Moderate Drought Stress Interferes with the Physiological State and Promotes the Accumulation of Isoflavone in Reproductive Iris domestica Rhizomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experimental Design
2.3. Determination of Fresh Weight and Dry Weight
2.4. Determination of Resistance Physiological Indexes
2.5. qRT-PCR on Genes in the Isoflavone Synthesis
2.6. Determination of Isoflavone Concentration
2.7. Statistical Analyses
3. Results
3.1. Fresh Weight and Dry Weight of Rhizomes and Roots
3.2. Physiological Responses of Rhizomes and Roots
3.3. Expression of the Isoflavone-Related Key Enzyme Genes
3.4. Isoflavone Concentration in Rhizomes and Roots
3.5. Principal Component Analysis of Responses in I. domestica to Drought Stress
4. Discussion
4.1. Differences in Dry and Fresh Weights in Response to Drought
4.2. Differences in the Synthesis of Isoflavonoids for Rhizomes and Roots
4.3. Dynamic Changes in Isoflavones at Different Growth Phenological Stages
4.4. Differences in Transcript Changes Associated with Isoflavone Synthesis
4.5. Resistance Physiological Changes in Drought and Rehydration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pharmacopoeia, C. Pharmacopoeia of the People’s Republic of China 2020; Press of Chinese Medical Science and Technology 2020: Beijing, China, 2020. [Google Scholar]
- Zhang, L.; Wei, K.; Xu, J.; Yang, D.; Zhang, C.; Wang, Z.; Li, M. Belamcanda chinensis (L.) DC-An ethnopharmacological, phytochemical and pharmacological review. J. Ethnopharmacol. 2016, 186, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, D.; Matkowski, A. Belamcandae chinensis rhizoma–a review of phytochemistry and bioactivity. Fitoterapia 2015, 107, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kimutai, F. Study on the Chemical Constituents of Belamcanda chinensis and Their Antioxidant and Anti-Inflammatory Activities. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2021. [Google Scholar]
- Chen, Y.J.; Liang, Z.T.; Zhu, Y.; Xie, G.Y.; Tian, M.; Zhao, Z.Z.; Qin, M.J. Tissue-specific metabolites profiling and quantitative analyses of flavonoids in the rhizome of Belamcanda chinensis by combining laser-microdissection with UHPLC-Q/TOF-MS and UHPLC–QqQ-MS. Talanta 2014, 130, 585–597. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Y.; Ye, J.; Ye, Z.; Zhu, R.; Xie, G.; Zhao, Y.; Qin, M. Iris domestica (iso) flavone 7-and 3′-O-Glycosyltransferases Can Be Induced by CuCl2. Front. Plant Sci. 2021, 12, 107. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Zhang, X.; Zhu, Y.; Xie, G.; Qin, M. Global transcriptome analyses reveal differentially expressed genes of six organs and putative genes involved in (Iso) flavonoid biosynthesis in Belamcanda chinensis. Front. Plant Sci. 2018, 9, 1160. [Google Scholar] [CrossRef]
- Yang, M.; He, P.; Duan, C.; Xu, M. Effects of exogenous SNP and Spd on the activity of antioxidant enzyme system in Belamacanda chinensis (L.) DC. seedlings under saline-alkali stress. J. Southwest Univ. 2015, 37, 13–19. [Google Scholar]
- Yang, X.; Guo, S.; Feng, M.; Lai, X.; Shang, J. Effects of drought stress and re-watering on the characteristics of photosynthesis and chlorophyll fluorescence of blackberry lily. Acta Agric. Univ. Jiangxiensis 2018, 40, 525–532. [Google Scholar]
- Zhu, Y.; Chen, Y.; Zhang, X.; Xie, G.; Qin, M. Copper stress-induced changes in biomass accumulation, antioxidant activity and flavonoid contents in Belamcanda chinensis calli. Plant Cell Tissue Organ Cult. (PCTOC) 2020, 142, 299–311. [Google Scholar] [CrossRef]
- Chen, S.-l. Ecological Suitability Regionalization of Chinese Medicinal Materials Producing Areas, 2nd ed.; Science Press: Beijing, China, 2017. [Google Scholar]
- Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.-M. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 2021, 11, 968. [Google Scholar] [CrossRef]
- Zhan, X.; Chen, Z.; Chen, R.; Shen, C. Environmental and genetic factors involved in plant protection-associated secondary metabolite biosynthesis pathways. Front. Plant Sci. 2022, 13, 877304. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Cheng, L.; Han, M.; Yang, L.-m.; Li, Y.; Sun, Z.; Zhang, T. Changes in the physiological characteristics and baicalin biosynthesis metabolism of Scutellaria baicalensis Georgi under drought stress. Ind. Crop. Prod. 2018, 122, 473–482. [Google Scholar] [CrossRef]
- Yang, L.-l.; Yang, L.; Yang, X.; Zhang, T.; Lan, Y.-m.; Zhao, Y.; Han, M.; Yang, L.-m. Drought stress induces biosynthesis of flavonoids in leaves and saikosaponins in roots of Bupleurum chinense DC. Phytochemistry 2020, 177, 112434. [Google Scholar] [CrossRef] [PubMed]
- Król, A.; Amarowicz, R.; Weidner, S. Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiol. Plant 2014, 36, 1491–1499. [Google Scholar] [CrossRef]
- Martínez, S.; Fuentes, C.; Carballo, J. Antioxidant activity, total phenolic content and total flavonoid content in sweet chestnut (Castanea sativa Mill.) cultivars grown in Northwest Spain under different environmental conditions. Foods 2022, 11, 3519. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Mu, Q.; Kimura, H.; Murugadoss, V.; He, M.; Du, W.; Hou, C. Oxidative degradation of phenols and substituted phenols in the water and atmosphere: A review. Adv. Compos. Hybrid Mater. 2022, 5, 627–640. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, X.-Y.; Martin, C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci. Bull. 2016, 61, 1391–1398. [Google Scholar] [CrossRef] [PubMed]
- Omidi, H.; Shams, H.; Sahandi, M.S.; Rajabian, T. Balangu (Lallemantia sp.) growth and physiology under field drought conditions affecting plant medicinal content. Plant Physiol. Biochem. 2018, 130, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Y.; Kang, C.; Wang, S.; Zhang, Y.; Yang, G.; Zhou, L.; Xiang, Z.; Huang, L.; Liu, D. Drought stress modifies the community structure of root-associated microbes that improve Atractylodes lancea growth and medicinal compound accumulation. Front. Plant Sci. 2022, 13, 1032480. [Google Scholar] [CrossRef]
- Gao, J.; Meng, P.; Zhao, Y.; Zhang, J.; He, C.; Wang, Q.; Cai, J. Light-emitting diodes modify medicinal quality of mown Rabdosia rubescens, with changes in growth, physiology, and antioxidant activity, under drought stress. Plants 2023, 12, 3189. [Google Scholar] [CrossRef]
- Ai, Q.; Sun, Y.; Dai, A.; Lyu, Z.; Liu, C.; Han, M.; Yang, L. Root Physiological Changes and Transcription Analysis of Iris domestica in Response to Persistent Drought. Horticulturae 2022, 8, 1162. [Google Scholar] [CrossRef]
- Tang, G.M.; Jiang, S.M. Drought index and drought prediction for rice. Water Resour. Hydropower Eng. 2011, 42, 54–58. [Google Scholar]
- Ai, Q.; Liu, C.; Han, M.; Yang, L. Selection and Verification of Reference Genes for qRT-PCR Analysis in Iris domestica under Drought. Phyton-Int. J. Exp. Bot. 2022, 91, 2537–2548. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Pu, B.Q.; Xie, G.Y.; Tian, M.; Xu, F.Y.; Qin, M.J. Dynamic changes of flavonoids contents in the different parts of rhizome of Belamcanda chinensis during the thermal drying process. Molecules 2014, 19, 10440–10454. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Efferth, T.; Hua, X.; Zhang, X.-a. Medicinal plants and their secondary metabolites in alleviating knee osteoarthritis: A systematic review. Phytomedicine 2022, 105, 154347. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lambrides, C.J.; Fukai, S. Drought resistance and soil water extraction of a perennial C4 grass: Contributions of root and rhizome traits. Funct. Plant Biol. 2014, 41, 505–519. [Google Scholar] [CrossRef] [PubMed]
- Neilson, E.H.; Goodger, J.Q.; Woodrow, I.E.; Møller, B.L. Plant chemical defense: At what cost? Trends Plant Sci. 2013, 18, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Fiorucci, A.-S. To Grow or Defend? More on the Plant Cornelian Dilemma. Plant Physiology 2020, 183, 437–438. [Google Scholar] [CrossRef]
- Maynard, L.D.; Slinn, H.L.; Glassmire, A.E.; Matarrita-Carranza, B.; Dodson, C.D.; Nguyen, T.T.; Burroughs, M.J.; Dyer, L.A.; Jeffrey, C.S.; Whitehead, S.R. Secondary metabolites in a neotropical shrub: Spatiotemporal allocation and role in fruit defense and dispersal. Ecology 2020, 101, e03192. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Wang, Y.; Abozeid, A.; Zu, Y.-G.; Zhang, X.-N.; Tang, Z.-H. GC-MS metabolomic analysis to reveal the metabolites and biological pathways involved in the developmental stages and tissue response of Panax ginseng. Molecules 2017, 22, 496. [Google Scholar] [CrossRef] [PubMed]
- Velasco, P.; Cartea, M.E.; González, C.; Vilar, M.; Ordás, A. Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group). J. Agric. Food Chem. 2007, 55, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Barton, K.E.; Koricheva, J. The ontogeny of plant defense and herbivory: Characterizing general patterns using meta-analysis. Am. Nat. 2010, 175, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Tomiolo, S.; Metz, J.; Blackwood, C.B.; Djendouci, K.; Henneberg, L.; Müller, C.; Tielbörger, K. Short-term drought and long-term climate legacy affect production of chemical defenses among plant ecotypes. Environ. Exp. Bot. 2017, 141, 124–131. [Google Scholar] [CrossRef]
- Rogers, E.D.; Jackson, T.; Moussaieff, A.; Aharoni, A.; Benfey, P.N. Cell type-specific transcriptional profiling: Implications for metabolite profiling. Plant J. 2012, 70, 5–17. [Google Scholar] [CrossRef]
- Groenenboom, M.; Gomez-Roldan, V.; Stigter, H.; Astola, L.; van Daelen, R.; Beekwilder, J.; Bovy, A.; Hall, R.; Molenaar, J. The flavonoid pathway in tomato seedlings: Transcript abundance and the modeling of metabolite dynamics. PLoS ONE 2013, 8, e68960. [Google Scholar] [CrossRef] [PubMed]
- Herms, D.A.; Mattson, W.J. The dilemma of plants: To grow or defend. Q. Rev. Biol. 1992, 67, 283–335. [Google Scholar] [CrossRef]
- Pathiranage, A.L.; Stubblefield, J.M.; Zhou, X.; Miao, J.; Newsome, A.L.; Dunlap, N. Antitrypanosomal activity of iridals from Iris domestica. Phytochem. Lett. 2016, 18, 44–50. [Google Scholar] [CrossRef]
- Choi, I.-Y.; Choi, Y.-J.; Kim, J.-Y.; Shin, H.-D. Identification of Puccinia iridis on Iris domestica in Korea. Korean J. Mycol. 2019, 47, 89–94. [Google Scholar]
- Hahn, P.G.; Maron, J.L. A framework for predicting intraspecific variation in plant defense. Trends Ecol. Evol. 2016, 31, 646–656. [Google Scholar] [CrossRef]
- Mittler, R. ROS are good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Yue, L.; Cao, X.; Chen, F.; Li, J.; Zhang, J.; Wang, C.; Wang, Z.; Xing, B. Carbon dots promoted soybean photosynthesis and amino acid biosynthesis under drought stress: Reactive oxygen species scavenging and nitrogen metabolism. Sci. Total Environ. 2023, 856, 159125. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef] [PubMed]
Scheme | Start | D1 | R1 | D2 | R2 |
---|---|---|---|---|---|
CK | 25.0 | 25.0 | 25.0 | 25.0 | 25.0 |
Scheme 1 | 25.0 | 14.0 | 25.0 | - | - |
Scheme 2 | 25.0 | 14.0 | - | 6.5 | 25.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, Q.; Dai, A.; Han, M.; Yang, L.; Liu, C. Moderate Drought Stress Interferes with the Physiological State and Promotes the Accumulation of Isoflavone in Reproductive Iris domestica Rhizomes. Agronomy 2024, 14, 1730. https://doi.org/10.3390/agronomy14081730
Ai Q, Dai A, Han M, Yang L, Liu C. Moderate Drought Stress Interferes with the Physiological State and Promotes the Accumulation of Isoflavone in Reproductive Iris domestica Rhizomes. Agronomy. 2024; 14(8):1730. https://doi.org/10.3390/agronomy14081730
Chicago/Turabian StyleAi, Qiang, Ailin Dai, Mei Han, Limin Yang, and Cuijing Liu. 2024. "Moderate Drought Stress Interferes with the Physiological State and Promotes the Accumulation of Isoflavone in Reproductive Iris domestica Rhizomes" Agronomy 14, no. 8: 1730. https://doi.org/10.3390/agronomy14081730
APA StyleAi, Q., Dai, A., Han, M., Yang, L., & Liu, C. (2024). Moderate Drought Stress Interferes with the Physiological State and Promotes the Accumulation of Isoflavone in Reproductive Iris domestica Rhizomes. Agronomy, 14(8), 1730. https://doi.org/10.3390/agronomy14081730