Performance and Stability for Grain Yield and Its Components of Some Rice Cultivars under Various Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Cultivars and Experimental Design
2.2. Field Preparation and Planting
2.3. Transplantation and Spacing
2.4. Studied Characteristics
2.5. Statistical Analyses
3. Results
3.1. Environment Effect
3.2. Mean Performance
3.3. Stability Parameters
3.4. Environmental Indices
3.5. Stability and Superiority Indexes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Habib, M.A.; Azam, M.G.; Haque, A.; Hassan, L.; Khatun, M.S.; Nayak, S.; Abdullah, H.M.; Ullah, R.; Ali, E.A.; Hossain, N.; et al. Climate-smart rice (Oryza sativa L.) genotypes identification using stability analysis, multi-trait selection index, and genotype-environment interaction at different irrigation regimes with adaptation to universal warming. Sci. Rep. 2024, 14, 13836. [Google Scholar] [CrossRef] [PubMed]
- El-Aty, M.S.A.; Katta, Y.S.; Abd, A.E.M.B.E.; Mahmoud, S.; Ibrahim, O.M.; Wali, A.M.; El-Shehawi, A.M.; Elseehy, M.M.; El-Saadony, M.T.; El-Tahan, A.M. Assessment of grain quality traits in rice under normal and water deficit condition. Saudi J. Biol. Sci. 2022. [Google Scholar] [CrossRef]
- Al Azzawi, T.N.I.; Khan, M.; Hussain, A.; Shahid, M.; Imran, Q.M.; Mun, B.-G.; Lee, S.-U.; Yun, B.-W. Evaluation of Iraqi Rice Cultivars for Their Tolerance to Drought Stress. Agronomy 2020, 10, 1782. [Google Scholar] [CrossRef]
- Abd-El-Aty, M.S.; Abo-Youssef, M.I.; Bahgt, M.M.; Ibrahim, O.M.; Faltakh, H.; Nouri, H.; Korany, S.M.; Alsherif, E.A.; AbdElgawad, H.; El-Tahan, A.M. Mode of gene action and heterosis for physiological, biochemical, and agronomic traits in some diverse rice genotypes under normal and drought conditions. Front. Plant Sci. 2023, 14, 1108977. [Google Scholar] [CrossRef] [PubMed]
- Akanksha, A.; Jaiswal, H.K. Combining ability studies for yield and quality parameters in basmati rice (Oryza sativa L.) genotypes using diallel approach. Electron. J. Plant Breed. 2019, 10, 9–17. [Google Scholar] [CrossRef]
- Aslam, M.M.; Rashid, M.A.R.; Siddiqui, M.A.; Khan, M.T.; Farhat, F.; Yasmeen, S.; Khan, I.A.; Raja, S.; Rasool, F.; Sial, M.A.; et al. Recent Insights into Signaling Responses to Cope Drought Stress in Rice. Rice Sci. 2022, 29, 105–117. [Google Scholar] [CrossRef]
- Aswidinnoor, H.; Listiyanto, R.; Rahim, S.; Holidin; Setiyowati, H.; Nindita, A.; Ritonga, A.W.; Marwiyah, S.; Suwarno, W.B. Stability analysis, agronomic performance, and grain quality of elite new plant type rice lines (Oryza sativa L.) developed for tropical lowland ecosystem. Front. Sustain. Food Syst. 2023, 7, 1147611. [Google Scholar] [CrossRef]
- Awad-Allah, M.M.A. Heterosis and Combining ability Estimates using Line x Tester Analysis to Develop Wide Compatibility and Restorer Lines in Rice. J. Agric. Chem. Biotechnol. 2020, 11, 383–393. [Google Scholar] [CrossRef]
- SC, M.K.; Singh, S.K.; Khaire, A.; Korada, M.; Majhi, P.K.; Singh, D.K. An analytical approach integrating GGE-Biplot and AMMI techniques for assessing genotype-environment interactions and yield stability in rice (Oryza sativa L.) genotypes. Emergent Life Sci. Res. 2023, 9, 168–176. [Google Scholar] [CrossRef]
- El-Malky, M.; Al-Daej, M. Studies of Genetic Parameters and Cluster analysis of some Quantitative Characters through Diallel analysis of rice (Oryza Sativa L.). Vegetos 2018, 2018, 1–10. [Google Scholar]
- El-Mowafi, H.; Reda, M.; Abdallah, R. Combining Ability Analysis for Agronomic and Yield Attributing Traits in Hybrid Rice. Egypt. J. Plant Breed. 2015, 19, 2195–2219. [Google Scholar] [CrossRef]
- El-Mowafi, H.F.; AlKahtani, M.D.; Abdallah, R.M.; Reda, A.M.; Attia, K.A.; El-Hity, M.A.; El-Dabaawy, H.E.; Husnain, L.A.; Al-Ateeq, T.K.; EL-Esawi, M.A. Combining Ability and Gene Action for Yield Characteristics in Novel Aromatic Cytoplasmic Male Sterile Hybrid Rice under Water-Stress Conditions. Agriculture 2021, 11, 226. [Google Scholar] [CrossRef]
- Gaballah, M.M.; Attia, K.A.; Ghoneim, A.M.; Khan, N.; El-Ezz, A.F.; Yang, B.; Xiao, L.; Ibrahim, E.I.; Al-Doss, A.A. Assessment of Genetic Parameters and Gene Action Associated with Heterosis for Enhancing Yield Characters in Novel Hybrid Rice Parental Lines. Plants 2022, 11, 266. [Google Scholar] [CrossRef]
- Ganapati, R.K.; Rasul, G.; Sarker, U.; Singha, A.; Faruquee, M. Gene action of yield and yield contributing traits of submergence tolerant rice (Oryza sativa L.) in Bangladesh. Bull. Natl. Res. Cent. 2020, 44, 8. [Google Scholar] [CrossRef]
- Wricke, G. Uber eine methode zur erfassung der okologischen streubreite in feldversuchen. Z. Pflanzenzucht. 1962, 47, 92–96. [Google Scholar]
- Shukla, G.K. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 1972, 29, 237–245. [Google Scholar] [CrossRef]
- Francis, T.R.; Kannenberg, L.W. Yield Stability Studies in Short-Season Maize. I. A Descriptive Method for Grouping Genotypes. Can. J. Plant Sci. 1978, 58, 1029–1034. [Google Scholar] [CrossRef]
- Roemer, J. Sinde die ertagdreichen sorten ertagissicherer? Mitt DLG 1917, 32, 87–89. [Google Scholar]
- Plaisted, R.L.; Peterson, L.C. A technique for evaluating the ability of selections to yield consistently in different locations or seasons. Am. J. Potato Res. 1959, 36, 381–385. [Google Scholar] [CrossRef]
- Plaisted, R.I. A shorter methods for evaluating the ability of selections to yield consistently over locations. Am. J. Potato Res. 1960, 37, 166172. [Google Scholar] [CrossRef]
- Finlay, K.W.; Wilkinson, G.N. The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Res. 1963, 14, 742–754. [Google Scholar] [CrossRef]
- Gauch, H.G.; Zobel, R.W. Predictive and postdictive success of statistical analyses of yield trials. Theor. Appl. Genet. 1988, 76, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yan, W. GGEbiplot—A Windows Application for Graphical Analysis of Multienvironment Trial Data and Other Types of Two-Way Data. Agron. J. 2001, 93, 1111–1118. [Google Scholar] [CrossRef]
- Gauch, H.G.; Piepho, H.; Annicchiarico, P. Statistical Analysis of Yield Trials by AMMI and GGE: Further Considerations. Crop. Sci. 2008, 48, 866–889. [Google Scholar] [CrossRef]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982; Volume 1159. [Google Scholar]
- Freeman, G.H.; Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research with Emphasis on Rice. Biometrics 1978, 34, 721. [Google Scholar] [CrossRef]
- Herwibawa, B.; Sakhidin; Haryanto, T.A.D. Agronomic performances of aromatic and non-aromatic M1 rice under drought stress. Open Agric. 2019, 4, 575–584. [Google Scholar] [CrossRef]
- Parimala, K.; Raju, C.S.; Kumar, S.S.; Reddy, S.N. Stability analysis over different environments for grain yield and its components in hybrid rice (Oryza sativa L.). Electron. J. Plant Breed. 2019, 10, 389–399. [Google Scholar] [CrossRef]
- Kumar, C.P.S.; Sathiyabama, R.; Suji, D.B.; Muraleedharan, A. Estimation of heterosis for earliness and certain growth characters in rice (Oryza sativa L.). Plant Arch. 2020, 20, 1429–1432. [Google Scholar]
- Kumari, J.; Mahatman, K.K.; Sharma, S.; Singh, A.K.; Adhikari, S.; Bansal, R.; Kaur, V.; Kumar, S.; Yadav, M.C. Recent Advances in Different Omics Mechanism for Drought Stress Tolerance in Rice. Russ. J. Plant Physiol. 2022, 69, 18. [Google Scholar] [CrossRef]
- Kunnam, J.; Pinta, W.; Ruttanaprasert, R.; Bunphan, D.; Thabthimtho, T.; Aninbon, C. Stability of Phenols, Antioxidant Capacity and Grain Yield of Six Rice Genotypes. Plants 2023, 12, 2787. [Google Scholar] [CrossRef]
- El-Nashart, A.B.; El-Nwehy, S.S.; Rezk, A.E.-H.I.; Ibrahim, O.M. Improving seed and oil yield of sunflower grown in calcareous soil under saline stress conditions. Asian J. Crop. Sci. 2017, 9, 35–39. [Google Scholar] [CrossRef]
- Manjunath, K.; Chandramohan, Y.; Shankar, V.; Balram, M.; Lavuri, K. Genetic and molecular studies on fertility restoration in rice (Oryza sativa L.). Genotypes 2020, 10, 944–950. [Google Scholar]
- Ranjith, S.A.; Ram, R.S.; Saravanan, K.R.; Karthikeyan, P.G.; Anbananthan, V.; Sathiyanarayanan, G. Studies on heterosis breeding for qualitative and quantitative traits in rice (Oryza Sativa L.). Plant Arch. 2020, 20, 1349–1353. [Google Scholar]
- Rasheed, A.; Hassan, M.; Aamer, M.; Bian, J.; Xu, Z.; He, X.; Yan, G.; Wu, Z. Iron toxicity, tolerance and quantitative trait loci mapping in rice—A review. Appl. Ecol. Environ. Res. 2020, 18, 7483–7498. [Google Scholar] [CrossRef]
- Shrestha, J.; Kushwaha, U.K.S.; Maharjan, B.; Kandel, M.; Gurung, S.B.; Poudel, A.P.; Karna, M.K.L.; Acharya, R. Grain Yield Stability of Rice Genotypes. Indones. J. Agric. Res. 2020, 3, 116–126. [Google Scholar] [CrossRef]
- Suvi, W.T.; Shimelis, H.; Laing, M.; Mathew, I.; Shayanowako, A.I.T. Determining the Combining Ability and Gene Action for Rice Yellow Mottle Virus Disease Resistance and Agronomic Traits in Rice (Oryza sativa L.). Agronomy 2020, 11, 12. [Google Scholar] [CrossRef]
- Chandramohan, Y.; Krishna, L.; Srinivas, B.; Rukmini, K.; Sreedhar, S.; Prasad, K.S.; Kishore, N.S.; Rani, C.V.D.; Singh, T.V.J.; Jagadeeshwar, R. Stability analysis of short duration rice genotypes in Telangana using AMMI and GGE Bi-plot models. Environ. Conserv. J. 2023, 24, 243–252. [Google Scholar] [CrossRef]
- Thirumalai, R.; Anbananthan, V.; Azmath, S. Genetic Effects and Combining Ability for Yield and its Component Traits in Rice (Oryza sativa L.) Using Line X Tester. Int. J. Sci. Res. 2018, 7, 1478–1483. [Google Scholar]
- Zewdu, Z.; Abebe, T.; Mitiku, T.; Worede, F.; Dessie, A.; Berie, A.; Atnaf, M. Performance evaluation and yield stability of upland rice (Oryza sativa L.) varieties in Ethiopia. Cogent Food Agric. 2020, 6, 1842679. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, S. Heterosis and combining ability analysis for yield and its components in rice (Oryza sativa L.). J. Pharmacogn. Phytochem. 2019, 8, 3172–3181. [Google Scholar] [CrossRef]
- El-Hadi, A.H.A.; Kash, K.S.; El-Mowafi, H.F.; Anis, G.B. The utilization of cytoplasmic male sterile (cms) and restorer lines in the developing of hybrid rice. J. Agric. Chem. Biotechnol. 2013, 4, 263–274. [Google Scholar] [CrossRef]
- Hasan, M.K.; Kulsum, M.U.; Hossain, E.; Hossain, M.M.; Rahman, M.M.; Rahmat, N.M.F. Combining ability analysis for iden-tifying elite parents for heterotic rice hybrids. Acad. J. Agric. Res. 2015, 3, 70–75. [Google Scholar]
- Ali, M.A.; Ghazy, A.I.; Alotaibi, K.D.; Ibrahim, O.M.; Al-Doss, A.A. Nitrogen efficiency indexes association with nitrogen recovery, utilization, and use efficiency in spring barley at various nitrogen application rates. Agron. J. 2022, 114, 2290–2309. [Google Scholar] [CrossRef]
- Wu, C.; Cui, K.; Li, Q.; Li, L.; Wang, W.; Hu, Q.; Ding, Y.; Li, G.; Fahad, S.; Huang, J.; et al. Estimating the yield stability of heat-tolerant rice genotypes under various heat conditions across reproductive stages: A 5-year case study. Sci. Rep. 2021, 11, 13604. [Google Scholar] [CrossRef]
- Maulana, H.; Solihin, E.; Trimo, L.; Hidayat, S.; Wijaya, A.A.; Hariadi, H.; Amien, S.; Ruswandi, D.; Karuniawan, A. Genotype-by-environment interactions (GEIs) and evaluate superior sweet potato (Ipomoea batatas [L.] Lam) using combined analysis and GGE biplot. Heliyon 2023, 9, e20203. [Google Scholar] [CrossRef]
Soil Properties | 2020 | 2021 |
---|---|---|
Mechanical: Clay % | 57.22 | 56.56 |
Silt % | 28.20 | 27.31 |
Sand % | 14.58 | 16.13 |
Texture | Clayey | Clayey |
Chemical: | ||
Organic Matter (O.M)% | 1.54 | 1.52 |
pH (1:2.5 soil suspension) | 8.34 | 8.45 |
Ec (ds.m−1) | 3.34 | 3.20 |
Total N (ppm) | 467.50 | 464 |
Available P (ppm) | 14.69 | 14.32 |
Available K (ppm) | 390 | 381 |
Soluble anions, meq.L−1: | ||
6.38 | 6.20 | |
Cl− | 9.25 | 9.10 |
Soluble Cations, meq.L−1: | ||
Ca2+ | 10.86 | 10.72 |
Mg2+ | 5.15 | 5.13 |
Na+ | 2.13 | 2.09 |
K+ | 15.71 | 15.05 |
Total carbonate % | 14.23 | 14.14 |
Month | Day | 2020 | 2021 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Air Temp. | RH % | Rain (mm/day) | Air Temp. | RH % | Rain (mm/day) | ||||||
Min | Max | 7.30 | 13.30 | Min | Max | 7.30 | 13.30 | ||||
May | 1–10 | 20.98 | 28.89 | 76.0 | 46.9 | 0 | 25.4 | 30.7 | 77.3 | 47.7 | 0 |
11–20 | 24.36 | 32.93 | 66.6 | 41.5 | 0 | 26.3 | 30.3 | 78.0 | 44.3 | 0 | |
21–31 | 22.93 | 29.72 | 71.5 | 48.9 | 0 | 25.8 | 30.9 | 77.9 | 44.7 | 0 | |
June | 1–10 | 26.7 | 33.4 | 67.3 | 43.5 | 0 | 27.7 | 32.6 | 78.7 | 46.7 | 0 |
11–20 | 25.5 | 33.1 | 76.0 | 44.3 | 0 | 27.8 | 31.9 | 81.5 | 54.2 | 0 | |
21–30 | 26.8 | 34.2 | 83.9 | 52.1 | 0 | 28.8 | 32.9 | 80.6 | 53.2 | 0 | |
July | 1–10 | 26.5 | 33.9 | 82.5 | 57.7 | 0 | 29.4 | 34.7 | 84.6 | 57.2 | 0 |
11–20 | 25.9 | 33.7 | 83.0 | 54.2 | 0 | 29.1 | 35.2 | 83.4 | 54.9 | 0 | |
21–31 | 26.0 | 32.9 | 81.7 | 58.6 | 0 | 28.4 | 34.4 | 85.6 | 59.1 | 0 | |
August | 1–10 | 26.2 | 34.3 | 84.8 | 57.6 | 0 | 28.8 | 34.2 | 86.8 | 57.2 | 0 |
11–20 | 26.3 | 33.0 | 82.7 | 56.8 | 0 | 29.2 | 34.9 | 84.6 | 58.3 | 0 | |
21–31 | 25.5 | 36.2 | 85.0 | 54.4 | 0 | 27.4 | 35.6 | 86.2 | 50.5 | 0 | |
September | 1–10 | 24.3 | 33.27 | 85.4 | 53.7 | 0 | 25.9 | 33.1 | 86.0 | 49.8 | 0 |
11–20 | 24.93 | 33.42 | 82.6 | 51.3 | 0 | 26.0 | 33.6 | 87.1 | 49.5 | 0 | |
21–30 | 23.63 | 31.09 | 82.2 | 50.1 | 0 | 26.7 | 31.5 | 85.0 | 51.7 | 0 | |
October | 1–10 | 20.3 | 31.5 | 85.6 | 50.0 | 0 | 24.5 | 30.0 | 83.3 | 53.1 | 0 |
11–20 | 23.0 | 29.84 | 78.4 | 56.0 | 0 | 23.6 | 27.9 | 81.5 | 56.6 | 0 | |
21–31 | 21.90 | 28.04 | 83.2 | 59.8 | 0 | 23.9 | 28.1 | 78.5 | 54.6 | 0 |
SOV | Df | MS | |||
---|---|---|---|---|---|
Number of Filled Grains/Panicle | Seed Set (%) | 1000-Grain Weight | Grain Yield/Plant | ||
Years (Y) | 1 | 87.53 ** | 296.83 ** | 1.38 | 343.27 ** |
Date (D) | 2 | 2420.52 ** | 590.29 ** | 5.59 ** | 204.71 ** |
Y × D | 2 | 53.78 ** | 132.24 ** | 0.00 | 21.80 ** |
Rep/D/Y = (Ea) | 9 | 25 | 1.0 | 0.50 | 2.0 |
Genotypes (G) | 11 | 3310.30 ** | 71.60 ** | 71.22 ** | 18.92 ** |
G × Y | 11 | 105.81 ** | 15.30 ** | 0.05 | 3.84 ** |
G × D | 22 | 129.95 ** | 9.21 ** | 3.01 ** | 0.66 |
G × Y×D | 22 | 37.35 ** | 8.13 ** | 0.05 | 1.36 |
Error/D/years (Pooled Error) = (Eb) | 135 | 14.38 | 0.71 | 0.04 | 0.51 |
Item | No. of Filled Grains/Panicle | Seed Set % | 1000-Grain Weight (g) | Grain Yield/Plant (g) |
---|---|---|---|---|
First year | 137.5 | 93.9 | 27.3 | 45.6 |
Second year | 136.2 | 91.6 | 27.4 | 43.1 |
Env. 1 | 142.9 | 95.8 | 27.7 | 45.8 |
Env. 2 | 136.2 | 92.4 | 27.3 | 44.8 |
Env. 3 | 131.3 | 90.1 | 27.1 | 42.5 |
Mean overall | 136.82 | 92.76 | 27.36 | 44.36 |
LSD at 0.05 | 1.54 | 0.33 | 0.07 | 0.43 |
Source | Df | Sum Sq | Mean Sq | F Value | Pr (>F) | Proportion | Accumulated |
---|---|---|---|---|---|---|---|
ENV | 5 | 7.96 × 102 | 1.59 × 102 | 111.18 | 1.27 × 10−9 | - | - |
REP(ENV) | 12 | 1.72 × 101 | 1.43 × 100 | 2.77 | 2.18 × 10−3 | - | - |
GEN | 11 | 2.08 × 102 | 1.89 × 101 | 36.56 | 8.63 × 10−35 | - | - |
GEN:ENV | 55 | 8.67 × 101 | 1.58 × 100 | 3.05 | 1.01 × 10−7 | - | - |
PC1 | 15 | 4.79 × 101 | 3.20 × 100 | 6.18 | 0.00 × 100 | 55.3 | 55.3 |
PC2 | 13 | 2.25 × 101 | 1.73 × 100 | 3.34 | 2.00 × 10−4 | 25.9 | 81.2 |
PC3 | 11 | 1.19 × 101 | 1.08 × 100 | 2.09 | 2.52 × 10−2 | 13.7 | 94.9 |
PC4 | 9 | 4.38 × 100 | 4.87 × 10−1 | 0.94 | 4.93 × 10−1 | 5.1 | 100 |
PC5 | 7 | 4.07 × 10−3 | 5.80 × 10−4 | 0 | 1.00 × 100 | 0 | 100 |
Residuals | 132 | 6.83 × 101 | 5.18 × 10−1 | - | - | - | - |
Total | 270 | 1.26 × 103 | 4.68 × 100 | - | - | - | - |
Genotypes | No. of Filled Grains/Panicle | Seed Set % | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E5 | E6 | Mean | E1 | E2 | E3 | E4 | E5 | E6 | Mean | |
Sakha 101 | 144.3 | 142.0 | 134.0 | 145.3 | 139.0 | 135.0 | 139.94 | 97.7 | 96.9 | 94.8 | 97.9 | 93.2 | 90.5 | 95.2 |
Sakha 104 | 141.7 | 138.0 | 130.3 | 140.4 | 133.3 | 129.0 | 135.46 | 97.3 | 96.3 | 94.4 | 96.7 | 93.7 | 90.4 | 94.8 |
Sakha105 | 130.0 | 124.3 | 118.3 | 129.7 | 124.0 | 119.0 | `124.22 | 96.7 | 96.3 | 93.7 | 98.6 | 92.7 | 88.8 | 94.5 |
Sakha 106 | 127.3 | 128.3 | 123.3 | 131.0 | 129.0 | 126.0 | 127.50 | 95.1 | 94.1 | 91.5 | 94.6 | 94.6 | 93.8 | 93.9 |
Sakha 107 | 126.0 | 123.3 | 120.0 | 127.0 | 127.3 | 123.5 | 124.51 | 93.3 | 92.6 | 90.5 | 93.8 | 89.8 | 87.6 | 91.3 |
Sakha 108 | 152.7 | 149.0 | 143.3 | 151.0 | 147.0 | 140.4 | 147.23 | 95.5 | 94.7 | 93.1 | 94.7 | 90.7 | 86.7 | 92.6 |
Giza177 | 141.7 | 136.7 | 129.3 | 142.7 | 133.3 | 128.1 | 135.30 | 97.4 | 96.6 | 94.3 | 99.5 | 90.6 | 87.1 | 94.3 |
Giza178 | 188.3 | 163.3 | 173.0 | 189.3 | 150.0 | 144.0 | 168.00 | 95.8 | 94.2 | 92.2 | 98.9 | 86.2 | 81.4 | 91.4 |
Giza179 | 129.7 | 124.3 | 120.3 | 130.7 | 128.3 | 125.1 | 126.41 | 96.7 | 93.8 | 93.7 | 97.3 | 94.5 | 91.9 | 94.7 |
Giza 182 | 123.7 | 117.7 | 115.3 | 124.7 | 124.0 | 121.0 | 121.06 | 91.5 | 90.7 | 88.5 | 92.8 | 90.4 | 88.0 | 90.3 |
Egyptian Yasmine | 149.3 | 152.7 | 138.0 | 150.3 | 143.7 | 135.3 | 144.89 | 93.2 | 91.2 | 89.8 | 93.8 | 88.0 | 83.5 | 89.9 |
Sakha super 300 | 155.7 | 150.3 | 142.7 | 156.7 | 141.0 | 137.3 | 147.3 | 94.7 | 92.2 | 90.8 | 95.1 | 84.6 | 85.1 | 90.4 |
Sakha 101 | 142.53 | 137.49 | 132.32 | 143.23 | 134.99 | 130.31 | 136.82 | 95.41 | 94.13 | 92.28 | 96.14 | 90.75 | 87.90 | 92.78 |
LSD 0.05 | 1.3 | 15.1 | 1.7 | 1.52 | 3.64 | 2.01 | 0.14 | 0.14 | 1.32 | 0.11 | 0.93 | 2.40 | 2.01 | 0.55 |
LSD 0.01 | 1.7 | 20.6 | 2.4 | 2.06 | 4.95 | 2.73 | 0.19 | 0.19 | 1.79 | 0.15 | 1.27 | 3.26 | 2.74 | 0.72 |
Genotypes | 1000-Grain Weight | Grain Yield/Plant | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E5 | E6 | Mean | E1 | E2 | E3 | E4 | E5 | E6 | Mean | |
Sakha 101 | 28.6 | 28.4 | 28.3 | 28.8 | 28.6 | 28.5 | 28.5 | 47 | 47 | 44.9 | 46.6 | 44.3 | 41.0 | 45.0 |
Sakha 104 | 28.3 | 28.2 | 27.7 | 28.5 | 28.4 | 27.9 | 28.2 | 47.1 | 47.1 | 44.2 | 46.8 | 43.1 | 40.9 | 44.9 |
Sakha105 | 28.1 | 28.1 | 28.9 | 28.3 | 28.2 | 29.0 | 28.4 | 46.8 | 46.8 | 43.8 | 45.2 | 43.2 | 40.8 | 44.4 |
Sakha 106 | 28.3 | 28.5 | 28.9 | 28.5 | 28.7 | 29.1 | 28.6 | 46.9 | 46.8 | 43.2 | 44.7 | 43.5 | 41.6 | 44.4 |
Sakha 107 | 27.5 | 27.4 | 27.2 | 27.7 | 27.5 | 27.3 | 27.4 | 44.0 | 44.0 | 43.5 | 42.7 | 41.1 | 38.4 | 42.3 |
Sakha 108 | 29.1 | 29.0 | 28.9 | 29.3 | 29.2 | 29.0 | 29.1 | 47.8 | 47.8 | 46.9 | 46.6 | 44.7 | 41.5 | 45.6 |
Giza177 | 28.3 | 28.3 | 27.9 | 28.5 | 28.4 | 28.1 | 28.2 | 46.0 | 46.0 | 43.7 | 43.8 | 42.3 | 41.2 | 43.8 |
Giza178 | 22.1 | 22.0 | 21.9 | 22.2 | 22.2 | 22.1 | 22.1 | 47.3 | 47.3 | 44.7 | 46.1 | 44.7 | 42.2 | 45.4 |
Giza179 | 27.5 | 27.5 | 27.1 | 27.7 | 27.6 | 27.2 | 27.4 | 47.0 | 47.0 | 44.1 | 46.9 | 45.0 | 43.3 | 45.5 |
Giza 182 | 27.3 | 24.2 | 22.6 | 27.5 | 24.4 | 22.8 | 24.8 | 46.6 | 46.6 | 44.0 | 43.7 | 40.2 | 39.3 | 43.4 |
Egyptian Yasmine | 27.7 | 27.4 | 27.3 | 27.9 | 27.6 | 27.4 | 27.5 | 45.8 | 45.8 | 42.6 | 44.6 | 42.6 | 42.1 | 43.9 |
Sakha super 300 | 28.1 | 27.9 | 27.8 | 28.2 | 28.1 | 28.0 | 28.0 | 45.0 | 45.0 | 43.5 | 44.5 | 42.8 | 40.2 | 43.5 |
Sakha 101 | 27.58 | 27.24 | 27.04 | 27.76 | 27.41 | 27.20 | 27.35 | 46.45 | 46.44 | 44.02 | 44.18 | 43.13 | 41.04 | 44.37 |
LSD 0.05 | 0.1 | 0.5 | 0.1 | 0.11 | 0.55 | 0.11 | 0.13 | 1.1 | 1.1 | 0.9 | 1.28 | 1.51 | 1.40 | 0.47 |
LSD 0.01 | 0.2 | 0.7 | 0.2 | 0.16 | 0.74 | 0.15 | 0.17 | 1.4 | 1.4 | 1.2 | 1.74 | 2.05 | 1.91 | 0.61 |
GEN | GY | ASTAB | ASI | ASV | AVAMGE | DA | DZ | EV | FA | MASI | MASV | SIPC | ZA | SI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S101 | 45.6 | 0.64 | 0.36 | 1.37 | 2.63 | 1.48 | 0.44 | 0.07 | 2.18 | 0.36 | 1.6 | 1.26 | 0.26 | 77.57 |
S104 | 44.9 | 0.85 | 0.13 | 0.48 | 2.85 | 1.34 | 0.64 | 0.14 | 1.8 | 0.17 | 1.04 | 1.26 | 0.17 | 78.82 |
S105 | 44.4 | 0.11 | 0.06 | 0.24 | 1.2 | 0.49 | 0.22 | 0.02 | 0.24 | 0.07 | 0.43 | 0.51 | 0.07 | 82.82 |
S106 | 44.4 | 0.36 | 0.23 | 0.88 | 1.96 | 1.06 | 0.34 | 0.04 | 1.13 | 0.23 | 1.18 | 0.87 | 0.18 | 69.20 |
S107 | 42.3 | 1.18 | 0.32 | 1.23 | 3.35 | 1.77 | 0.69 | 0.16 | 3.13 | 0.34 | 1.74 | 1.86 | 0.31 | 23.47 |
S108 | 45.3 | 0.35 | 0.15 | 0.59 | 2.16 | 0.97 | 0.37 | 0.04 | 0.95 | 0.16 | 1.07 | 0.87 | 0.14 | 89.28 |
G177 | 43.8 | 0.62 | 0.12 | 0.47 | 2.21 | 1.18 | 0.53 | 0.09 | 1.39 | 0.15 | 1.08 | 1.13 | 0.14 | 68.08 |
G178 | 45.4 | 0.11 | 0.17 | 0.66 | 1.46 | 0.64 | 0.17 | 0.01 | 0.4 | 0.17 | 0.68 | 0.45 | 0.1 | 92.19 |
G179 | 45.5 | 0.95 | 0.53 | 2.05 | 4.4 | 1.93 | 0.49 | 0.08 | 3.73 | 0.53 | 2.05 | 1.15 | 0.29 | 71.91 |
G182 | 43.4 | 2.26 | 0.73 | 2.83 | 6.6 | 2.87 | 0.8 | 0.21 | 8.24 | 0.73 | 3.11 | 2.14 | 0.48 | 17.20 |
E.Y. | 43.9 | 0.92 | 0.43 | 1.66 | 3.1 | 1.78 | 0.53 | 0.09 | 3.16 | 0.43 | 1.93 | 1.45 | 0.31 | 45.92 |
SR300 | 43.5 | 0.4 | 0.18 | 0.7 | 2.17 | 1.05 | 0.39 | 0.05 | 1.1 | 0.19 | 1.14 | 1 | 0.17 | 57.95 |
Genotypes | Number of Filled/Grains Panicle | Seed Set (%) | 1000-Grain Weight (g) | Grain Yield/Plant (g) | ||||
---|---|---|---|---|---|---|---|---|
bi | S2di | bi | S2di | bi | S2di | bi | S2di | |
Sakha 101 | 1.08 | 1.863 | 0.94 | 0.106 | 0.59 | 0.002 | 1.21 | 0.315 |
Sakha 104 | 0.85 | 1.525 | 0.80 | 0.343 | 1.09 | 0.027 | 1.20 | 0.276 |
Sakha105 | 1.23 | 1.601 | 1.12 | 0.273 | −0.96 | 0.127 | 1.11 | 0.027 |
Sakha 106 | 0.04 | 4.594 ** | 0.13 | 1.908 | −0.85 | 0.046 | 0.96 | 0.395 |
Sakha 107 | 0.96 | 5.946 ** | 0.77 | 0.045 | 0.64 | 0.002 | 0.98 | 0.788 |
Sakha 108 | 1.13 | 1.971 | 1.04 | 1.085 | 0.48 | 0.004 | 1.00 | 0.244 |
Giza177 | 1.33 | 0.249 | 1.47 | 0.480 | 0.76 | 0.014 | 0.88 | 0.270 |
Giza178 | 0.67 | 144.307 ** | 2.06 | 1.439 | 0.34 | 0.006 | 0.92 | 0.105 |
Giza179 | 1.04 | 8.322 ** | 0.57 | 1.256 | 0.83 | 0.016 | 0.72 | 0.514 |
Giza 182 | 1.05 | 12.466 ** | 0.50 | 1.089 | 7.77 | 0.509 | 1.40 | 1.166 |
Egyptian Yasmine | 1.27 | 16.268 ** | 1.22 | 0.242 | 0.84 | 0.000 | 0.75 | 0.484 |
Sakha super 300 | 1.37 | 5.268 ** | 1.39 | 3.204 * | 0.48 | 0.003 | 0.86 | 0.176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Aty, M.S.A.; Abo-Youssef, M.I.; Sorour, F.A.; Salem, M.; Gomma, M.A.; Ibrahim, O.M.; Yaghoubi Khanghahi, M.; Al-Qahtani, W.H.; Abdel-Maksoud, M.A.; El-Tahan, A.M. Performance and Stability for Grain Yield and Its Components of Some Rice Cultivars under Various Environments. Agronomy 2024, 14, 2137. https://doi.org/10.3390/agronomy14092137
El-Aty MSA, Abo-Youssef MI, Sorour FA, Salem M, Gomma MA, Ibrahim OM, Yaghoubi Khanghahi M, Al-Qahtani WH, Abdel-Maksoud MA, El-Tahan AM. Performance and Stability for Grain Yield and Its Components of Some Rice Cultivars under Various Environments. Agronomy. 2024; 14(9):2137. https://doi.org/10.3390/agronomy14092137
Chicago/Turabian StyleEl-Aty, Mohamed S. Abd, Mahmoud I. Abo-Youssef, Fouad A. Sorour, Mahmoud Salem, Mohamed A. Gomma, Omar M. Ibrahim, Mohammad Yaghoubi Khanghahi, Wahidah H. Al-Qahtani, Mostafa A. Abdel-Maksoud, and Amira M. El-Tahan. 2024. "Performance and Stability for Grain Yield and Its Components of Some Rice Cultivars under Various Environments" Agronomy 14, no. 9: 2137. https://doi.org/10.3390/agronomy14092137
APA StyleEl-Aty, M. S. A., Abo-Youssef, M. I., Sorour, F. A., Salem, M., Gomma, M. A., Ibrahim, O. M., Yaghoubi Khanghahi, M., Al-Qahtani, W. H., Abdel-Maksoud, M. A., & El-Tahan, A. M. (2024). Performance and Stability for Grain Yield and Its Components of Some Rice Cultivars under Various Environments. Agronomy, 14(9), 2137. https://doi.org/10.3390/agronomy14092137