 137–141. [Google Scholar] [CrossRef]
- Li, Z.; Paul, R.; Ba Tis, T.; Saville, A.C.; Hansel, J.C.; Yu, T.; Ristaino, J.B.; Wei, Q. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat. Plants 2019, 5, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.N.; Souza, W.S.; Borges, D.L. Cotton pests classification in field-based images using deep residual networks. Comput. Electron. Agric. 2020, 174, 105488. [Google Scholar] [CrossRef]
- Wang, F.; Wang, R.; Xie, C.; Zhang, J.; Li, R.; Liu, L. Convolutional neural network based automatic pest monitoring system using hand-held mobile image analysis towards non-site-specific wild environment. Comput. Electron. Agric. 2021, 187, 106268. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, H.; Su, J.; Hao, X.; Tang, Z.; Diao, L.; Li, L. Chinese agricultural diseases and pests named entity recognition with multi-scale local context features and self-attention mechanism. Comput. Electron. Agric. 2020, 179, 105830. [Google Scholar] [CrossRef]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Liu, L.; Ying, Y.; Fei, Z.; Min, L.; Wang, J. An interpretable boosting model to predict side effects of analgesics for osteoarthritis. BMC Syst. Biol. 2018, 12, 105. [Google Scholar] [CrossRef]
- Liu, L.; Tang, S.; Wu, F.; Wang, Y.P.; Wang, J. An ensemble hybrid feature selection method for neuropsychiatric disorder classification. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 19, 1459–1471. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Chang, J.; Zhang, P.; Xiong, S.; Liu, H. A correlation graph attention network for classifying chromosomal instabilities from histopathology whole-slide images. iScience 2023, 26, 106874. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, J.; Quan, Q.; Wu, F.X.; Wang, Y.P.; Wang, J. A survey on U-shaped networks in medical image segmentations. Neurocomputing 2020, 409, 244–258. [Google Scholar] [CrossRef]
- Hassan, S.M.; Maji, A.K.; Jasiński, M.; Leonowicz, Z.; Jasińska, E. Identification of plant-leaf diseases using CNN and transfer-learning approach. Electronics 2021, 10, 1388. [Google Scholar] [CrossRef]
- Naik, B.N.; Malmathanraj, R.; Palanisamy, P. Detection and classification of chilli leaf disease using a squeeze-and-excitation-based CNN model. Ecol. Inform. 2022, 69, 101663. [Google Scholar] [CrossRef]
- Bari, B.S.; Islam, M.N.; Rashid, M.; Hasan, M.J.; Razman, M.A.M.; Musa, R.M.; Ab Nasir, A.F.; Majeed, A.P.A. A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework. PeerJ Comput. Sci. 2021, 7, e432. [Google Scholar] [CrossRef] [PubMed]
- Gautam, V.; Trivedi, N.K.; Singh, A.; Mohamed, H.G.; Noya, I.D.; Kaur, P.; Goyal, N. A transfer learning-based artificial intelligence model for leaf disease assessment. Sustainability 2022, 14, 13610. [Google Scholar] [CrossRef]
- Al-gaashani, M.S.; Shang, F.; Muthanna, M.S.; Khayyat, M.; Abd El-Latif, A.A. Tomato leaf disease classification by exploiting transfer learning and feature concatenation. IET Image Process. 2022, 16, 913–925. [Google Scholar] [CrossRef]
- Paymode, A.S.; Malode, V.B. Transfer learning for multi-crop leaf disease image classification using convolutional neural network VGG. Artif. Intell. Agric. 2022, 6, 23–33. [Google Scholar] [CrossRef]
- Thangaraj, R.; Anandamurugan, S.; Kaliappan, V.K. Automated tomato leaf disease classification using transfer learning-based deep convolution neural network. J. Plant Dis. Protect. 2021, 128, 73–86. [Google Scholar] [CrossRef]
- Krishnamoorthy, N.; Prasad, L.N.; Kumar, C.P.; Subedi, B.; Abraha, H.B.; Sathishkumar, V. Rice leaf diseases prediction using deep neural networks with transfer learning. Environ. Res. 2021, 198, 111275. [Google Scholar]
- Pallathadka, H.; Ravipati, P.; Sajja, G.S.; Phasinam, K.; Kassanuk, T.; Sanchez, D.T.; Prabhu, P. Application of machine learning techniques in rice leaf disease detection. Mater. Today Proc. 2022, 51, 2277–2280. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, J.; Yang, G.; Zhang, H.; He, Y. Localization and classification of paddy field pests using a saliency map and deep convolutional neural network. Sci. Rep. 2016, 6, 20410. [Google Scholar] [CrossRef]
- Xie, C.; Wang, R.; Zhang, J.; Chen, P.; Dong, W.; Li, R.; Chen, T.; Chen, H. Multi-level learning features for automatic classification of field crop pests. Comput. Electron. Agric. 2018, 152, 233–241. [Google Scholar] [CrossRef]
- Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A comparative study of fine-tuning deep learning models for plant disease identification. Comput. Electron. Agric. 2019, 161, 272–279. [Google Scholar] [CrossRef]
- Gu, Y.; Piao, Z.; Yoo, S.J. STHarDNet: Swin transformer with HarDNet for MRI segmentation. Appl. Sci. 2022, 12, 468. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, J.; Kuang, H.; Wang, J. A fully automated multimodal MRI-based multi-task learning for glioma segmentation and IDH genotyping. IEEE Trans. Med. Imaging 2022, 41, 1520–1532. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.; Pinto, A.; Amorim, J.; Ribeiro, A.; Alves, V.; Silva, C.A. Adaptive feature recombination and recalibration for semantic segmentation with fully convolutional networks. IEEE Trans. Med. Imaging 2019, 38, 2914–2925. [Google Scholar] [CrossRef] [PubMed]
- Saranya, T.; Deisy, C.; Sridevi, S. Efficient agricultural pest classification using vision transformer with hybrid pooled multihead attention. Comput. Biol. Med. 2024, 177, 108584. [Google Scholar] [CrossRef] [PubMed]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Sladojevic, S.; Arsenovic, M.; Anderla, A.; Culibrk, D.; Stefanovic, D. Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016, 2016, 3289801. [Google Scholar] [CrossRef]
- Tolstikhin, I.O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J.; et al. Mlp-mixer: An all-mlp architecture for vision. Adv. Neural Inf. Process. Syst. 2021, 34, 24261–24272. [Google Scholar]
- Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Liu, L.; Wang, Y.; Zhang, P.; Qiao, H.; Sun, T.; Zhang, H.; Xu, X.; Shang, H. Collaborative Transfer Network for Multi-Classification of Breast Cancer Histopathological Images. IEEE J. Biomed. Health Inform. 2024, 28, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Houlsby, N. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Kolesnikov, A.; Beyer, L.; Zhai, X.; Puigcerver, J.; Yung, J.; Gelly, S.; Houlsby, N. Big transfer (bit): General visual representation learning. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part V 16. Springer: Berlin, Germany, 2020; pp. 491–507. [Google Scholar]
- Vaswani, A.; Ramachandran, P.; Srinivas, A.; Parmar, N.; Hechtman, B.; Shlens, J. Scaling local self-attention for parameter efficient visual backbones. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 12894–12904. [Google Scholar]
- Wu, X.; Zhan, C.; Lai, Y.K.; Cheng, M.M.; Yang, J. IP102: A Large-Scale Benchmark Dataset for Insect Pest Recognition. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Singh, D.; Jain, N.; Jain, P.; Kayal, P.; Batra, N. PlantDoc: A Dataset for Visual Plant Disease Detection. In Proceedings of the CoDS COMAD 2020: 7th ACM IKDD CoDS and 25th COMAD, Hyderabad, India, 5–7 January 2020. [Google Scholar]
Project | Content |
System | Linux |
Framework | Tensorflow |
GPU | NVIDIA GeForce RTX 3090 |
RAM | 16G |
Method | Material | Acc (%) | Prec (%) | Rec (%) | F1-Score (%) | AUC (%) |
---|---|---|---|---|---|---|
VGG | Image | 55.14 ± 2.3 | 57.31 ± 2.1 | 58.63 ± 2.0 | 57.80 ± 2.0 | 0.62 |
VGG-16-TL | Image | 62.38 ± 2.2 | 62.84 ± 2.1 | 63.01 ± 2.2 | 63.16 ± 1.9 | 0.66 |
GoogleNet | Image | 60.48 ± 2.4 | 60.17 ± 2.2 | 60.92 ± 2.1 | 61.03 ± 1.9 | 0.67 |
GoogleNet-TL | Image | 67.20 ± 2.5 | 67.08 ± 2.4 | 68.06 ± 2.5 | 67.79 ± 2.3 | 0.71 |
ResNet | Image | 72.45 ± 2.0 | 73.01 ± 1.9 | 72.89 ± 2.0 | 72.57 ± 1.9 | 0.76 |
ResNet50-TL | Image | 81.67 ± 1.8 | 81.59 ± 2.0 | 81.94 ± 1.8 | 80.97 ± 1.8 | 0.80 |
DenseNet | Image | 79.09 ± 1.7 | 79.84 ± 1.6 | 78.97 ± 1.7 | 79.54 ± 1.5 | 0.83 |
DenseNet201-TL | Image | 86.73 ± 2.0 | 86.52 ± 2.1 | 87.01 ± 2.3 | 86.70 ± 2.2 | 0.85 |
CTransNet | Image | 89.38 ± 1.6 | 89.92 ± 1.8 | 90.25 ± 2.0 | 89.69 ± 2.0 | 0.86 |
BiT | Patch | 89.88 ± 1.5 | 90.03 ± 2.0 | 89.76 ± 1.9 | 90.24 ± 1.9 | 0.87 |
ViT | Patch | 90.92 ± 1.8 | 91.54 ± 1.4 | 91.97 ± 1.7 | 91.67 ± 1.8 | 0.88 |
HaloNet | Patch | 90.89 ± 2.1 | 90.93 ± 2.1 | 91.89 ± 2.1 | 91.73 ± 1.4 | 0.88 |
PMLPNet | Patch | 92.73 ± 1.5 | 92.08 ± 1.6 | 93.10 ± 1.3 | 93.08 ± 1.2 | 0.88 |
Method | Material | Acc (%) | Prec (%) | Rec (%) | F1-Score (%) | AUC (%) |
---|---|---|---|---|---|---|
PMLPNet (no T) | Image | 55.02 ± 3.0 | 56.81 ± 2.8 | 58.06 ± 2.3 | 57.10 ± 2.1 | 0.60 |
PMLPNet (no T) | Patch | 62.83 ± 2.5 | 63.05 ± 2.0 | 63.12 ± 1.9 | 62.78 ± 2.0 | 0.67 |
PMLPNet-TL | Image | 84.37 ± 2.1 | 83.96 ± 1.9 | 84.96 ± 2.3 | 83.67 ± 1.8 | 0.84 |
PMLPNet-TL | Patch | 88.06 ± 2.3 | 88.96 ± 1.6 | 87.89 ± 1.7 | 88.46 ± 1.7 | 0.88 |
PMLPNet | Image | 86.34 ± 1.3 | 86.89 ± 1.4 | 86.77 ± 1.3 | 86.82 ± 1.4 | 0.87 |
PMLPNet (4 mixer blocks) | Patch | 90.42 ± 1.5 | 91.60 ± 1.8 | 91.89 ± 1.5 | 93.00 ± 1.7 | 0.87 |
PMLPNet (8 mixer blocks) | Patch | 92.73 ± 1.5 | 92.08 ± 1.6 | 93.10 ± 1.3 | 93.08 ± 1.2 | 0.88 |
PMLPNet (10 mixer blocks) | Patch | 92.41 ± 0.9 | 90.98 ± 2.0 | 92.45 ± 1.0 | 92.87 ± 1.6 | 0.88 |
Method | Acc (%) | Prec (%) | Rec (%) | F1-Score (%) | AUC (%) |
---|---|---|---|---|---|
PMLPNet (ReLU) | 91.06 ± 2.0 | 89.88 ± 2.2 | 90.13 ± 2.1 | 90.04 ± 2.7 | 0.88 |
PMLPNet (Leaky ReLU) | 91.47 ± 2.1 | 90.78 ± 1.9 | 91.52 ± 2.6 | 91.45 ± 2.5 | 0.88 |
PMLPNet (ELU) | 91.05 ± 2.7 | 89.96 ± 2.1 | 88.76 ± 1.9 | 88.68 ± 2.5 | 0.87 |
PMLPNet (PReLU) | 91.10 ± 2.1 | 89.77 ± 2.4 | 89.26 ± 1.5 | 89.72 ± 2.0 | 0.87 |
PMLPNet (GELU) | 92.73 ± 1.5 | 92.08 ± 1.6 | 93.10 ± 1.3 | 93.08 ± 1.2 | 0.88 |
Methods | IP102 | PlantDoc | ||
---|---|---|---|---|
Acc (%) | F1-Score (%) | Acc (%) | F1-Score (%) | |
VGG-16-TL | 40.02 | 37.15 | 44.52 | 44.00 |
GoogleNet-TL | 41.31 | 37.82 | 46.67 | 46.00 |
ResNet50-TL | 53.76 | 50.57 | 63.78 | 62.69 |
DenseNet201-TL | 53.97 | 50.56 | 68.09 | 67.90 |
CTransNet | 65.90 | 63.72 | 72.55 | 75.01 |
ViT | 66.15 | 63.84 | 73.64 | 72.91 |
PMLPNet | 68.32 | 66.08 | 76.52 | 74.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Chang, J.; Qiao, S.; Xie, J.; Xu, X.; Qiao, H. PMLPNet: Classifying Multi-Class Pests in Wild Environment via a Novel Convolutional Neural Network. Agronomy 2024, 14, 1729. https://doi.org/10.3390/agronomy14081729
Liu L, Chang J, Qiao S, Xie J, Xu X, Qiao H. PMLPNet: Classifying Multi-Class Pests in Wild Environment via a Novel Convolutional Neural Network. Agronomy. 2024; 14(8):1729. https://doi.org/10.3390/agronomy14081729
Chicago/Turabian StyleLiu, Liangliang, Jing Chang, Shixin Qiao, Jinpu Xie, Xin Xu, and Hongbo Qiao. 2024. "PMLPNet: Classifying Multi-Class Pests in Wild Environment via a Novel Convolutional Neural Network" Agronomy 14, no. 8: 1729. https://doi.org/10.3390/agronomy14081729
APA StyleLiu, L., Chang, J., Qiao, S., Xie, J., Xu, X., & Qiao, H. (2024). PMLPNet: Classifying Multi-Class Pests in Wild Environment via a Novel Convolutional Neural Network. Agronomy, 14(8), 1729. https://doi.org/10.3390/agronomy14081729