Effects of Long-Term Organic Substitution on Soil Nitrous Oxide Emissions in a Tea (Camellia sinensis L.) Plantation in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Field Management
- (1)
- CK: no application of N fertilizer (0 kg ha−1) and annual application of 150 kg ha−1 P fertilizer (P2O5) and 300 kg ha−1 K fertilizer (K2O). Here, 100% of the P fertilizer and 40% of the K fertilizer were applied as base fertilizers, and the remaining K fertilizer was applied as spring tea (30%) and autumn tea (30%) topdressing.
- (2)
- CF: annual application of 225 kg ha−1 N fertilizer, 150 kg ha−1 P fertilizer (P2O5), and 300 kg ha−1 K fertilizer (K2O). Here, 40% of N fertilizer, 40% of K fertilizer, and 100% of P fertilizer were applied as base fertilizers; the remaining N and K fertilizers were applied as spring tea (30%) and autumn tea (30%) topdressing.
- (3)
- CF + OF: 40% of the chemical N fertilizer was replaced with organic fertilizer, which was applied only once as the base fertilizer. As in CF, the chemical fertilizer was applied as topdressing to spring and autumn tea.
- (4)
- OF: 100% chemical N fertilizer was replaced with organic fertilizer, of which 40% was applied as base fertilizer, 30% as spring tea topdressing, and 30% as autumn tea topdressing.
2.3. Sampling and Laboratory Analysis
2.3.1. Sampling of Tea Shoots
2.3.2. Measurement of N2O Emissions and Calculation of Indicators
2.3.3. Measurement of Environmental Factors
2.4. Statistical Analysis
3. Results
3.1. Temperature, Precipitation, and Soil WFPS in the Tea Plantation
3.2. Mineral N Levels in the Soil of Tea Plantation Under Different Fertilization Strategies
3.3. N2O Flux and Cumulative N2O Emissions from the Soil of the Tea Plantation Under Different Fertilization Strategies
3.4. Tea Yield, YSNE, and N2O EF
3.5. Relationship Between Environmental Factors and N2O Flux in Tea Plantation Soil Under Different Fertilization Strategies
4. Discussion
4.1. N2O Emissions from Tea Plantation Soil
4.2. Impact of Organic Fertilizer on N2O Emissions from the Tea Plantation Soil
4.3. Effects of Environmental Factors on N2O Emissions from the Soil in Tea Plantations
4.4. Research Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Montzka, S.A.; Dlugokencky, E.J.; Butler, J.H. Non-CO2 greenhouse gases and climate change. Nature 2011, 476, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Portmann, R.W.; Daniel, J.S.; Ravishankara, A.R. Stratospheric ozone depletion due to nitrous oxide: Influences of other gases. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Wu, H.; Sun, J.F.; Cheng, K.; Smith, P.; Hillier, J.; Xu, X.G.; Pan, G.X. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China. Environ. Sci. Technol. 2019, 53, 10246–10257. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.K.; Liu, H.B.; Zhang, X.M.; Ren, C.C.; Wang, C.; Cheng, L.X.; Xu, J.M.; Gu, B.J. Agricultural management practices in China enhance nitrogen sustainability and benefit human health. Nat. Food 2024, 5, 378–389. [Google Scholar] [CrossRef]
- Cheng, K.; Pan, G.X.; Smith, P.; Luo, T.; Li, L.; Zheng, J.W.; Zhang, X.H.; Han, X.J.; Yan, M. Carbon footprint of China’s crop production—An estimation using agro-statistics data over 1993–2007. Agric. Ecosyst. Environ. 2011, 142, 231–237. [Google Scholar] [CrossRef]
- Zhang, T.; Hou, Y.; Meng, T.; Ma, Y.F.; Tan, M.X.; Zhang, F.S.; Oenema, O. Replacing synthetic fertilizer by manure requires adjusted technology and incentives: A farm survey across China. Resour. Conserv. Recycl. 2021, 168, 105301. [Google Scholar] [CrossRef]
- Muller, A.; Schader, C.; El-Hage Scialabba, N.; Brüggemann, J.; Isensee, A.; Erb, K.H.; Smith, P.; Klocke, P.; Leiber, F.; Stolze, M.; et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 2017, 8, 1290. [Google Scholar] [CrossRef]
- Ganesan, S. Biotic farming using organic fertilizer for sustainable agriculture. Phys. Sci. Rev. 2024, 9, 201–209. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, F.N.; Jia, X.B.; Chen, J.C. Distinct responses of ammonia-oxidizing bacteria and archaea to green manure combined with reduced chemical fertilizer in a paddy soil. J. Soils Sediment. 2019, 19, 1613–1623. [Google Scholar] [CrossRef]
- Hei, Z.W.; Peng, Y.T.; Hao, S.L.; Li, Y.M.; Yang, X.; Zhu, T.B.; Müller, C.; Zhang, H.Y.; Hu, H.W.; Chen, Y.L. Full substitution of chemical fertilizer by organic manure decreases soil N2O emissions driven by ammonia oxidizers and gross nitrogen transformations. Glob. Change Biol. 2023, 29, 7117–7130. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Fang, Q.C.; Zhang, T.; Ma, W.Q.; Velthof, G.L.; Hou, Y.; Oenema, O.; Zhang, F.S. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Glob. Change Biol. 2020, 26, 888–900. [Google Scholar] [CrossRef]
- Meijide, A.; Díez, J.A.; Sánchez-Martín, L.; Lopez-Fernández, S.; Vallejo, A. Nitrogen oxide emissions from an irrigated maize crop amended with treated pig slurries and composts in a Mediterranean climate. Agric. Ecosyst. Environ. 2007, 121, 383–394. [Google Scholar] [CrossRef]
- Yang, Y.J. Tea Plant Cultivation in China; Shanghai Scientific and Technological Press: Shanghai, China, 2005. (In Chinese) [Google Scholar]
- Wang, Y.; Yao, Z.S.; Pan, Z.L.; Wang, R.; Yan, G.X.; Liu, C.Y.; Su, Y.Y.; Zheng, X.H.; Butterbach-Bahl, K. Tea-planted soils as global hotspots for N2O emissions from croplands. Environ. Res. Lett. 2020, 15, 104018. [Google Scholar] [CrossRef]
- Wang, J.Y.; Smith, P.; Hergoualc’h, K.; Zou, J.W. Direct N2O emissions from global tea plantations and mitigation potential by climate-smart practices. Resour. Conserv. Recycl. 2022, 185, 106501. [Google Scholar] [CrossRef]
- Yao, Z.S.; Wei, Y.D.; Liu, C.Y.; Zheng, X.H.; Xie, B.H. Organically fertilized tea plantation stimulates N2O emissions and lowers NO fluxes in subtropical China. Biogeosciences 2015, 12, 5915–5928. [Google Scholar] [CrossRef]
- Ni, K.; Liao, W.Y.; Yi, X.Y.; Niu, S.Y.; Ma, L.F.; Shi, Y.Z.; Zhang, Q.F.; Liu, M.Y.; Ruan, J.Y. Fertilization status and reduction potential in tea plantations of China. J. Plant Nutr. 2019, 25, 421–432. [Google Scholar]
- Denmead, O.T. Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant Soil 2008, 309, 5–24. [Google Scholar] [CrossRef]
- He, T.H.; Yuan, J.J.; Luo, J.F.; Wang, W.J.; Fan, J.L.; Liu, D.Y.; Ding, W.X. Organic fertilizers have divergent effects on soil N2O emissions. Biol. Fertil. Soils 2019, 55, 685–699. [Google Scholar] [CrossRef]
- Han, Z.Q.; Wang, J.Y.; Xu, P.S.; Sun, Z.R.; Ji, C.; Li, S.Q.; Wu, S.; Liu, S.W.; Zou, J.W. Greater nitrous and nitric oxide emissions from the soil between rows than under the canopy in subtropical tea plantations. Geoderma 2021, 398, 115105. [Google Scholar] [CrossRef]
- Yu, H.Y.; Han, X.; Zhang, X.C.; Meng, X.T.; Yue, Z.F.; Liu, X.H.; Zheng, N.G.; Li, Y.Y.; Yu, Y.X.; Yao, H.Y. Fertilizer-induced N2O and NO emissions in tea gardens and the main controlling factors: A recent three-decade data synthesis. Sci. Total Environ. 2023, 871, 162054. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Agusto, L.E.; Qin, G.M.; Thibodeau, B.; Tang, J.W.; Zhang, J.F.; Zhou, J.G.; Wu, J.T.; Zhang, L.L.; Thapa, P.; Wang, F.M.; et al. Fiddling with the blue carbon: Fiddler crab burrows enhance CO2 and CH4 efflux in saltmarsh. Ecol. Indic. 2022, 144, 109538. [Google Scholar] [CrossRef]
- Yao, Z.S.; Zheng, X.H.; Liu, C.Y.; Wang, R.; Xie, B.H.; Butterbach-Bahl, K. Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China. Agric. For. Meteorol. 2018, 248, 386–396. [Google Scholar] [CrossRef]
- Jumadi, O.; Hala, Y.; Inubushi, K. Production and emission of nitrous oxide and responsible microorganisms in upland acid soil in Indonesia. Soil Sci. Plant Nutr. 2005, 51, 693–696. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, X.H.; Fu, X.Q.; Wu, Y.Z. Is green tea still ‘green’? Geo Geogr. Environ. 2016, 3, e00021. [Google Scholar] [CrossRef]
- Meng, L.; Ding, W.X.; Cai, Z.C. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. Soil Biol. Biochem. 2005, 37, 2037–2045. [Google Scholar] [CrossRef]
- Hou, M.; Ohkama-Ohtsu, N.; Suzuki, S.; Tanaka, H.; Schmidhalter, U.; Bellingrath-Kimura, S.D. Nitrous oxide emission from tea soil under different fertilizer managements in Japan. Catena 2015, 135, 304–312. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Li, Y.; Wang, H.H.; Wang, Z.J.; Fu, X.Q.; Shen, J.L.; Wang, Y.; Liu, X.L.; Meng, L.; Wu, J.S. Response of N2O emissions to biochar amendment on a tea field soil in subtropical central China: A three-year field experiment. Agric. Ecosyst. Environ. 2021, 318, 107473. [Google Scholar] [CrossRef]
- Voigt, C.; Marushchak, M.E.; Abbott, B.W.; Biasi, C.; Elberling, B.; Siciliano, S.D.; Sonnentag, O.; Stewart, K.J.; Yang, Y.H.; Martikainen, P.J. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 2020, 1, 420–434. [Google Scholar] [CrossRef]
- Li, L.D.; Hong, M.; Zhang, Y.; Paustian, K. Soil N2O emissions from specialty crop systems: A global estimation and meta-analysis. Glob. Change Biol. 2024, 30, e17233. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Song, F.; Yin, Z.H.; Chen, P.; Zhang, Z.X.; Qi, Z.J.; Wang, B.; Zheng, E.N. Organic fertilizer substitutions maintain maize yield and mitigate ammonia emissions but increase nitrous oxide emissions. Environ. Sci. Pollut. Res. 2023, 30, 53115–53127. [Google Scholar] [CrossRef] [PubMed]
- Bergstrand, K.J. Organic fertilizers in greenhouse production systems—A review. Sci. Hortic. 2022, 295, 110855. [Google Scholar] [CrossRef]
- Petersen, S.O.; Peixoto, L.E.; Sørensen, H.; Tariq, A.; Brændholt, A.; Hansen, L.V.; Abalos, D.; Christensen, A.T.; Nielsen, C.S.; Pullens, J.W.M.; et al. Higher N2O emissions from organic compared to synthetic N fertilisers on sandy soils in a cool temperate climate. Agric. Ecosyst. Environ. 2023, 358, 108718. [Google Scholar] [CrossRef]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef]
- De Rosa, D.; Rowlings, D.W.; Biala, J.; Scheer, C.; Basso, B.; McGree, J.; Grace, P.R. Effect of organic and mineral N fertilizers on N2O emissions from an intensive vegetable rotation. Biol. Fertil. Soils 2016, 52, 895–908. [Google Scholar] [CrossRef]
- Gao, H.Z.; Xi, Y.J.; Wu, X.P.; Pei, X.X.; Liang, G.P.; Bai, J.; Song, X.J.; Zhang, M.L.; Liu, X.T.; Han, Z.X.; et al. Partial substitution of manure reduces nitrous oxide emission with maintained yield in a winter wheat crop. J. Environ. Manag. 2023, 326, 116794. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Q.; Li, Y.; Tu, X.S.; Chen, Z.X.; Elrys, A.S.; Cheng, Y.; Ma, L.F. A shift from nitrification to denitrification-dominated N2O emission in an acidic soil following organic amendment. Biol. Fertil. Soils 2023, 59, 117–122. [Google Scholar] [CrossRef]
- Cheng, Y.; Xie, W.; Huang, R.; Yan, X.Y.; Wang, S.Q. Extremely high N2O but unexpectedly low NO emissions from a highly organic and chemical fertilized peach orchard system in China. Agric. Ecosyst. Environ. 2017, 246, 202–209. [Google Scholar] [CrossRef]
- Bracken, C.J.; Lanigan, G.J.; Richards, K.G.; Müller, C.; Tracy, S.R.; Grant, J.; Krol, D.J.; Sheridan, H.; Lynch, M.B.; Grace, C.; et al. Sward composition and soil moisture conditions affect nitrous oxide emissions and soil nitrogen dynamics following urea-nitrogen application. Sci. Total Environ. 2020, 722, 137780. [Google Scholar] [CrossRef]
- Dai, Z.M.; Yu, M.J.; Chen, H.H.; Zhao, H.C.; Huang, Y.L.; Su, W.Q.; Xia, F.; Chang, S.X.; Brooks, P.C.; Dahlgren, R.A.; et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Glob. Change Biol. 2020, 26, 5267–5276. [Google Scholar] [CrossRef]
- Brady, N.C. Nitrogen and sulfur economy of soils. In The Nature and Properties of Soils; Brady, N.C., Weil, R.R., Eds.; Prentice-Hall. Inc.: Hoboken, NJ, USA, 1999. [Google Scholar]
- Strous, M.; Kuenen, J.G.; Jetten, M.S.M. Key physiology of anaerobic ammonium oxidation. Appl. Environ. Microbiol. 1999, 65, 3248–3250. [Google Scholar] [CrossRef]
- Lv, T.X.; Wu, Y.Z.; Shen, J.L.; Chen, D.; Jiang, W.Q.; Wang, J.; Li, Y.; Wu, J.S. N2O emissions from a tea field with deep application of nitrogen fertilizer and intercropping with white clover. Environ. Sci. 2019, 40, 4221–4229. [Google Scholar]
- Malhi, S.S.; McGill, W.B.; Nyborg, M. Nitrate losses in soils: Effect of temperature, moisture and substrate concentration. Soil Biol. Biochem. 1990, 22, 733–737. [Google Scholar] [CrossRef]
Treatments | YSNE (g·N2O-N kg−1 Tea Yield) | N2O-EF (%) |
---|---|---|
CK | 1.03 ± 0.10 ab | - |
CF | 0.88 ± 0.10 b | 0.71 ± 0.16 a |
CF + OF | 1.28 ± 0.29 a | 0.87 ± 0.06 a |
OF | 0.83 ± 0.02 b | 0.36 ± 0.12 b |
F-value | 4.76 | 14.65 |
p-value | <0.05 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Hua, W.; Ni, K.; Yang, X.; Jiang, F. Effects of Long-Term Organic Substitution on Soil Nitrous Oxide Emissions in a Tea (Camellia sinensis L.) Plantation in China. Agronomy 2025, 15, 288. https://doi.org/10.3390/agronomy15020288
Wu Z, Hua W, Ni K, Yang X, Jiang F. Effects of Long-Term Organic Substitution on Soil Nitrous Oxide Emissions in a Tea (Camellia sinensis L.) Plantation in China. Agronomy. 2025; 15(2):288. https://doi.org/10.3390/agronomy15020288
Chicago/Turabian StyleWu, Zhidan, Wei Hua, Kang Ni, Xiangde Yang, and Fuying Jiang. 2025. "Effects of Long-Term Organic Substitution on Soil Nitrous Oxide Emissions in a Tea (Camellia sinensis L.) Plantation in China" Agronomy 15, no. 2: 288. https://doi.org/10.3390/agronomy15020288
APA StyleWu, Z., Hua, W., Ni, K., Yang, X., & Jiang, F. (2025). Effects of Long-Term Organic Substitution on Soil Nitrous Oxide Emissions in a Tea (Camellia sinensis L.) Plantation in China. Agronomy, 15(2), 288. https://doi.org/10.3390/agronomy15020288