Effects of Zinc Oxide and Zinc–Silica-Based Nanofertilizers with Yeasts on Selected Components of Soybean in the Central European Agronomic Region: A Short-Term Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Utilized Nanoparticles, Nanoporous Biosilica, and Food-Grade Yeast
2.2. Soybean Variety Used
2.3. Description of Natural Conditions, Weather, and Climate at the Experimental Site
2.4. Agronomic Practices Establishing the Soybean Experiment
2.5. Evaluation of Selected Seasonal Physiological Indices of Soybean
2.6. Analysis of Soybean Production
2.7. Analysis of Selected Nutritional Parameters and Energy Value of Soybean Seeds
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yadav, A.; Yadav, K.; Abd-Elsalam, K. Nanofertilizers: Types, Delivery and Advantages in Agricultural Sustainability. Agrochemicals 2023, 2, 296–336. [Google Scholar] [CrossRef]
- Rajiv, P.; Chen, X.; Li, H.; Rehaman, S.; Vanathi, P.; Abd-Elsalam, K.A.; Li, X. Silica-Based Nanosystems: Their Role in Sustainable Agriculture. In Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems; Elsevier: Amsterdam, The Netherlands, 2020; pp. 437–459. ISBN 978-0-12-821354-4. [Google Scholar]
- Liu, R.; Lal, R. Potentials of Engineered Nanoparticles as Fertilizers for Increasing Agronomic Productions. Sci. Total Environ. 2015, 514, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Mousavi Kouhi, S.M.; Lahouti, M.; Ganjeali, A.; Entezari, M.H. Comparative Phytotoxicity of ZnO Nanoparticles, ZnO Microparticles, and Zn2+ on Rapeseed (Brassica napus L.): Investigating a Wide Range of Concentrations. Toxicol. Environ. Chem. 2014, 96, 861–868. [Google Scholar] [CrossRef]
- Afzal, S.; Singh, N.K. Effect of Zinc and Iron Oxide Nanoparticles on Plant Physiology, Seed Quality and Microbial Community Structure in a Rice-Soil-Microbial Ecosystem. Environ. Pollut. 2022, 314, 120224. [Google Scholar] [CrossRef]
- Constantinescu-Aruxandei, D.; Lupu, C.; Oancea, F. Siliceous Natural Nanomaterials as Biorationals—Plant Protectants and Plant Health Strengtheners. Agronomy 2020, 10, 1791. [Google Scholar] [CrossRef]
- Sabir, S.; Arshad, M.; Chaudhari, S.K. Zinc Oxide Nanoparticles for Revolutionizing Agriculture: Synthesis and Applications. Sci. World J. 2014, 2014, 925494. [Google Scholar] [CrossRef]
- Li, C.; Wang, P.; Van Der Ent, A.; Cheng, M.; Jiang, H.; Lund Read, T.; Lombi, E.; Tang, C.; De Jonge, M.D.; Menzies, N.W.; et al. Absorption of Foliar-Applied Zn in Sunflower (Helianthus annuus): Importance of the Cuticle, Stomata and Trichomes. Ann. Bot. 2019, 123, 57–68. [Google Scholar] [CrossRef]
- Gao, X.; Kundu, A.; Bueno, V.; Rahim, A.A.; Ghoshal, S. Uptake and Translocation of Mesoporous SiO2-Coated ZnO Nanoparticles to Solanum lycopersicum Following Foliar Application. Environ. Sci. Technol. 2021, 55, 13551–13560. [Google Scholar] [CrossRef]
- Du, W.; Yang, J.; Peng, Q.; Liang, X.; Mao, H. Comparison tudy of Zinc Nanoparticles and Zinc Sulphate on Wheat Growth: From Toxicity and Zinc Biofortification. Chemosphere 2019, 227, 109–116. [Google Scholar] [CrossRef]
- Kowalska, J.; Krzymińska, J.; Tyburski, J. Yeasts as a Potential Biological Agent in Plant Disease Protection and Yield Improvement—A Short Review. Agriculture 2022, 12, 1404. [Google Scholar] [CrossRef]
- Yadav, M.; Dwibedi, V.; Sharma, S.; George, N. Biogenic Silica Nanoparticles from Agro-Waste: Properties, Mechanism of Extraction and Applications in Environmental Sustainability. J. Environ. Chem. Eng. 2022, 10, 108550. [Google Scholar] [CrossRef]
- Kolenčík, M.; Ernst, D.; Urík, M.; Ďurišová, Ľ.; Bujdoš, M.; Šebesta, M.; Dobročka, E.; Kšiňan, S.; Illa, R.; Qian, Y.; et al. Foliar Application of Low Concentrations of Titanium Dioxide and Zinc Oxide Nanoparticles to the Common Sunflower under Field Conditions. Nanomaterials 2020, 10, 1619. [Google Scholar] [CrossRef] [PubMed]
- Kolenčík, M.; Ernst, D.; Komár, M.; Urík, M.; Šebesta, M.; Dobročka, E.; Černý, I.; Illa, R.; Kanike, R.; Qian, Y.; et al. Effect of Foliar Spray Application of Zinc Oxide Nanoparticles on Quantitative, Nutritional, and Physiological Parameters of Foxtail Millet (Setaria italica L.) under Field Conditions. Nanomaterials 2019, 9, 1559. [Google Scholar] [CrossRef] [PubMed]
- Kolenčík, M.; Ernst, D.; Komár, M.; Urík, M.; Šebesta, M.; Ďurišová, Ľ.; Bujdoš, M.; Černý, I.; Chlpík, J.; Juriga, M.; et al. Effects of Foliar Application of ZnO Nanoparticles on Lentil Production, Stress Level and Nutritional Seed Quality under Field Conditions. Nanomaterials 2022, 12, 310. [Google Scholar] [CrossRef] [PubMed]
- Dimkpa, C.O.; Bindraban, P.S.; Fugice, J.; Agyin-Birikorang, S.; Singh, U.; Hellums, D. Composite Micronutrient Nanoparticles and Salts Decrease Drought Stress in Soybean. Agron. Sustain. Dev. 2017, 37, 5. [Google Scholar] [CrossRef]
- Dola, D.; Mannan, M. Foliar Application Effects of Zinc Oxide Nanoparticles on Growth, Yield and Drought Tolerance of Soybean. Bangladesh Agron. J. 2023, 25, 73–82. [Google Scholar] [CrossRef]
- Chauhan, G.; Joshi, O.P. Soybean (Glycine max)-the 21st century crop. Indian J. Agric. Sci. 2005, 75. [Google Scholar]
- Ali, W.; Ahmad, M.M.; Iftikhar, F.; Qureshi, M.; Ceyhan, A. Nutritive potentials of Soybean and its significance for humans health and animal production: A Review. Eurasian J. Food Sci. Technol. 2020, 4, 41–53. [Google Scholar]
- García-Gómez, C.; Obrador, A.; González, D.; Babín, M.; Fernández, M.D. Comparative Study of the Phytotoxicity of ZnO Nanoparticles and Zn Accumulation in Nine Crops Grown in a Calcareous Soil and an Acidic Soil. Sci. Total Environ. 2018, 644, 770–780. [Google Scholar] [CrossRef]
- García-López, J.; Zavala-García, F.; Olivares-Sáenz, E.; Lira-Saldívar, R.; Díaz Barriga-Castro, E.; Ruiz-Torres, N.; Ramos-Cortez, E.; Vázquez-Alvarado, R.; Niño-Medina, G. Zinc Oxide Nanoparticles Boosts Phenolic Compounds and Antioxidant Activity of Capsicum Annuum L. during Germination. Agronomy 2018, 8, 215. [Google Scholar] [CrossRef]
- Prograin, S. KORUS. Available online: https://www.ipkagro.sk/en/soja-ponuka-osiv/ (accessed on 7 June 2024).
- Džatko, M.; Sobocká, J.; Granec, M.; Bezák, P. Príručka pre používanie máp pôdnoekologických jednotiek. Inovovaná Príručka Pre Bonitáciu A Hodnot. Poľnohospodárskych Pôd Slovenska. Výskumný Ust. Pôdoznalectva A Ochr. Pôdy 2009. [Google Scholar]
- Meteoblue. Available online: https://www.meteoblue.com/sk/ (accessed on 3 April 2023).
- Banerjee, A.; Duflo, E. (Eds.) Handbook of Economic Field Experiments; Handbooks in Economics; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-444-63324-8. [Google Scholar]
- Jones, H.G.; Serraj, R.; Loveys, B.R.; Xiong, L.; Wheaton, A.; Price, A.H. Thermal Infrared Imaging of Crop Canopies for the Remote Diagnosis and Quantification of Plant Responses to Water Stress in the Field. Funct. Plant Biol. 2009, 36, 978. [Google Scholar] [CrossRef] [PubMed]
- STN standard 461011; Testing of Cereals, Legumes and Oil-Bearing Crops. Slovak Office of Standards, Metrology and Testing: Bratislava, Slovakia, 1988.
- STN standard 2300-7/94; Oilseeds. Soya Seed. Slovak Office of Standards, Metrology and Testing: Bratislava, Slovakia, 2002.
- Losak, T.; Hlusek, J.; Martinec, J.; Jandak, J.; Szostkova, M.; Filipcik, R.; Manasek, J.; Prokes, K.; Peterka, J.; Varga, L.; et al. Nitrogen Fertilization Does Not Affect Micronutrient Uptake in Grain Maize (Zea mays L.). Acta Agric. Scand. Sect. B-Soil Plant Sci. 2011, 61, 543–550. [Google Scholar] [CrossRef]
- Hong, J.; Wang, C.; Wagner, D.C.; Gardea-Torresdey, J.L.; He, F.; Rico, C.M. Foliar Application of Nanoparticles: Mechanisms of Absorption, Transfer, and Multiple Impacts. Environ. Sci. Nano 2021, 8, 1196–1210. [Google Scholar] [CrossRef]
- López-Moreno, M.L.; De La Rosa, G.; Hernández-Viezcas, J.Á.; Castillo-Michel, H.; Botez, C.E.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Evidence of the Differential Biotransformation and Genotoxicity of ZnO and CeO2 Nanoparticles on Soybean (Glycine max) Plants. Environ. Sci. Technol. 2010, 44, 7315–7320. [Google Scholar] [CrossRef]
- García-López, J.I.; Niño-Medina, G.; Olivares-Sáenz, E.; Lira-Saldivar, R.H.; Barriga-Castro, E.D.; Vázquez-Alvarado, R.; Rodríguez-Salinas, P.A.; Zavala-García, F. Foliar Application of Zinc Oxide Nanoparticles and Zinc Sulfate Boosts the Content of Bioactive Compounds in Habanero Peppers. Plants 2019, 8, 254. [Google Scholar] [CrossRef]
- Martínez Cuesta, N.; Carciochi, W.; Wyngaard, N.; Sainz Rozas, H.; Silva, S.; Salvagiotti, F.; Barbieri, P. Zinc Fertilization Strategies in Soybean: Plant Uptake, Yield, and Seed Concentration. J. Plant Nutr. 2023, 46, 1134–1144. [Google Scholar] [CrossRef]
- Sturikova, H.; Krystofova, O.; Huska, D.; Adam, V. Zinc, Zinc Nanoparticles and Plants. J. Hazard. Mater. 2018, 349, 101–110. [Google Scholar] [CrossRef]
- Pandey, N.; Gupta, B.; Pathak, G.C. Foliar Application of Zn at Flowering Stage Improves Plant’s Performance, Yield and Yield Attributes of Black Gram. Indian J. Exp. Biol. 2013, 51, 548–555. [Google Scholar]
- Pandey, N.; Pathak, G.C.; Sharma, C.P. Zinc Is Critically Required for Pollen Function and Fertilisation in Lentil. J. Trace Elem. Med. Biol. 2006, 20, 89–96. [Google Scholar] [CrossRef]
- Priester, J.H.; Ge, Y.; Mielke, R.E.; Horst, A.M.; Moritz, S.C.; Espinosa, K.; Gelb, J.; Walker, S.L.; Nisbet, R.M.; An, Y.-J.; et al. Soybean Susceptibility to Manufactured Nanomaterials with Evidence for Food Quality and Soil Fertility Interruption. Proc. Natl. Acad. Sci. USA 2012, 109, E2451–E2456. [Google Scholar] [CrossRef] [PubMed]
- Yusefi-Tanha, E.; Fallah, S.; Rostamnejadi, A.; Pokhrel, L.R. Responses of Soybean (Glycine max [L.] Merr.) to Zinc Oxide Nanoparticles: Understanding Changes in Root System Architecture, Zinc Tissue Partitioning and Soil Characteristics. Sci. Total Environ. 2022, 835, 155348. [Google Scholar] [CrossRef] [PubMed]
- Staniak, M.; Szpunar-Krok, E.; Kocira, A. Responses of Soybean to Selected Abiotic Stresses—Photoperiod, Temperature and Water. Agriculture 2023, 13, 146. [Google Scholar] [CrossRef]
- Phu, D.V.; Du, B.D.; Tuan, L.N.A.; Tam, H.V.; Hien, N.Q. Preparation and Foliar Application of Oligochitosan—Nanosilica on the Enhancement of Soybean Seed Yield. Int. J. Environ. Agric. Biotechnol. 2017, 2, 421–428. [Google Scholar] [CrossRef]
- Kolenčík, M.; Šebesta, M.; Ďurišová, Ľ.; Ďúranová, H.; Ernst, D.; Kšiňan, S.; Kósa, P.; Illa, R.; Baby, M.K.; Zapletalová, A.; et al. Complex Study of Foliar Application of Inorganic Nanofertilizers in Field Conditions: Impact on Crop Production and Environmental–Ecological Assessment. In Nanofertilizers for Sustainable Agroecosystems; Abd-Elsalam, K.A., Alghuthaymi, M.A., Eds.; Nanotechnology in the Life Sciences; Springer Nature: Cham, Switzerland, 2024; pp. 507–560. ISBN 978-3-031-41328-5. [Google Scholar]
- Sobean. Available online: https://www.fao.org/land-water/databases-and-software/crop-information/soybean/en/ (accessed on 6 March 2024).
- Shurson, G.C.; Kerr, B.J.; Hanson, A.R. Evaluating the Quality of Feed Fats and Oils and Their Effects on Pig Growth Performance. J. Anim. Sci. Biotechnol. 2015, 6, 10. [Google Scholar] [CrossRef]
- Rahman, A.; Cho, B.-K. Assessment of Seed Quality Using Non-Destructive Measurement Techniques: A Review. Seed Sci. Res. 2016, 26, 285–305. [Google Scholar] [CrossRef]
- Priester, J.H.; Moritz, S.C.; Espinosa, K.; Ge, Y.; Wang, Y.; Nisbet, R.M.; Schimel, J.P.; Susana Goggi, A.; Gardea-Torresdey, J.L.; Holden, P.A. Damage Assessment for Soybean Cultivated in Soil with Either CeO2 or ZnO Manufactured Nanomaterials. Sci. Total Environ. 2017, 579, 1756–1768. [Google Scholar] [CrossRef]
- Mandal, K.G.; Saha, K.P.; Ghosh, P.K.; Hati, K.M.; Bandyopadhyay, K.K. Bioenergy and Economic Analysis of Soybean-Based Crop Production Systems in Central India. Biomass Bioenergy 2002, 23, 337–345. [Google Scholar] [CrossRef]
- Cabrera-Orozco, A.; Jimenez-Martinez, C.; Davila-Ortiz, G. Soybean: Non-Nutritional Factors and Their Biological Functionality. In Soybean—Bio-Active Compounds; El-Shemy, H., Ed.; InTech: London, UK, 2013; ISBN 978-953-51-0977-8. [Google Scholar]
- Anthony, P.; Malzer, G.; Sparrow, S.; Zhang, M. Soybean Yield and Quality in Relation to Soil Properties. Agron. J. 2012, 104, 1443–1458. [Google Scholar] [CrossRef]
- Shute, T.; Macfie, S.M. Cadmium and Zinc Accumulation in Soybean: A Threat to Food Safety? Sci. Total Environ. 2006, 371, 63–73. [Google Scholar] [CrossRef]
- Raliya, R.; Nair, R.; Chavalmane, S.; Wang, W.-N.; Biswas, P. Mechanistic Evaluation of Translocation and Physiological Impact of Titanium Dioxide and Zinc Oxide Nanoparticles on the Tomato (Solanum lycopersicum L.) Plant. Metallomics 2015, 7, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-Y.; El Sheikha, A.F.; Hu, D.-M. The Positive Impacts of Microbial Phytase on Its Nutritional Applications. Trends Food Sci. Technol. 2019, 86, 553–562. [Google Scholar] [CrossRef]
- Baker, J.T.; Allen, L.H.; Boote, K.J.; Jones, P.; Jones, J.W. Response of Soybean to Air Temperature and Carbon Dioxide Concentration. Crop Sci. 1989, 29, 98–105. [Google Scholar] [CrossRef]
- Zanon, A.J.; Streck, N.A.; Grassini, P. Climate and Management Factors Influence Soybean Yield Potential in a Subtropical Environment. Agron. J. 2016, 108, 1447–1454. [Google Scholar] [CrossRef]
- Sedghi, M.; Sheikhnavaz Jahed, P.; Gholi-Tolouie, S. Zinc oxide nano particles alleviate drought stress effects on soybean antioxidant system during germination. Iran. J. Plant Physiol. 2021, 11, 3769–3778. [Google Scholar]
- Linh, T.M.; Mai, N.C.; Hoe, P.T.; Lien, L.Q.; Ban, N.K.; Hien, L.T.T.; Chau, N.H.; Van, N.T. Metal-Based Nanoparticles Enhance Drought Tolerance in Soybean. J. Nanomater. 2020, 2020, 4056563. [Google Scholar] [CrossRef]
- Tripathi, P.; Na, C.-I.; Kim, Y. Effect of Silicon Fertilizer Treatment on Nodule Formation and Yield in Soybean (Glycine max L.). Eur. J. Agron. 2021, 122, 126172. [Google Scholar] [CrossRef]
- Hong, F.; Yang, F.; Liu, C.; Gao, Q.; Wan, Z.; Gu, F.; Wu, C.; Ma, Z.; Zhou, J.; Yang, P. Influences of Nano-TiO2 on the Chloroplast Aging of Spinach Under Light. Biol. Trace Elem. Res. 2005, 104, 249–260. [Google Scholar] [CrossRef]
- Hong, F.; Zhou, J.; Liu, C.; Yang, F.; Wu, C.; Zheng, L.; Yang, P. Effect of Nano-TiO2 on Photochemical Reaction of Chloroplasts of Spinach. Biol. Trace Elem. Res. 2005, 105, 269–280. [Google Scholar] [CrossRef]
- Ma, H.; Wallis, L.K.; Diamond, S.; Li, S.; Canas-Carrell, J.; Parra, A. Impact of Solar UV Radiation on Toxicity of ZnO Nanoparticles through Photocatalytic Reactive Oxygen Species (ROS) Generation and Photo-Induced Dissolution. Environ. Pollut. 2014, 193, 165–172. [Google Scholar] [CrossRef]
- Yamashita, H.; Mori, K.; Kuwahara, Y.; Kamegawa, T.; Wen, M.; Verma, P.; Che, M. Single-Site and Nano-Confined Photocatalysts Designed in Porous Materials for Environmental Uses and Solar Fuels. Chem. Soc. Rev. 2018, 47, 8072–8096. [Google Scholar] [CrossRef] [PubMed]
Parameter | Control Variant (No NF Application) | ZnO-NPs (Foliar Applied Variant) | ZnSi-bio (Foliar Applied Variant) |
---|---|---|---|
Quantitative parameters | |||
Number of pods per plant | 17.32 ± 2.47 a | 17.08 ± 3.20 a | 17.93 ± 5.26 a |
Number of seeds per plant | 38.9 ± 6.06 a | 39.8 ± 7.38 a | 41.52 ± 12.56 a |
Weight of thousand-seeds (g) | 189.75 ± 5.73 a | 175.83 ± 1.83 b | 187.5 ± 7.05 ab |
Bulk density of seeds (kg·m−3) | 693.06 ± 2.22 a | 701.73 ± 0.99 b | 678.86 ± 2.88 c |
Yield (t·ha−1) | 3.80 ± 0.58 a | 3.57 ± 0.68 a | 4.07 ± 1.24 a |
Parameter | Control Variant (No NF Application) | ZnO-NPs (Foliar Applied Variant) | ZnSi-bio (Foliar Applied Variant) |
---|---|---|---|
Energy parameters of soybean | |||
Gross energy (MJ·kg−1) | 21.269 ± 0.010 a | 21.382 ± 0.002 b | 21.323 ± 0.010 c |
Digestible Energy (MJ·kg−1) | 17.368 ± 0.015 a | 17.552 ± 0.072 b | 17.500 ± 0.080 b |
Metabolizable energy (MJ·kg−1) | 16.674 ± 0.015 a | 16.907 ± 0.030 b | 16.820 ± 0.020 c |
Net energy (MJ·kg−1) | 11.944 ± 0.004 a | 12.145 ± 0.001 b | 12.030 ± 0.002 c |
Parameter | Control Variant (No Application) | ZnO-NPs (Foliar Applied Variant) | ZnSi-bio (Foliar Applied Variant) |
---|---|---|---|
Qualitative-nutritional parameters of soybean | |||
Ether extract (%) | 19.3 ± 0.15 a | 19.7 ± 0.20 b | 19.6 ± 0.10 b |
Protein solubility in KOH (%) | 92.8 ± 0.20 a | 92.6 ± 0.10 a | 93.6 ± 0.30 b |
Phosphorus (mg·kg−1) | 5899.0 ± 31.8 a | 5906.3 ± 30.4 a | 5764.0 ± 17.4 b |
Zinc (mg·kg−1) | 53.93 ± 0.40 a | 52.57 ± 0.15 b | 55.77 ± 0.25 c |
Parameter | Control Variant (No Application) | ZnO-NPs (Foliar Applied Variant) | ZnSi-Bio (Foliar Applied Variant) |
---|---|---|---|
Physiology components | |||
Stomatal Conductance Index (Ig) | 1.59 ± 0.26 a | 2.60 ± 0.63 b | 2.63 ± 0.87 b |
Crop Water Stress Index (CWSI) | 0.39 ± 0.04 a | 0.29 ± 0.05 b | 0.29 ± 0.06 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ernst, D.; Kolenčík, M.; Kupec, M.; Šebesta, M.; Qian, Y.; Straka, V.; Černý, I.; Soulange, J.G.; Ducsay, L. Effects of Zinc Oxide and Zinc–Silica-Based Nanofertilizers with Yeasts on Selected Components of Soybean in the Central European Agronomic Region: A Short-Term Study. Agronomy 2024, 14, 2138. https://doi.org/10.3390/agronomy14092138
Ernst D, Kolenčík M, Kupec M, Šebesta M, Qian Y, Straka V, Černý I, Soulange JG, Ducsay L. Effects of Zinc Oxide and Zinc–Silica-Based Nanofertilizers with Yeasts on Selected Components of Soybean in the Central European Agronomic Region: A Short-Term Study. Agronomy. 2024; 14(9):2138. https://doi.org/10.3390/agronomy14092138
Chicago/Turabian StyleErnst, Dávid, Marek Kolenčík, Michal Kupec, Martin Šebesta, Yu Qian, Viktor Straka, Ivan Černý, Joyce Govinden Soulange, and Ladislav Ducsay. 2024. "Effects of Zinc Oxide and Zinc–Silica-Based Nanofertilizers with Yeasts on Selected Components of Soybean in the Central European Agronomic Region: A Short-Term Study" Agronomy 14, no. 9: 2138. https://doi.org/10.3390/agronomy14092138
APA StyleErnst, D., Kolenčík, M., Kupec, M., Šebesta, M., Qian, Y., Straka, V., Černý, I., Soulange, J. G., & Ducsay, L. (2024). Effects of Zinc Oxide and Zinc–Silica-Based Nanofertilizers with Yeasts on Selected Components of Soybean in the Central European Agronomic Region: A Short-Term Study. Agronomy, 14(9), 2138. https://doi.org/10.3390/agronomy14092138