Climate Change and Vegetation Greening Jointly Promote the Increase in Evapotranspiration in the Jing River Basin
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Remote Sensing Data
2.2.2. Meteorological Data
2.3. Methods
2.3.1. Priestley–Taylor Jet Propulsion Laboratory Model
2.3.2. Trend Analysis
2.3.3. Mann–Kendall Test
2.3.4. Partial Correlation
2.3.5. Attribution Analysis
2.3.6. Pathway Analysis Method
2.4. Technology Road
3. Results
3.1. Validation of Evapotranspiration Simulation Based on Water Balance
3.2. Spatiotemporal Variations of ET
3.2.1. Annual Interannual Trends in Evapotranspiration
3.2.2. Spatial Distribution, Temporal Trends, and Significance of ET Changes
3.3. Temporal–Spatial Characteristics of LAI and Climatic Factors
3.3.1. The Temporal–Spatial Characteristics of LAI and Climatic Factors
3.3.2. Multiyear Mean Spatial Distribution Patterns of LAI and Climatic Factors
3.3.3. Spatial Trends and Significance of Changes in LAI and Climatic Factors
3.4. Changes in ET Caused by Vegetation Greening and Climate Change
4. Discussion
4.1. Rate Analysis and Attribution Discussion
4.2. Effects of Human Activities and Soil Properties
4.3. Implications for Water Management and Vegetation Restoration
4.4. Uncertainty and Limitations
5. Conclusions
- (1)
- Over time, ET (Slope = 3.05 mm/year, p < 0.01), LAI (Slope = 0.03 m2/m2/year), Rad (0.41 W/m2/year, p < 0.01), Temp (0.07 °C/year), Pre (Slope = 1.94 mm/year, p = 0.24), VPD (Slope = 0.01 Kpa/year, p < 0.01), WS (Slope = 0.01 m/s/year, p < 0.01) showed a significant upward trend. Spatially, ET increased from the northwest (314 mm) to the southeast (736.65 mm), LAI increased from the northwest (0.25 m2/m2) to the east (4.9 m2/m2), and Rad decreased from the middle (432.19 W/m2) to the edge (490.99 W/m2). Pre increased from the southeast (296.11 mm) to the northwest (611.96 mm), Temp increased from the southeast (1.73 °C) to the northwest (15.12 °C), VPD decreased from the middle (0.45 kpa) to the edge (0.15 kpa), and WS decreased from the northwest (2.08 m/s) to the southeast (1.15 m/s).
- (2)
- Multi-variable analysis revealed that vegetation greening was the key driver behind the rise in evapotranspiration (ET), contributing 0.41 mm. There was also a robust positive linkage between greenery, radiation, and ET. Amongst meteorological factors, radiation played a pivotal role in enhancing ET, at a rate of 0.34 mm per annum, covering 56.69% of the study area. In agricultural lands, temperature and radiation were the principal contributors to the ET uptick. Wind speed and vapor pressure deficit (VPD) exerted some modulating influence on ET fluctuations, albeit their regulatory strength was moderate. Rainfall’s impact on ET in the Jing River Basin was negligible, which consequently influenced the contributions of wind speed and relative humidity to ET within the basin.
- (3)
- Regarding spatial distribution, the alteration in evapotranspiration (ET) influenced by radiation predominated over half of the research region, with a focal point in the central zone of the JRB. The leaf area index (LAI) predominantly governed the ET fluctuations towards the northwest, encompassing approximately 35.61% of the investigated territory. Meanwhile, temperature, wind velocity, and relative humidity collectively shaped the ET dynamics in the southeastern part of the Jing River. These insights hold significance for aiding regional authorities in crafting effective strategies for water conservation and vegetation rehabilitation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qu, Q.; Tsai, S.-B.; Tang, M.; Xu, C.; Dong, W. Marine Ecological Environment Management Based on Ecological Compensation Mechanisms. Sustainability 2016, 8, 1267. [Google Scholar] [CrossRef]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Sun, S.L.; Liu, Y.B.; Chen, H.S.; Ju, W.M.; Xu, C.Y.; Liu, Y.; Zhou, B.T.; Zhou, Y.; Zhou, Y.L.; Yu, M. Causes for the increases in both evapotranspiration and water yield over vegetated mainland China during the last two decades. Agric. For. Meteorol. 2022, 324, 19. [Google Scholar] [CrossRef]
- Shi, S.Y.; Wang, P.; Yu, J.J. Vegetation greening and climate change promote an increase in evapotranspiration across Siberia. J. Hydrol. 2022, 610, 12. [Google Scholar] [CrossRef]
- Wang, Z.J.; Liu, Y.Y.; Wang, Z.Q.; Zhang, H.; Chen, X.; Wen, Z.M.; Lin, Z.Q.; Han, P.D.; Xue, T.Y. Quantifying the Spatiotemporal Changes in Evapotranspiration and Its Components Driven by Vegetation Greening and Climate Change in the Northern Foot of Yinshan Mountain. Remote Sens. 2024, 16, 357. [Google Scholar] [CrossRef]
- Li, X.Y.; Zou, L.; Xia, J.; Dou, M.; Li, H.W.; Song, Z.H. Untangling the effects of climate change and land use/cover change on spatiotemporal variation of evapotranspiration over China. J. Hydrol. 2022, 612, 13. [Google Scholar] [CrossRef]
- Lal, P.; Shekhar, A.; Gharun, M.; Das, N.N. Spatiotemporal evolution of global long-term patterns of soil moisture. Sci. Total Environ. 2023, 867, 10. [Google Scholar] [CrossRef]
- Zeng, F.; Ma, M.G.; Di, D.R.; Shi, W.Y. Separating the Impacts of Climate Change and Human Activities on Runoff: A Review of Method and Application. Water 2020, 12, 2201. [Google Scholar] [CrossRef]
- Cui, X.; Liu, S.; Wei, X. Impacts of forest changes on hydrology: A case study of large watersheds in the upper reaches of Minjiang River watershed in China. Hydrol. Earth Syst. Sci. 2012, 16, 4279–4290. [Google Scholar] [CrossRef]
- Feng, H.H.; Zou, B.; Luo, J.H. Coverage-dependent amplifiers of vegetation change on global water cycle dynamics. J. Hydrol. 2017, 550, 220–229. [Google Scholar] [CrossRef]
- Mueller, B.; Seneviratne, S.I.; Jimenez, C.; Corti, T.; Hirschi, M.; Balsamo, G.; Ciais, P.; Dirmeyer, P.; Fisher, J.B.; Guo, Z.; et al. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett. 2011, 38, 7. [Google Scholar] [CrossRef]
- Henderson-Sellers, A. Land-use change and climate. Land Degrad. Rehabil. 1994, 5, 107–126. [Google Scholar] [CrossRef]
- Sheil, D.; Murdiyarso, D. How Forests Attract Rain: An Examination of a New Hypothesis. Bioscience 2009, 59, 341–347. [Google Scholar] [CrossRef]
- Yosef, G.; Walko, R.; Avisar, R.; Tatarinov, F.; Rotenberg, E.; Yakir, D. Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential. Sci. Rep. 2018, 8, 10. [Google Scholar] [CrossRef]
- Tie, Q.; Hu, H.C.; Tian, F.Q.; Holbrook, N.M. Comparing different methods for determining forest evapotranspiration and its components at multiple temporal scales. Sci. Total Environ. 2018, 633, 12–29. [Google Scholar] [CrossRef]
- Jin, Z.; Liang, W.; Yang, Y.T.; Zhang, W.B.; Yan, J.W.; Chen, X.J.; Li, S.; Mo, X.G. Separating Vegetation Greening and Climate Change Controls on Evapotranspiration trend over the Loess Plateau. Sci. Rep. 2017, 7, 15. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Lin, Z.Q.; Wang, Z.J.; Chen, X.; Han, P.D.; Wang, B.; Wang, Z.Q.; Wen, Z.M.; Shi, H.J.; Zhang, Z.X.; et al. Discriminating the impacts of vegetation greening and climate change on the changes in evapotranspiration and transpiration fraction over the Yellow River Basin. Sci. Total Environ. 2023, 904, 23. [Google Scholar] [CrossRef]
- Fu, J.; Gong, Y.; Zheng, W.; Zou, J.; Zhang, M.; Zhang, Z.; Qin, J.; Liu, J.; Quan, B. Spatial-temporal variations of terrestrial evapotranspiration across China from 2000 to 2019. Sci. Total Environ. 2022, 825, 153951. [Google Scholar] [CrossRef]
- Mo, X.; Liu, S.; Lin, Z.; Wang, S.; Hu, S. Trends in land surface evapotranspiration across China with remotely sensed NDVI and climatological data for 1981–2010. Hydrol. Sci. J. 2015, 60, 2163–2177. [Google Scholar] [CrossRef]
- Ning, T.T.; Zhou, S.; Chang, F.Y.; Shen, H.; Li, Z.; Liu, W.Z. Interaction of vegetation, climate and topography on evapotranspiration modelling at different time scales within the Budyko framework. Agric. For. Meteorol. 2019, 275, 59–68. [Google Scholar] [CrossRef]
- Omer, A.; Elagib, N.A.; Ma, Z.G.; Saleem, F.; Mohammed, A. Water scarcity in the Yellow River Basin under future climate change and human activities. Sci. Total Environ. 2020, 749, 13. [Google Scholar] [CrossRef]
- Wang, K.C.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, 54. [Google Scholar] [CrossRef]
- Koc, D.L.; Can, M.E. Reference evapotranspiration estimate with missing climatic data and multiple linear regression models. PeerJ 2023, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Wang, W.; Shao, Q.; Song, L.; Cao, M. Estimation of Evapotranspiration and Its Components across China Based on a Modified Priestley–Taylor Algorithm Using Monthly Multi-Layer Soil Moisture Data. Remote Sens. 2021, 13, 3118. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef]
- Xu, L.H.; Shi, Z.J.; Wang, Y.H.; Zhang, S.L.; Chu, X.Z.; Yu, P.T.; Xiong, W.; Zuo, H.J.; Wang, Y.N. Spatiotemporal variation and driving forces of reference evapotranspiration in Jing River Basin, northwest China. Hydrol. Process. 2015, 29, 4846–4862. [Google Scholar] [CrossRef]
- Huang, C.L.; Yang, Q.K.; Huang, W.D. Analysis of the Spatial and Temporal Changes of NDVI and Its Driving Factors in the Wei and Jing River Basins. Int. J. Environ. Res. Public Health 2021, 18, 11863. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Evett, S.R.; Robinson, C.A.; Stewart, B.A.; Payne, W.A. Simulation of winter wheat evapotranspiration in Texas and Henan using three models of differing complexity. Agric. Water Manag. 2009, 96, 167–178. [Google Scholar] [CrossRef]
- Zhao, X.E.; Fang, K.Y.; Chen, F.; Martín, H.; Roig, F.A. Reconstructed Jing River streamflow from western China: A 399-year perspective for hydrological changes in the Loess Plateau. J. Hydrol. 2023, 621, 15. [Google Scholar] [CrossRef]
- Li, X.X.; Mao, R.C.; Song, J.X.; Gao, J.Q.; Shi, A.Y.; Xiang, W.; Sun, H.T. Response of Runoff Change to Soil and Water Conservation Measures in the Jing River Catchment of China. Land 2024, 13, 442. [Google Scholar] [CrossRef]
- Jiang, B.; Liang, S.; Ma, H.; Zhang, X.; Xiao, Z.; Zhao, X.; Jia, K.; Yao, Y.; Jia, A. GLASS Daytime All-Wave Net Radiation Product: Algorithm Development and Preliminary Validation. Remote Sens. 2016, 8, 222. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.J.; Lu, H.; Qin, J.; Chen, Y.Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; He, J. China Meteorological Forcing Dataset (1979–2015). 2021. Available online: https://data.tpdc.ac.cn/en/data/7a35329c-c53f-4267-aa07-e0037d913a21 (accessed on 29 June 2024).
- Zhao, F.B.; Ma, S.; Wu, Y.P.; Qiu, L.J.; Wang, W.K.; Lian, Y.Q.; Chen, J.; Sivakumar, B. The role of climate change and vegetation greening on evapotranspiration variation in the Yellow River Basin, China. Agric. For. Meteorol. 2022, 316, 108842. [Google Scholar] [CrossRef]
- Wang, W.; Cui, W.; Wang, X.J.; Chen, X. Evaluation of GLDAS-1 and GLDAS-2 Forcing Data and Noah Model Simulations over China at the Monthly Scale. J. Hydrometeorol. 2016, 17, 2815–2833. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Kong, D.D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y.T. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, J.Z.; Zhu, G.F.; Ma, T.; Han, T.; Feng, L.L. Parameter sensitivity analysis and optimization for a satellite-based evapotranspiration model across multiple sites using Moderate Resolution Imaging Spectroradiometer and flux data. J. Geophys. Res.-Atmos. 2017, 122, 230–245. [Google Scholar] [CrossRef]
- Wang, C.C.; Zhang, K.; Jiang, J.; Liu, Q.; Wu, J.C.; Guo, C.L.; Cao, Q.; Tian, Y.C.; Zhu, Y.; Cao, W.X.; et al. Remotely assessing FIPAR of different vertical layers in field wheat. Field Crop. Res. 2023, 297, 11. [Google Scholar] [CrossRef]
- Churkina, G.; Running, S.W.; Schloss, A.L.; Participants Potsdam, N.P.P.M.I. Comparing global models of terrestrial net primary productivity (NPP): The importance of water availability. Glob. Chang. Biol. 1999, 5, 46–55. [Google Scholar] [CrossRef]
- Hou, E.Q.; Chen, C.R.; Luo, Y.Q.; Zhou, G.Y.; Kuang, Y.W.; Zhang, Y.G.; Heenan, M.; Lu, X.K.; Wen, D.Z. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob. Chang. Biol. 2018, 24, 3344–3356. [Google Scholar] [CrossRef]
- Adegbule, A.O.; Kibbey, T.C.G. The Influence of Evaporation and Seasonal Effects on the Water Content in the Unsaturated Zone: A Multi-Year Laboratory Study. Water 2022, 14, 3294. [Google Scholar] [CrossRef]
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Shao, R.; Zhang, B.Q.; Su, T.X.; Biao, L.; Cheng, L.Y.; Xue, Y.Y.; Yang, W.J. Estimating the Increase in Regional Evaporative Water Consumption as a Result of Vegetation Restoration Over the Loess Plateau, China. J. Geophys. Res.-Atmos. 2019, 124, 11783–11802. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.M.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.H.; Braeckevelt, E.; Zhang, Y.P.; Sha, L.Q.; Zhou, W.J.; Liu, Y.T.; Wu, C.S.; Lu, Z.Y.; Klemm, O. Evapotranspiration from a primary subtropical evergreen forest in Southwest China. Ecohydrology 2017, 10, 10. [Google Scholar] [CrossRef]
- Lu, F.; Hu, H.F.; Sun, W.J.; Zhu, J.J.; Liu, G.B.; Zhou, W.M.; Zhang, Q.F.; Shi, P.L.; Liu, X.P.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef]
- Deng, L.; Shangguan, Z.-p.; Li, R. Effects of the grain-for-green program on soil erosion in China. Int. J. Sediment Res. 2012, 27, 120–127. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Wang, Y.K.; Fu, B.; Dixit, A.M.; Chaudhary, S.; Wang, S. Impact of climatic factors on vegetation dynamics in the upper Yangtze River basin in China. J. Mt. Sci. 2020, 17, 1235–1250. [Google Scholar] [CrossRef]
- Guo, N.; Degen, A.A.; Deng, B.; Shi, F.Y.; Bai, Y.F.; Zhang, T.; Long, R.J.; Shang, Z.H. Changes in vegetation parameters and soil nutrients along degradation and recovery successions on alpine grasslands of the Tibetan plateau. Agric. Ecosyst. Environ. 2019, 284, 12. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Chen, X.; Li, Y.M.; Zhou, Q.M.; Yin, G. Temporal and Spatial Variations of Soil Moisture Over Xinjiang Based on Multiple GLDAS Datasets. Front. Earth Sci. 2021, 9, 13. [Google Scholar] [CrossRef]
- Katul, G.G.; Oren, R.; Manzoni, S.; Higgins, C.; Parlange, M.B. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev. Geophys. 2012, 50, 25. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X.M.; Zhang, Y.Q.; Liu, C.M. Assessing the Impacts of Vegetation Greenness Change on Evapotranspiration and Water Yield in China. Water Resour. Res. 2020, 56, 20. [Google Scholar] [CrossRef]
- Yang, Z.S.; Zhang, Q.; Hao, X.C.; Yue, P. Changes in Evapotranspiration Over Global Semiarid Regions 1984–2013. J. Geophys. Res.-Atmos. 2019, 124, 2946–2963. [Google Scholar] [CrossRef]
- Chattopadhyay, N.; Hulme, M. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agric. For. Meteorol. 1997, 87, 55–73. [Google Scholar] [CrossRef]
- Liu, G.; Xu, W.N.; Liu, P.L.; Yang, M.Y.; Cai, C.F.; Zhang, Q.; Xia, Z.Y. Assessment of soil erosion risk on the Loess Plateau, China. J. Food Agric. Environ. 2012, 10, 1568–1571. [Google Scholar]
- Yan, R.; Zhang, X.P.; Yan, S.J.; Chen, H. Estimating soil erosion response to land use/cover change in a catchment of the Loess Plateau, China. Int. Soil Water Conserv. Res. 2018, 6, 13–22. [Google Scholar] [CrossRef]
- Shen, N.; Wang, Z.L.; Guo, Q.; Zhang, Q.W.; Wu, B.; Liu, J.N.; Ma, C.Y.; Delang, C.O.; Zhang, F.B. Soil detachment capacity by rill flow for five typical loess soils on the Loess Plateau of China. Soil Tillage Res. 2021, 213, 12. [Google Scholar] [CrossRef]
- Zheng, F.L. Effect of vegetation changes on soil erosion on the Loess Plateau. Pedosphere 2006, 16, 420–427. [Google Scholar] [CrossRef]
- Zheng, F.L. Effects of accelerated soil erosion on soil nutrient loss after deforestation on the Loess Plateau. Pedosphere 2005, 15, 707–715. [Google Scholar]
- Yang, X.H.; Zhang, X.P.; Lv, D.; Yin, S.Q.; Zhang, M.X.; Zhu, Q.G.Z.; Yu, Q.; Liu, B.Y. Remote sensing estimation of the soil erosion cover-management factor for China’s Loess Plateau. Land Degrad. Dev. 2020, 31, 1942–1955. [Google Scholar] [CrossRef]
- Fares, A.; Bensley, A.; Bayabil, H.; Awal, R.; Fares, S.; Valenzuela, H.; Abbas, F. Carbon dioxide emission in relation with irrigation and organic amendments from a sweet corn field. J. Environ. Sci. Health B 2017, 52, 387–394. [Google Scholar] [CrossRef]
- Hussein, E.A.; Abd El-Ghani, M.M.; Hamdy, R.S.; Shalabi, L.F. Do Anthropogenic Activities Affect Floristic Diversity and Vegetation Structure More Than Natural Soil Properties in Hyper-Arid Desert Environments? Diversity 2021, 13, 157. [Google Scholar] [CrossRef]
- Cao, Y.P.; Xie, Z.Y.; Woodgate, W.; Ma, X.L.; Cleverly, J.; Pang, Y.J.; Qin, F.; Huete, A. Ecohydrological decoupling of water storage and vegetation attributed to China?s large-scale ecological restoration programs. J. Hydrol. 2022, 615, 14. [Google Scholar] [CrossRef]
- Dang, Z.Q.; Huang, Z.; Tian, F.P.; Liu, Y.; López-Vicente, M.; Wu, G.L. Five-year soil moisture response of typical cultivated grasslands in a semiarid area: Implications for vegetation restoration. Land Degrad. Dev. 2020, 31, 1078–1085. [Google Scholar] [CrossRef]
- Zhang, S.L.; Yang, D.W.; Yang, Y.T.; Piao, S.L.; Yang, H.B.; Lei, H.M.; Fu, B.J. Excessive Afforestation and Soil Drying on China’s Loess Plateau. J. Geophys. Res.-Biogeosci. 2018, 123, 923–935. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Wang, Y.Q.; Sun, H.; Lin, H.; Jin, Z.; He, M.N.; Yu, Y.L.; Zhou, W.J.; An, Z.S. Intensive land restoration profoundly alters the spatial and seasonal patterns of deep soil water storage at watershed scales. Agric. Ecosyst. Environ. 2019, 280, 129–141. [Google Scholar] [CrossRef]
- Cao, S.X.; Chen, L.; Shankman, D.; Wang, C.M.; Wang, X.B.; Zhang, H. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Tian, F.; Lü, Y.H.; Fu, B.J.; Zhang, L.; Zang, C.F.; Yang, Y.H.; Qiu, G.Y. Challenge of vegetation greening on water resources sustainability: Insights from a modeling-based analysis in Northwest China. Hydrol. Process. 2017, 31, 1469–1478. [Google Scholar] [CrossRef]
- Caldwell, P.V.; Kennen, J.G.; Sun, G.; Kiang, J.E.; Butcher, J.B.; Eddy, M.C.; Hay, L.E.; LaFontaine, J.H.; Hain, E.F.; Nelson, S.A.C.; et al. A comparison of hydrologic models for ecological flows and water availability. Ecohydrology 2015, 8, 1525–1546. [Google Scholar] [CrossRef]
- Zhang, B.Q.; AghaKouchak, A.; Yang, Y.T.; Wei, J.H.; Wang, G.Q. A water-energy balance approach for multi-category drought -assessment across globally diverse hydrological basins. Agric. For. Meteorol. 2019, 264, 247–265. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Chen, X.; Xu, C.Y.; Yuan, L.F.; Yong, B.; Yan, S.F. Evaluating the non-stationary relationship between precipitation and streamflow in nine major basins of China during the past 50 years. J. Hydrol. 2011, 409, 81–93. [Google Scholar] [CrossRef]
- Hu, G.C.; Jia, L.; Menenti, M. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sens. Environ. 2015, 156, 510–526. [Google Scholar] [CrossRef]
- Yang, L.S.; Feng, Q.; Adamowski, J.F.; Alizadeh, M.R.; Yin, Z.L.; Wen, X.H.; Zhu, M. The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China’s Qilian Mountains. Sci. Total Environ. 2021, 759, 13. [Google Scholar] [CrossRef]
Output Item | Factors | Direct Path Coefficients | Indirect Path Coefficient | A Sum of Indirect Path | Total Path Coefficients | |||||
---|---|---|---|---|---|---|---|---|---|---|
LAI | Rad | Pre | Temp | VPD | WS | |||||
ET | LAI | 0.078 | - | - | 0.032 | 0.05 | 0.038 | - | 0.12 | 0.9 |
Rad | 0.042 | - | - | - | 0.027 | - | - | 0.027 | 0.447 | |
Pre | 0.004 | - | - | - | 0.004 | 0.0007 | - | 0.0047 | 0.008 | |
Temp | 0.099 | - | - | - | - | - | - | - | 0.099 | |
VPD | −0.102 | - | - | - | - | - | - | - | −0.102 | |
WS | −0.12 | 0.051 | - | 0.008 | 0.027 | 0.082 | - | 0.168 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, L.; Wu, R.; Wang, Z.; Xue, T.; Liu, Y.; Hu, E.; Wen, Z.; Shi, H.; Yang, J.; Han, P.; et al. Climate Change and Vegetation Greening Jointly Promote the Increase in Evapotranspiration in the Jing River Basin. Agronomy 2024, 14, 1910. https://doi.org/10.3390/agronomy14091910
Yao L, Wu R, Wang Z, Xue T, Liu Y, Hu E, Wen Z, Shi H, Yang J, Han P, et al. Climate Change and Vegetation Greening Jointly Promote the Increase in Evapotranspiration in the Jing River Basin. Agronomy. 2024; 14(9):1910. https://doi.org/10.3390/agronomy14091910
Chicago/Turabian StyleYao, Luoyi, Rong Wu, Zijun Wang, Tingyi Xue, Yangyang Liu, Ercha Hu, Zhongming Wen, Haijing Shi, Jiaqi Yang, Peidong Han, and et al. 2024. "Climate Change and Vegetation Greening Jointly Promote the Increase in Evapotranspiration in the Jing River Basin" Agronomy 14, no. 9: 1910. https://doi.org/10.3390/agronomy14091910
APA StyleYao, L., Wu, R., Wang, Z., Xue, T., Liu, Y., Hu, E., Wen, Z., Shi, H., Yang, J., Han, P., Zhao, Y., & Hu, J. (2024). Climate Change and Vegetation Greening Jointly Promote the Increase in Evapotranspiration in the Jing River Basin. Agronomy, 14(9), 1910. https://doi.org/10.3390/agronomy14091910