Sown Diversity Effects on the C and N Cycle and Interactions with Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
Rationale
2.2. Irrigation and Fertilization
2.3. Plant Yield Determination and Soil Sampling
2.4. Isotopic Composition of C and N
2.4.1. Plant and Soil Sampling
2.4.2. Measurement of Greenhouse Gas C and N Concentration and C Isotope Signatures
2.4.3. Inputs Description
2.4.4. Isotopic Signals Calculation
2.4.5. Calculation of N Balances and N Isotope Balances
2.5. Data Analysis
3. Results
3.1. Carbon Dynamics
3.1.1. δ13C in Plant Material, Soil Organic Matter, and Respired CO2 (‰)
3.1.2. C Content (mg/mg)
3.2. Nitrogen Dynamics
3.2.1. δ15N (‰)
3.2.2. Estimation of the N Source
3.2.3. N Content (mg/mg)
3.3. Carbon/Nitrogen (C/N)
3.4. Dry Matter Yield
4. Discussion
4.1. Carbon Dynamics
4.2. Nitrogen Dynamics
4.3. Carbon and Nitrogen Balance (C/N)
4.4. Dry Matter Yield (DMY)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sanderson, M.A.; Skinner, R.H.; Barker, D.J.; Edwards, G.R.; Tracy, B.F.; Wedin, D.A. Plant Species Diversity and Management of Temperate Forage and Grazing Land Ecosystems. Crop Sci. 2004, 44, 1132–1144. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Martins, C.S.C.; Delgado-Baquerizo, M.; Jayaramaiah, R.H.; Tao, D.; Wang, J.T.; Sáez-Sandino, T.; Liu, H.; Maestre, F.T.; Reich, P.B.; Singh, B.K. Aboveground and Belowground Biodiversity Have Complementary Effects on Ecosystem Functions Across Global Grasslands. 22 August 2024. Available online: https://digital.csic.es/handle/10261/366521 (accessed on 21 November 2024).
- Maughan, B.; Provenza, F.D.; Tansawat, R.; Maughan, C.; Martini, S.; Ward, R.; Clemensen, A.; Song, X.; Cornforth, D.; Villalba, J.J. Importance of grass-legume choices on cattle grazing behavior, performance, and meat characteristics. J. Anim. Sci. 2014, 92, 2309–2324. [Google Scholar] [CrossRef] [PubMed]
- Provenza. (PDF) Value of Plant Diversity for Diet Mixing and Sequencing in Herbivores. ResearchGate. 22 October 2024. Available online: https://www.researchgate.net/publication/305199612_Value_of_Plant_Diversity_for_Diet_Mixing_and_Sequencing_in_Herbivores (accessed on 21 November 2024).
- Franzluebbers, A.; Martin, G. Farming with forages can reconnect crop and livestock operations to enhance circularity and foster ecosystem services. Grass Forage Sci. 2023, 31, 87. [Google Scholar] [CrossRef]
- Jhariya, M.K.; Banerjee, A.; Meena, R.S.; Kumar, S.; Raj, A. (Eds.) Sustainable Intensification for Agroecosystem Services and Management; Springer: Singapore, 2021; Available online: https://link.springer.com/10.1007/978-981-16-3207-5 (accessed on 21 November 2024).
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland-livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef]
- Taube, F.; Gierus, M.; Hermann, A.; Loges, R.; Schönbach, P. Grassland and globalization—Challenges for north-west European grass and forage research. Grass Forage Sci. 2013, 69, 2–16. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/gfs.12043 (accessed on 21 November 2024). [CrossRef]
- Kirwan, L.; Lüscher, A.; Sebastià, M.T.; Finn, J.A.; Collins, R.P.; Porqueddu, C.; Helgadottir, A.; Baadshaug, O.H.; Brophy, C.; Coran, C.; et al. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J. Ecol. 2007, 95, 530–539. [Google Scholar] [CrossRef]
- Ribas, A.; Llurba, R.; Gouriveau, F.; Altimir, N.; Connolly, J.; Sebastià, M.T. Plant identity and evenness affect yield and trace gas exchanges in forage mixtures. Plant Soil 2015, 391, 93–108. [Google Scholar] [CrossRef]
- Mahmud, K.; Panday, D.; Mergoum, A.; Missaoui, A. Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem. Sustainability 2021, 13, 2400. [Google Scholar] [CrossRef]
- Canfield, D.E.; Glazer, A.N.; Falkowski, P.G. The evolution and future of earth’s nitrogen cycle. Science 2010, 330, 192–196. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef]
- Suter, M.; Connolly, J.; Finn, J.A.; Loges, R.; Kirwan, L.; Sebastià, M.; Lüscher, A. Nitrogen yield advantage from grass-legume mixtures is robust over a wide range of legume proportions and environmental conditions. Glob. Change Biol. 2015, 21, 2424–2438. [Google Scholar] [CrossRef]
- Neher, D.A. Soil community composition and ecosystem processes: Comparing agricultural ecosystems with natural ecosystems. Agrofor. Syst. 1999, 45, 159–185. [Google Scholar] [CrossRef]
- Ashworth, A.J.; Toler, H.D.; Allen, F.L.; Augé, R.M. Correction: Global meta-analysis reveals agro-grassland productivity varies based on species diversity over time. PLoS ONE 2020, 15, e0233402. [Google Scholar] [CrossRef] [PubMed]
- Malhi, S.S.; Wang, Z.H.; Schnitzer, M.; Monreal, C.M.; Harapiak, J.T. Nitrogen Fertilization Effects on Quality of Organic Matter in a Grassland Soil. Nutr. Cycl. Agroecosyst. 2005, 73, 191–199. [Google Scholar] [CrossRef]
- Ribeiro, P.C.; Menendez, E.; da Silva, D.L.; Bonieck, D.; Ramírez-Bahena, M.H.; Resende-Stoianoff, M.A.; Peix, A.; Velázquez, E.; Mateos, P.F.; Scotti, M.R. Invasion of the Brazilian campo rupestre by the exotic grass Melinis minutiflora is driven by the high soil N availability and changes in the N cycle–ScienceDirect. Sci. Total Environ. 2017, 577, 202–211. [Google Scholar] [CrossRef]
- Foster, A.; Vera, C.L.; Malhi, S.S.; Clarke, F.R. Forage yield of simple and complex grass–legume mixtures under two management strategies. Can. J. Plant Sci. 2014, 94, 41–50. [Google Scholar] [CrossRef]
- Rusdy, M.R. Effect of Phosphate Fertilization on Biological Compatibility of Chlorisgayana and Centrosemapubescens Mixture. Int. J. Sci. Res. 2016, 5, 208–211. [Google Scholar]
- Jørgensen, M.; Bakken, A.K.; Østrem, L.; Brophy, C. The effects of functional trait diversity on productivity of grass-legume swards across multiple sites and two levels of nitrogen fertiliser. Eur. J. Agron. 2023, 151, 126993. [Google Scholar] [CrossRef]
- Gou, X.; Reich, P.B.; Qiu, L.; Shao, M.; Wei, G.; Wang, J.; Wei, X. Leguminous plants significantly increase soil nitrogen cycling across global climates and ecosystem types. Glob. Change Biol. 2023, 29, 4028–4043. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Reich, P.B.; Hobbie, S.E. Legumes regulate grassland soil N cycling and its response to variation in species diversity and N supply but not CO2. Glob. Change Biol. 2019, 25, 2396–2409. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, U.A.; Heim, I.; Lüscher, A.; Nösberger, J. The nitrogen-sink is involved in the regulation of nitrogenase activity in white clover after defoliation–Hartwig–1994–Physiologia Plantarum–Wiley Online Library. Physiol. Plant. 1994, 92, 375–382. [Google Scholar] [CrossRef]
- Meza, K.; Vanek, S.J.; Sueldo, Y.; Olivera, E.; Ccanto, R.; Scurrah, M.; Fonte, S.J. Grass–Legume Mixtures Show Potential to Increase Above- and Belowground Biomass Production for Andean Forage-Based Fallows. Agronomy 2022, 12, 142. [Google Scholar] [CrossRef]
- Scherer-Lorenzen, M.; Gessner, M.O.; Beisner, B.E.; Messier, C.; Paquette, A.; Petermann, J.S.; Soininen, J.; Nock, C.A. Pathways for cross-boundary effects of biodiversity on ecosystem functioning. Trends Ecol. Evol. 2022, 37, 454–467. [Google Scholar] [CrossRef] [PubMed]
- Spehn, E.M.; Joshi, J.; Schmid, B.; Alphei, J.; Körner, C. Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 2000, 224, 217–230. [Google Scholar] [CrossRef]
- Houlton, B.Z.; Bai, E. Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl. Acad. Sci. USA 2009, 106, 21713–21716. [Google Scholar] [CrossRef]
- Yang, Y.; Siegwolf, R.T.; Körner, C. Frontiers|Species Specific and Environment Induced Variation of δ13C and δ15N in Alpine Plants. Front. Plant Sci. 2015, 6, 423. Available online: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2015.00423/full (accessed on 22 November 2024). [CrossRef]
- Kahmen, A.; Wanek, W.; Buchmann, N. Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient–PubMed. Oecologia 2008, 156, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Aljazairi, S.; Arias, C.; Nogués, S. Carbon and nitrogen allocation and partitioning in traditional and modern wheat genotypes under pre-industrial and future CO2 conditions. Plant Biol. 2015, 17, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Handley, L.; Raven, J. The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ. 1992, 15, 965–985. [Google Scholar] [CrossRef]
- Högberg, P. Tansley Review No. 95 15 N natural abundance in soil-plant systems. N. Phytol. 1997, 137, 179–203. [Google Scholar] [CrossRef] [PubMed]
- Watzka, M.; Buchgraber, K.; Wanek, W. Natural 15N abundance of plants and soils under different management practices in a montane grassland–ScienceDirect. Soil Biol. Biochem. 2006, 38, 1564–1576. [Google Scholar] [CrossRef]
- Hobbie, E.A.; Högberg, P. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. N. Phytol. 2012, 196, 367–382. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Guntenspergen, G.R.; Morris, J.T. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Glob. Change Biol. 2009, 15, 1982–1989. [Google Scholar] [CrossRef]
- Lüscher, A.; Finn, J.A.; Connolly, J.; Sebastià, M.T.; Collins, R.; Fothergill, M.; Porqueddu, C.; Brophy, C.; Huguenin-Elie, O.; Kirwan, L.; et al. Benefits of sward diversity for agricultural grasslands. Biodiversity 2008, 9, 29–32. [Google Scholar] [CrossRef]
- Carlsson, G.; Huss-Danell, K. Nitrogen fixation in perennial forage legumes in the field. Plant Soil 2003, 253, 353–372. [Google Scholar] [CrossRef]
- Nyfeler, D.; Huguenin-Elie, O.; Suter, M.; Frossard, E.; Lüscher, A. Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric. Ecosyst. Environ. 2011, 140, 155–163. [Google Scholar] [CrossRef]
- Nyfeler, D.; Huguenin-Elie, O.; Suter, M.; Frossard, E.; Connolly, J.; Lüscher, A. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J. Appl. Ecol. 2009, 46, 683–691. [Google Scholar] [CrossRef]
- Chalk, P.M.; Inácio, C.T.; Chen, D. An overview of contemporary advances in the usage of 15N natural abundance (δ15N) as a tracer of agro-ecosystem N cycle processes that impact the environment. Agric. Ecosyst. Environ. 2019, 283, 106570. [Google Scholar] [CrossRef]
- Papadopoulos, Y.A.; McElroy, M.S.; Fillmore, S.A.E.; McRae, K.B.; Duyinsveld, J.L.; Fredeen, A.H. Sward complexity and grass species composition affect the performance of grass-white clover pasture mixtures. Can. J. Plant Sci. 2012, 92, 1199–1205. [Google Scholar] [CrossRef]
- Picasso, V.D.; Brummer, E.C.; Liebman, M.; Dixon, P.M.; Wilsey, B.J. Diverse perennial crop mixtures sustain higher productivity over time based on ecological complementarity. Renew. Agric. Food Syst. 2011, 26, 317–327. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Sardans, J.; Musavi, T.; Migliavacca, M.; Iturrate-Garcia, M.; Scholes, R.J.; Peñuelas, J.; Janssens, I.A. The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance. Glob. Change Biol. 2020, 26, 7067–7078. [Google Scholar] [CrossRef]
- Mellado-Vázquez, P.G.; Lange, M.; Bachmann, D.; Gockele, A.; Karlowsky, S.; Milcu, A.; Piel, C.; Roscher, C.; Roy, J.; Gleixner, G. Plant diversity generates enhanced soil microbial access to recently photosynthesized carbon in the rhizosphere. Soil Biol. Biochem. 2016, 94, 122–132. [Google Scholar] [CrossRef]
- Kimak, A.; Kern, Z.; Leuenberger, M.C. Qualitative Distinction of Autotrophic and Heterotrophic Processes at the Leaf Level by Means of Triple Stable Isotope (C–O–H) Patterns. Front. Plant Sci. 2015, 6, 1008. Available online: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2015.01008/full (accessed on 21 November 2024). [CrossRef] [PubMed]
- Keeler, A.M. Tritrophic Mutualisms in a Changing Climate. UC Riverside. 2022. Available online: https://escholarship.org/uc/item/2r01m840 (accessed on 21 November 2024).
- Vallis, I.; Henzell, E.; Evans, T. Uptake of soil nitrogen by legumes in mixed swards. Aust. J. Agric. Res. 1977, 28, 413–425. [Google Scholar] [CrossRef]
- Adkins, J.S. Population-Level Differences in Pinus monophylla Whole-Plant Seedling Strategies Under Varying Precipitation Pulses. Master’s Thesis, University of Nevada, Reno, NV, USA, 2023. Available online: https://scholarwolf.unr.edu/server/api/core/bitstreams/957db2ca-e335-4bb3-82bb-e704f2507842/content (accessed on 21 November 2024).
- Kirwan, L.; Connolly, J.; Brophy, C.; Baadshaug, O.; Belanger, G.; Black, A.; Carnus, T.; Collins, R.; Čop, J.; Delgado, I.; et al. The Agrodiversity Experiment: Three years of data from a multisite study in intensively managed grasslands. Ecology 2014, 95, 2680. [Google Scholar] [CrossRef]
- Llovet, A.; Llurba, R.; Aljazairi, S.; Mattana, S.; Plaixats, J.; Nogués, S.; Sebastià, M.; Ribas, A. Nitrogen facilitation was maintained in sown Mediterranean forage mixtures despite drought stress conditions with concurrent general benefits upon plant aboveground water status and yield. Agric. Ecosyst. Environ. 2024, 375, 109187. [Google Scholar] [CrossRef]
- Ayanz, A.S.M. Leguminosas de interés para la implantación de praderas. In Ecología y Pautas Básicas de Utilización; Universidad Politécnica de Madrid: Madrid, Spain, 2007. [Google Scholar]
- Ayanz, A.S.M. Gramíneas de interés para la implantación de praderas y la revegetación de zonas degradadas. In Ecología y Pautas Básicas de Utilización; Universidad Politécnica de Madrid: Madrid, Spain, 2008. [Google Scholar]
- Oliva, C.A.R. Selectividad bajo Pastoreo Ovino en una Pradera Polifítica, Incluyendo Plantago lanceolata L. y Cichorium intybus L. en Inicio y Final de la estación Primaveral en Valdivia. Doctoral Dissertation, Universidad Austral de Chile, Valdivia, Chile, 2016. [Google Scholar]
- Nogués, S.; Tcherkez, G.; Cornic, G.; Ghashghaie, J. Respiratory Carbon Metabolism following Illumination in Intact French Bean Leaves Using 13C/12C Isotope Labeling. Plant Physiol. 2004, 136, 3245–3254. [Google Scholar] [CrossRef]
- Mohn, J.; Biasi, C.; Bodé, S.; Boeckx, P.; Brewer, P.J.; Eggleston, S.; Geilmann, H.; Guillevic, M.; Kaiser, J.; Kantnerová, K.; et al. Isotopically characterised N2O reference materials for use as community standards. Rapid Commun. Mass Spectrom. 2022, 36, e9296. [Google Scholar] [CrossRef]
- McAuliffe, C.; Chamblee, D.S.; Uribe-Arango, H.; Woodhouse, W.W., Jr. Influence of Inorganic Nitrogen on Nitrogen Fixation by Legumes as Revealed by N151. Agron. J. 1958, 50, 334–337. [Google Scholar] [CrossRef]
- Sheehan, C.; Kirwan, L.; Connolly, J.; Bolger, T. The effects of earthworm functional group diversity on nitrogen dynamics in soils. Soil Biol. Biochem. 2006, 38, 2629–2636. [Google Scholar] [CrossRef]
- Dawson, T.E.; Mambelli, S.; Plamboeck, A.H.; Templer, P.H.; Tu, K.P. Stable Isotopes in Plant Ecology. Annu. Rev. Ecol. Syst. 2002, 33, 507–559. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Fischer, C.; Leimer, S.; Roscher, C.; Ravenek, J.; de Kroon, H.; Kreutziger, Y.; Baade, J.; Beßler, H.; Eisenhauer, N.; Weigelt, A.; et al. Plant species richness and functional groups have different effects on soil water content in a decade-long grassland experiment. J. Ecol. 2018, 107, 127–141. [Google Scholar] [CrossRef]
- Bremer, C.; Braker, G.; Matthies, D.; Reuter, A.; Engels, C.; Conrad, R. Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil. Appl. Environ. Microbiol. 2007, 73, 6876–6884. [Google Scholar] [CrossRef]
- Lozano, Y.; Aguilar-Trigueros, C.; Rilling, M. Root Trait Responses to Drought Depend on Plant Functional Group|bioRxiv. Functional Ecology. 2020. Available online: https://www.biorxiv.org/content/10.1101/801951v1 (accessed on 21 November 2024).
- Marshall, E.; Randhir, T.O. Effect of climate change on watershed system: A regional analysis. Clim. Change 2008, 89, 263–280. [Google Scholar] [CrossRef]
- Marshall, J.D.; Brooks, J.R.; Lajtha, K. Sources of Variation in the Stable Isotopic Composition of Plants. 2017. Available online: https://andrewsforest.oregonstate.edu/publications/4334 (accessed on 21 November 2024).
- Goldman, R. Spatial Variation of Stable Carbon, and Nitrogen Isotope Ratios and C:N of Perennial Plant Species in the Steppe Grassland of Northern Mongolia. Master’s Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2010. Available online: https://repository.upenn.edu/handle/20.500.14332/40157 (accessed on 21 November 2024).
- Aranjuelo, I.; Irigoyen, J.J.; Perez, P.; Martinez-Carrasco, R.; Sanchez-Díaz, M. The use of temperature gradient tunnels for studying the combined effect of CO2, temperature and water availability in N2 fixing alfalfa plants. Ann. Appl. Biol. 2005, 146, 51–60. [Google Scholar] [CrossRef]
- O’Leary, M.H. Carbon isotope fractionation in plants. Phytochemistry 1981, 20, 553–567. [Google Scholar] [CrossRef]
- Aljazairi, S.; Arias, C.; Sánchez, E.; Lino, G.; Nogués, S. Effects of pre-industrial, current and future [CO2] in traditional and modern wheat genotypes. J. Plant Physiol. 2014, 171, 1654–1663. [Google Scholar] [CrossRef] [PubMed]
- Aljazairi, S.; Manikan, B.; Serrat, X.; Nogués, S. C and N allocation on wheat under the effects of depleted, current and elevated [CO2] are modulated by water availability. Plant Stress 2024, 14, 100663. [Google Scholar] [CrossRef]
- Aljazairi, S.; Nogués, S. The effects of depleted, current and elevated growth [CO2] in wheat are modulated by water availability. Environ. Exp. Bot. 2015, 112, 55–66. [Google Scholar] [CrossRef]
- Gouveia, C.S.; Ganança, J.F.; Slaski, J.; Lebot, V.; de Carvalho, M.Â.P. Variation of carbon and isotope natural abundances (δ15N and δ13C) of whole-plant sweet potato (Ipomoea batatas L.) subjected to prolonged water stress. J. Plant Physiol. 2019, 243, 153052. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, T.; Ohtani, T. Variations of Natural 13C Abundances in Leguminous Plants. Plant Cell Physiol. 1983, 24, 971–977. [Google Scholar]
- Saranga, Y.; Flash, I.; Paterson, A.H.; Yakir, D. Carbon isotope ratio in cotton varies with growth stage and plant organ. Plant Sci. 1999, 142, 47–56. [Google Scholar] [CrossRef]
- Chevillat, V.S.; Siegwolf, R.T.; Pepin, S.; Körner, C. Tissue-specific variation of δ13C in mature canopy trees in a temperate forest in central Europe. Basic Appl. Ecol. 2005, 6, 519–534. [Google Scholar] [CrossRef]
- Aranjuelo, I.; Irigoyen, J.J.; Sánchez-Díaz, M.; Nogués, S. Carbon partitioning in N2 fixing Medicago sativa plants exposed to different CO2 and temperature conditions. Funct. Plant Biol. 2008, 35, 306–317. [Google Scholar] [CrossRef]
- Prescott, C.E.; Grayston, S.J.; Helmisaari, H.-S.; Kaštovská, E.; Körner, C.; Lambers, H.; Meier, I.C.; Millard, P.; Ostonen, I. Surplus Carbon Drives Allocation and Plant-Soil Interactions. Trends Ecol. Evol. 2020, 35, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Lin, Y.-C.J.; Chen, Y.-L.; Zhou, C.; Li, S.; De Ridder, N.; Oliveira, D.M.; Zhang, L.; Zhang, B.; Wang, J.P.; et al. Woody plant cell walls: Fundamentals and utilization. Mol. Plant 2023, 17, 112–140. [Google Scholar] [CrossRef]
- Finn, J.A.; Kirwan, L.; Connolly, J.; Sebastià, M.T.; Helgadottir, A.; Baadshaug, O.H.; Bélanger, G.; Black, A.; Brophy, C.; Collins, R.P.; et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. J. Appl. Ecol. 2013, 50, 365–375. [Google Scholar] [CrossRef]
- Tilman, D.; Knops, J.; Wedin, D.; Reich, P.; Ritchie, M.; Siemann, E. The Influence of Functional Diversity and Composition on Ecosystem Processes. Science 1997, 277, 1300–1302. [Google Scholar] [CrossRef]
- Viancelli, A.; Michelon, W. Climate Change and Nitrogen Dynamics: Challenges and Strategies for a Sustainable Future. Nitrogen 2024, 5, 688–701. [Google Scholar] [CrossRef]
- Watzka, M.; Hatch, D.J.; Chadwick, D.R.; Jarvis, S.C.; Roker, J.A. (Eds.) Natural 15N abundance as an indicator of the effect of management intensity on nitrogen cycling in montane grasslands. In Controlling Nitrogen Flows and Losses; Brill: Leiden, The Netherlands, 2004; Available online: https://brill.com/edcollbook/title/68478 (accessed on 20 November 2024).
- Asadyar, L.; Xu, C.-Y.; Wallace, H.M.; Xu, Z.; Reverchon, F.; Bai, S.H. Soil-plant nitrogen isotope composition and nitrogen cycling after biochar applications. Environ. Sci. Pollut. Res. 2020, 28, 6684–6690. [Google Scholar] [CrossRef]
- Wanek, W.; Arndt, S.K. Difference in delta(15)N signatures between nodulated roots and shoots of soybean is indicative of the contribution of symbiotic N(2) fixation to plant N. J. Exp. Bot. 2002, 53, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Soldatova, E.; Krasilnikov, S.; Kuzyakov, Y. Soil organic matter turnover: Global implications from δ13C and δ15N signatures. Sci. Total Environ. 2023, 912, 169423. [Google Scholar] [CrossRef]
- Aranjuelo, I.; Cabrera-Bosquet, L.; Mottaleb, S.A.; Araus, J.L.; Nogués, S. 13C/12C isotope labeling to study carbon partitioning and dark respiration in cereals subjected to water stress. Rapid Commun. Mass Spectrom. 2009, 23, 2819–2828. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.; Mi, W.; Liu, W. Legume-grass mixtures improve biological nitrogen fixation and nitrogen transfer by promoting nodulation and altering root conformation in different ecological regions of the Qinghai-Tibet Plateau. Front. Plant Sci. 2024, 15, 1375166. Available online: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1375166/full (accessed on 22 November 2024). [CrossRef]
- Zanetti, S.; Hartwig, U.A.; Van Kessel, C.; Lüscher, A.; Hebeisen, T.; Frehner, M.; Fischer, B.U.; Hendrey, G.R.; Blum, H.; Nösberger, J. Does nitrogen nutrition restrict the CO2 response of fertile grassland lacking legumes? Oecologia 1997, 112, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Temperton, V.M.; Mwangi, P.N.; Scherer-Lorenzen, M.; Schmid, B.; Buchmann, N. Positive interactions between nitrogen-fixing legumes and four different neighbouring species in a biodiversity experiment. Oecologia 2006, 151, 190–205. [Google Scholar] [CrossRef] [PubMed]
- Fustec, J.; Lesuffleur, F.; Mahieu, S.; Cliquet, J.-B. Nitrogen rhizodeposition of legumes. A review. Agron. Sustain. Dev. 2010, 30, 57–66. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Steele, K.W. Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil 1992, 141, 137–153. [Google Scholar] [CrossRef]
- Legesse, G.; Small, J.A.; Scott, S.L.; Kebreab, E.; Crow, G.H.; Block, H.C.; Robins, C.D.; Khakbazan, M.; Mccaughey, W.P. Bioperformance evaluation of various summer pasture and winter feeding strategies for cow-calf production. Can. J. Anim. Sci. 2012, 92, 89–102. [Google Scholar] [CrossRef]
- Bourke, P.M.; Evers, J.B.; Bijma, P.; van Apeldoorn, D.F.; Smulders, M.J.; Kuyper, T.W.; Mommer, L.; Bonnema, G. Breeding Beyond Monoculture: Putting the “Intercrop” Into Crops. Front. Plant Sci. 2021, 12, 734167. Available online: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2021.734167/full (accessed on 21 November 2024). [CrossRef] [PubMed]
- Lüscher, A.; Fuhrer, J.; Newton, P. Global Atmospheric Change and Its Effect on Managed Grassland Systems-Web of Science Core Collection. Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:000233301400019 (accessed on 22 November 2024).
- Bakker, L.M.; Barry, K.E.; Mommer, L.; van Ruijven, J. Focusing on individual plants to understand community scale biodiversity effects: The case of root distribution in grasslands. Oikos 2021, 130, 1954–1966. [Google Scholar] [CrossRef]
- Zeng, W.; Xiang, W.; Zhou, B.; Ouyang, S.; Zeng, Y.; Chen, L.; Freschet, G.T.; Valverde-Barrantes, O.J.; Milcu, A. Positive tree diversity effect on fine root biomass: Via density dependence rather than spatial root partitioning. Oikos 2021, 130, 1–14. [Google Scholar] [CrossRef]
- Alonso-Crespo, I.M.; Weidlich, E.W.A.; Temperton, V.M.; Delory, B.M. Assembly history modulates vertical root distribution in a grassland experiment. Oikos 2023, 1, 08886. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Sabais, A.C.; Scheu, S. Collembola species composition and diversity effects on ecosystem functioning vary with plant functional group identity. Soil Biol. Biochem. 2011, 43, 1697–1704. [Google Scholar] [CrossRef]
- Read, Q.D.; Henning, J.A.; Classen, A.T.; Sanders, N.J. Aboveground resilience to species loss but belowground resistance to nitrogen addition in a montane plant community. J. Plant Ecol. 2018, 11, 351–363. [Google Scholar] [CrossRef]
- Evans, R.D. Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 2001, 6, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Craine, J.M.; Elmore, A.J.; Aidar, M.P.M.; Bustamante, M.; Dawson, T.E.; Hobbie, E.A.; Kahmen, A.; Mack, M.C.; McLauchlan, K.K.; Michelsen, A.; et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. N. Phytol. 2009, 183, 980–992. [Google Scholar] [CrossRef] [PubMed]
- Hobbie, E.A.; Tingey, D.T.; Rygiewicz, P.T.; Johnson, M.G.; Olszyk, D.M. Contributions of current year photosynthate to fine roots estimated using a 13C-depleted CO2 source. Plant Soil 2002, 247, 233–242. [Google Scholar] [CrossRef]
- McKee, K.L.; Feller, I.C.; Popp, M.; Wanek, W. Mangrove isotopic (δ15N and δ13C) fractionation across a nitrogen vs. phosphorus limitation gradient. Ecology 2002, 83, 1065–1075. [Google Scholar] [CrossRef]
- Del Papa, M.F.; Delgado, M.J.; Irisarri, P.; Lattanzi, F.A.; Monza, J. Editorial: Maximizing nitrogen fixation in legumes as a tool for sustainable agriculture intensification, volume II. Front. Agron. 2024, 6, 1387188. Available online: https://www.frontiersin.org/journals/agronomy/articles/10.3389/fagro.2024.1387188/full (accessed on 21 November 2024). [CrossRef]
- Reinprecht, Y.; Schram, L.; Marsolais, F.; Smith, T.H.; Hill, B.; Pauls, K.P. Effects of Nitrogen Application on Nitrogen Fixation in Common Bean Production. Front. Plant Sci. 2020, 11, 1172. [Google Scholar] [CrossRef]
- Nesheim, L.; Oyen, J. Nitrogen fixation by red clover (Trifolium pratense L.) grown in mixtures with timothy (Phleum pratense L.) at different levels of nitrogen fertilization. Acta Agric. Scand. B-Plant Soil Sci. 1994, 44, 28–34. [Google Scholar]
- Høgh-Jensen, H.; Schjoerring, J. Interactions between white clover and ryegrass under contrasting nitrogen availability: N2 fixation, N fertilizer recovery, N transfer and water use efficiency. Plant Soil 1997, 197, 187–199. [Google Scholar] [CrossRef]
- Høgh-Jensen, H.; Schjoerring, J.K. Measurement of biological dinitrogen fixation in grassland: Comparison of the enriched 15N dilution and the natural 15N abundance methods at different nitrogen application rates and defoliation frequencies. Plant Soil 1994, 166, 153–163. [Google Scholar] [CrossRef]
- Rahman, M.dM.; Alam, M.S.; Islam, M.dM.; Kamal, M.Z.U.; Rahman, G.K.M.M.; Haque, M.M. Potential of legume-based cropping systems for climate change adaptation and mitigation. In Advances in Legumes for Sustainable Intensification; Elsevier: Amsterdam, The Netherlands, 2022; pp. 381–402. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780323857970000306 (accessed on 26 December 2024).
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef]
- Smith, P.; Haberl, H.; Popp, A.; Erb, K.H.; Lauk, C.; Harper, R.; Tubiello, F.N.; de Siqueira Pinto, A.; Jafari, M.; Sohi, S.; et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 2013, 19, 2285–2302. [Google Scholar] [CrossRef] [PubMed]
- Isbell, F.; Adler, P.R.; Eisenhauer, N.; Fornara, D.; Kimmel, K.; Kremen, C.; Letourneau, D.K.; Liebman, M.; Polley, H.W.; Quijas, S.; et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 2017, 105, 871–879. [Google Scholar] [CrossRef]
- Dijkstra, P.; Menyailo, O.V.; Doucett, R.R.; Hart, S.C.; Schwartz, E.; Hungate, B.A. C and N availability affects the15N natural abundance of the soil microbial biomass across a cattle manure gradient. Eur. J. Soil Sci. 2006, 57, 468–475. [Google Scholar] [CrossRef]
- Dijkstra, P.; Williamson, C.; Menyailo, O.; Doucett, R.; Koch, G.; Hungate, B.A. Nitrogen stable isotope composition of leaves and roots of plants growing in a forest and a meadow. Isot. Environ. Health Stud. 2003, 39, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Amundson, R.; Austin, A.T.; Schuur, E.A.G.; Yoo, K.; Matzek, V.; Kendall, C.; Uebersax, A.; Brenner, D.; Baisden, W.T. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles 2003, 17, 2002GB001903. [Google Scholar] [CrossRef]
- Pardo, L.H.; Templer, P.H.; Goodale, C.L.; Duke, S.; Groffman, P.M.; Adams, M.B.; Boeckx, P.; Boggs, J.; Campbell, J.; Colman, B.; et al. Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry 2006, 80, 143–171. [Google Scholar] [CrossRef]
- Tilsner, J.; Wrage, N.; Lauf, J.; Gebauer, G. Emission of gaseous nitrogen oxides from an extensively managed grassland in NE Bavaria, Germany. Biogeochemistry 2003, 63, 249–267. [Google Scholar] [CrossRef]
- Cummins, S.; Finn, J.A.; Richards, K.G.; Lanigan, G.J.; Grange, G.; Brophy, C.; Cardenas, L.M.; Misselbrook, T.H.; Reynolds, C.K.; Krol, D.J. Beneficial effects of multi-species mixtures on N2O emissions from intensively managed grassland swards. Sci. Total Environ. 2021, 792, 148163. [Google Scholar] [CrossRef]
- de Klein CA, M.; van der Weerden, T.J.; Luo, J.; Cameron, K.C.; Di, H.J. A review of plant options for mitigating nitrous oxide emissions from pasture-based systems. N. Z. J. Agri. Res. 2020, 63, 29–43. [Google Scholar] [CrossRef]
- Bhandral, R.; Bittman, S.; Kowalenko, G.; Buckley, K.; Chantigny, M.; Hunt, D.; Bounaix, F.; Friesen, A. Enhancing Soil Infiltration Reduces Gaseous Emissions and Improves N Uptake from Applied Dairy Slurry. J. Environ. Qual. 2009, 38, 1372–1382. [Google Scholar] [CrossRef]
- Blesh, J. Functional traits in cover crop mixtures: Biological nitrogen fixation and multifunctionality. J. Appl. Ecol. 2017, 55, 38–48. [Google Scholar] [CrossRef]
- Aranjuelo, I.; Cabrera-Bosquet, L.; Morcuende, R.; Avice, J.C.; Nogues, S.; Araus, J.L.; Martínez-Carrasco, R.; Perez, P. Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? J. Exp. Bot. 2011, 62, 3957–3969. [Google Scholar] [CrossRef]
- Rani, K.; Sharma, P.; Kumar, S.; Wati, L.; Kumar, R.; Gurjar, D.S.; Kumar, D.; Kumar, R. Legumes for Sustainable Soil and Crop Management. In Sustainable Management of Soil and Environment [Internet]; Meena, R.S., Kumar, S., Bohra, J.S., Jat, M.L., Eds.; Springer: Singapore, 2019; pp. 193–215. [Google Scholar] [CrossRef]
- Ansarbr, M.; Ahmed, Z.I.; Malik, M.A.; Nadeembr, M.; Rischkowsky, A.; Ansar, M.; Nadeem, M.; Majeed, A.; Rischkowsky, B.A. Forage yield and quality potential of winter cereal-vetch mixturesunder rainfed conditions. Emir. J. Food Agric. 2010, 22, 25–36. [Google Scholar] [CrossRef]
- Thami Alami, I.; Pecetti, L.; Souihka, A.; Annicchiarico, P. Optimizing Species and Variety Choice in Legume–Cereal Mixtures as Forage Crops in a Dry Mediterranean Region. Available online: http://ouci.dntb.gov.ua/en/works/4NzdA5x4/ (accessed on 21 November 2024).
- Carita, T. Forage yield and quality of simple and complex grass-legumes mixtures under Mediterranean conditions. Emir. J. Food Agric. 2016, 28, 501. Available online: https://www.academia.edu/81755252/Forage_yield_and_quality_of_simple_and_complex_grass_legumes_mixtures_under_Mediterranean_conditions (accessed on 21 November 2024). [CrossRef]
- Gomez de barreda, D.; Yu, J.; McCullough, P.E. Seedling Tolerance of Cool-season Turfgrasses to Metamifop. Hort Sci. 2013, 48, 1313–1316. [Google Scholar] [CrossRef]
- Similien, R.M.; Trooien, T.P.; Wu, J.; Boe, A. Impact of Harvest Management on Forage Production and Nutrient Removal by Smooth Bromegrass on a Vegetated Treatment Area. Am. J. Plant Sci. 2015, 06, 1550–1559. [Google Scholar] [CrossRef]
- Meyer, D.W. Forage Establishment. NDSU Circular R-563. 1999. Available online: https://library.ndsu.edu/ir/bitstream/handle/10365/9129/R563_1999.pdf?sequence=1 (accessed on 21 November 2024).
- Malézieux, E.; Crozat, Y.; Dupraz, C.; Laurans, M.; Makowski, D.; Ozier-Lafontaine, H.; Rapidel, B.; de Tourdonnet, S.; Val-antin-Morison, M. Mixing Plant Species in Cropping Systems: Concepts, Tools and Models: A Review. In Sustainable Agriculture; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 329–353. [Google Scholar] [CrossRef]
Scenario 1 C/N | Monocultures | Mixture | ||||
Legume | Grass | Forb | Legume | Grass | Forb | |
Shoot | 3.2 ± 0.2 | 8.1 ± 1.0 | 4.1 ± 0.7 | 5.4 ± 0.04 | 5.6 ± 0.7 | 3.5 ± 0.02 |
Root | 4.5 ± 0.3 | 18.3 ± 0.7 | 19.5 ± 5.9 | 2.7 ± 0.4 | 12.7 ± 4.2 | 15.1 ± 0.9 |
Soil | 6.4 ± 0.6 | 6.8 ± 0.4 | 6.1 ± 0.4 | 6.3 ± 0.1 | ||
Scenario 2 C/N | Monocultures | Mixture | ||||
Legume | Grass | Forb | Legume | Grass | Forb | |
Shoot | 3.6 ± 0.5 | 5.6 ± 0.5 | 5.4 ± 0.8 | 4.5 ± 0.05 | 3.2 ± 0.02 | - |
Root | 4.9 ± 0.1 | 9.9 ± 2.0 | 12.6 ± 4.2 | 2.8 ± 0.04 | 7.3 ± 0.3 | - |
Soil | 5.8 ± 0.01 | 6.6 ± 0.01 | 6.1 ± 0.2 | 6.1 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljazairi, S.; Ribas, A.; Llurba, R.; Ferrio, J.P.; Voltas, J.; Nogués, S.; Sebastiá, M.T. Sown Diversity Effects on the C and N Cycle and Interactions with Fertilization. Agronomy 2025, 15, 287. https://doi.org/10.3390/agronomy15020287
Aljazairi S, Ribas A, Llurba R, Ferrio JP, Voltas J, Nogués S, Sebastiá MT. Sown Diversity Effects on the C and N Cycle and Interactions with Fertilization. Agronomy. 2025; 15(2):287. https://doi.org/10.3390/agronomy15020287
Chicago/Turabian StyleAljazairi, Salvador, Angela Ribas, Rosa Llurba, Juan Pedro Ferrio, Jordi Voltas, Salvador Nogués, and Maria Teresa Sebastiá. 2025. "Sown Diversity Effects on the C and N Cycle and Interactions with Fertilization" Agronomy 15, no. 2: 287. https://doi.org/10.3390/agronomy15020287
APA StyleAljazairi, S., Ribas, A., Llurba, R., Ferrio, J. P., Voltas, J., Nogués, S., & Sebastiá, M. T. (2025). Sown Diversity Effects on the C and N Cycle and Interactions with Fertilization. Agronomy, 15(2), 287. https://doi.org/10.3390/agronomy15020287