Widely Targeted Metabolomics and Transcriptomics Analysis of the Response and Adaptation Mechanisms of Trifolium ambiguum to Low-Temperature Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Seed Pre-Treatment
2.2. Low-Temperature Stress Treatment
2.3. Widely Targeted Metabolomics Analysis and Data Processing Methods
2.4. Comprehensive Transcriptome Sequencing and Data Analysis Workflow
2.5. Combined Analysis of Transcriptomic and Metabolomic Data
2.6. qRT-PCR Validation
3. Results
3.1. Metabolic Profile of Caucasian Clover at Three Time Points of Low-Temperature Stress
3.2. Identification of Differentially Accumulated Metabolites at Different Stages of Low-Temperature Stress
3.3. KEGG Pathway Enrichment Analysis of Differential Metabolites
3.4. Transcriptomics Analysis of Caucasian Clover Under Different Low-Temperature Treatments
3.4.1. Analysis of Differentially Expressed Genes
3.4.2. KEGG Pathway Enrichment Analysis of Differentially Expressed Genes
3.4.3. Validation by Quantitative Real-Time PCR (qRT-PCR)
3.5. Integrated KEGG Pathway Enrichment Analysis of Transcriptomics and Metabolomics
3.5.1. Weighted Gene Co-Expression Network Analysis (WGCNA) of Key Metabolites and Gene Co-Expression Networks
3.5.2. Heatmap Analysis of Correlation Between Module Eigengenes and Metabolites
3.5.3. KEGG Enrichment Analysis of Key Modules and Construction of Core Gene Interaction Networks
3.6. DAMs and DEGs Involved in Isoflavonoid Biosynthesis Pathway
4. Discussion
4.1. The Response of DAMs in Caucasian Clover to Low-Temperature Stress
4.2. The Response of DEGs in Caucasian Clover to Low-Temperature Stress
4.3. WGCNA Reveals the Low-Temperature Adaptation Mechanisms of Caucasian Clover
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bryant, W.G. Caucasian Clover (Trifolium ambiguum Bieb.): A Review. J. Aust. Inst. Agric. Sci. 1974, 40, 11–19. [Google Scholar]
- Townsend, C.E. Phenotypic Diversity for Agronomic Characters and Frequency of Self-compatible Plants in Trifolium ambiguum. Can. J. Plant Sci. 1970, 50, 331–338. [Google Scholar] [CrossRef]
- Taylor, N.L.; Smith, R.R. Kura Clover (Trifolium ambiguum M.B.) Breeding, Culture, and Utilization. Adv. Agron. 1998, 63, 153–178. [Google Scholar]
- Racette, K.; Zurweller, B.; Tillman, B.; Rowland, D. Transgenerational Stress Memory of Water Deficit in Peanut Production. Field Crops Res. 2020, 248, 107712. [Google Scholar] [CrossRef]
- Oberkofler, V.; Pratx, L.; Bäurle, I. Epigenetic Regulation of Abiotic Stress Memory: Maintaining the Good Things While They Last. Curr. Opin. Plant Biol. 2021, 61, 102007. [Google Scholar] [CrossRef]
- Theocharis, A.; Clément, C.; Barka, E.A. Physiological and Molecular Changes in Plants Grown at Low Temperatures. Planta 2012, 235, 1091–1105. [Google Scholar] [CrossRef]
- Zhuo, C.; Liang, L.; Zhao, Y.; Guo, Z.; Lu, S. A Cold Responsive Ethylene Responsive Factor from Medicago Falcata Confers Cold Tolerance by up-Regulation of Polyamine Turnover, Antioxidant Protection, and Proline Accumulation: A Falcata ERF Confers Cold Tolerance. Plant Cell Environ. 2018, 41, 2021–2032. [Google Scholar] [CrossRef]
- Jacob, P.; Hirt, H.; Bendahmane, A. The Heat-shock Protein/Chaperone Network and Multiple Stress Resistance. Plant Biotechnol. J. 2017, 15, 405–414. [Google Scholar] [CrossRef]
- Wang, X.; Ding, Y.; Li, Z.; Shi, Y.; Wang, J.; Hua, J.; Gong, Z.; Zhou, J.-M.; Yang, S. PUB25 and PUB26 Promote Plant Freezing Tolerance by Degrading the Cold Signaling Negative Regulator MYB15. Dev. Cell 2019, 51, 222–235.e5. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, H.; Zhang, J.; Liu, P.; Chen, X.; Li, Z.; Xu, Y.; Lu, P.; Cao, P. Integrated Transcriptomics and Metabolomics Analysis to Characterize Cold Stress Responses in Nicotiana Tabacum. BMC Genom. 2017, 18, 496. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Su, L.; Sun, X.; Li, X.; Sun, M.; Karungo, S.K.; Fang, S.; Chu, J.; Li, S.; Xin, H. Expression of Vitis Amurensis NAC26 in Arabidopsis Enhances Drought Tolerance by Modulating Jasmonic Acid Synthesis. J. Exp. Bot. 2016, 67, 2829–2845. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xu, Z.; Fan, X.; Zhou, Q.; Cao, J.; Ji, G.; Jing, S.; Feng, B.; Wang, T. Transcriptome Analysis Reveals Complex Molecular Mechanisms Underlying UV Tolerance of Wheat (Triticum aestivum, L.). J. Agric. Food Chem. 2019, 67, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S. Advances of Transcriptomics in Crop Improvement: A Review. JETIR 2021, 11, 722–737. [Google Scholar]
- Fiehn, O. Metabolomics -the Link between Genotypes and Phenotypes. Funct. Genom. 2017, 155–171. [Google Scholar]
- Song, X.; Wang, H.; Wang, Y.; Zeng, Q.; Zheng, X. Metabolomics Combined with Physiology and Transcriptomics Reveal How Nicotiana Tabacum Leaves Respond to Cold Stress. Plant Physiol. Biochem. 2024, 208, 108464. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Dong, X.; Zheng, L.; Zhou, Y.; Gao, F. Integrated Metabolomics and Transcriptomics Analysis Reveals That the Change of Apoplast Metabolites Contributes to Adaptation to Winter Freezing Stress in Euonymus Japonicus. Plant Physiol. Biochem. 2023, 202, 107924. [Google Scholar] [CrossRef]
- Xu, G.; Li, L.; Zhou, J.; Lyu, D.; Zhao, D.; Qin, S. Comparison of Transcriptome and Metabolome Analysis Revealed Differences in Cold Resistant Metabolic Pathways in Different Apple Cultivars under Low Temperature Stress. Hortic. Plant J. 2023, 9, 183–198. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, M.; Xu, K.; Li, J.; Li, S.; Zhang, S.; Yang, X. Integrated Transcriptomics and Metabolomics Analyses Provide Insights into Cold Stress Response in Wheat. Crop J. 2019, 7, 857–866. [Google Scholar] [CrossRef]
- Wu, L.; Yang, S.Y.; Yang, Y.; Liao, X.M.; Zhu, X.D.; Zhu, F.F.; Liang, F.M.; Li, Y.; Lv, D.Q. Mining Key Genes Associated with Postharvest Sprouting of Potato Tubers Based on Transcriptome Sequencing. J. Southwest Univ. (Nat. Sci. Ed.) 2023, 45, 70–80. [Google Scholar]
- Gao, C.; Mumtaz, M.A.; Zhou, Y.; Yang, Z.; Shu, H.; Zhu, J.; Bao, W.; Cheng, S.; Yin, L.; Huang, J.; et al. Integrated Transcriptomic and Metabolomic Analyses of Cold-Tolerant and Cold-Sensitive Pepper Species Reveal Key Genes and Essential Metabolic Pathways Involved in Response to Cold Stress. Int. J. Mol. Sci. 2022, 23, 6683. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Fang, J.; Lin, M.; Hu, C.; Qi, X.; Chen, J.; Zhong, Y.; Muhammad, A.; Li, Z.; Li, Y. Comparative Metabolomic and Transcriptomic Studies Reveal Key Metabolism Pathways Contributing to Freezing Tolerance Under Cold Stress in Kiwifruit. Front. Plant Sci. 2021, 12, 628969. [Google Scholar] [CrossRef]
- Wu, D.; Wu, Y.; Gao, R.; Zhang, Y.; Zheng, R.; Fang, M.; Li, Y.; Zhang, Y.; Guan, L.; Gao, Y. Integrated Metabolomics and Transcriptomics Reveal the Key Role of Flavonoids in the Cold Tolerance of Chrysanthemum. Int. J. Mol. Sci. 2024, 25, 7589. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Wang, S.; Zhang, H.; Liu, Y.; Yang, M. Integrative Transcriptomic and Metabolomic Analyses Reveal the Flavonoid Biosynthesis of Pyrus Hopeiensis Flowers under Cold Stress. Hortic. Plant J. 2023, 9, 395–413. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Han, Z.; Chen, Y.; Huai, D.; Kang, Y.; Wang, Z.; Yan, L.; Jiang, H.; Lei, Y.; et al. Integrated Transcriptomics and Metabolomics Analysis Reveal Key Metabolism Pathways Contributing to Cold Tolerance in Peanut. Front. Plant Sci. 2021, 12, 752474. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Su, W.; Hussain, M.A.; Mehmood, S.S.; Zhang, X.; Cheng, Y.; Zou, X.; Lv, Y. Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Cold Tolerance in Rapeseed (Brassica napus L.). Front. Plant Sci. 2021, 12, 721681. [Google Scholar] [CrossRef]
- Lv, L.; Dong, C.; Liu, Y.; Zhao, A.; Zhang, Y.; Li, H.; Chen, X. Transcription-Associated Metabolomic Profiling Reveals the Critical Role of Frost Tolerance in Wheat. BMC Plant Biol 2022, 22, 333. [Google Scholar] [CrossRef] [PubMed]
- Fürtauer, L.; Weiszmann, J.; Weckwerth, W.; Nägele, T. Dynamics of Plant Metabolism during Cold Acclimation. IJMS 2019, 20, 5411. [Google Scholar] [CrossRef]
- Liu, L.; Si, L.; Zhang, L.; Guo, R.; Wang, R.; Dong, H.; Guo, C. Metabolomics and Transcriptomics Analysis Revealed the Response Mechanism of Alfalfa to Combined Cold and Saline-alkali Stress. Plant J. 2024, 119, 1900–1919. [Google Scholar] [CrossRef]
- Song, J.; Chen, Y.; Jiang, G.; Zhao, J.; Wang, W.; Hong, X. Integrated Analysis of Transcriptome and Metabolome Reveals Insights for Low-Temperature Germination in Hybrid Rapeseeds (Brassica napus L.). J. Plant Physiol. 2023, 291, 154120. [Google Scholar] [CrossRef]
- Zhou, Q.; Cui, Y.; Dong, S.; Luo, D.; Fang, L.; Shi, Z.; Liu, W.; Wang, Z.; Nan, Z.; Liu, Z. Integrative Physiological, Transcriptome, and Metabolome Analyses Reveal the Associated Genes and Metabolites Involved in Cold Stress Response in Common Vetch (Vicia sativa L.). Food and Energy Security 2023, 12, e484. [Google Scholar] [CrossRef]
- Li, Q.; Cai, Y.; Gu, L.; Yu, X.; Wang, Y.; Zhang, G.; Zhao, Y.; Abdullah, S.; Li, P. Transcriptome Reveals Molecular Mechanism of Cabbage Response to Low Temperature Stress and Functional Study of BoPYL8 Gene. Sci. Hortic. 2024, 323, 112523. [Google Scholar] [CrossRef]
- Jian, H.; Xie, L.; Wang, Y.; Cao, Y.; Wan, M.; Lv, D.; Li, J.; Lu, K.; Xu, X.; Liu, L. Characterization of Cold Stress Responses in Different Rapeseed Ecotypes Based on Metabolomics and Transcriptomics Analyses. PeerJ 2020, 8, e8704. [Google Scholar] [CrossRef]
- Lu, L.; Yang, W.; Dong, Z.; Tang, L.; Liu, Y.; Xie, S.; Yang, Y. Integrated Transcriptomic and Metabolomics Analyses Reveal Molecular Responses to Cold Stress in Coconut (Cocos nucifera L.) Seedlings. Int. J. Mol. Sci. 2023, 24, 14563. [Google Scholar] [CrossRef]
- Zhu, K.; Liu, J.; Lyu, A.; Luo, T.; Chen, X.; Peng, L.; Hu, L. Analysis of the Mechanism of Wood Vinegar and Butyrolactone Promoting Rapeseed Growth and Improving Low-Temperature Stress Resistance Based on Transcriptome and Metabolomics. IJMS 2024, 25, 9757. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, C.; Li, M.; Li, Y.; Yan, Z.; Feng, G.; Liu, D. Integrated Transcriptomics and Metabolomics Analysis Reveals Key Regulatory Network That Response to Cold Stress in Common Bean (Phaseolus vulgaris L.). BMC Plant Biol. 2023, 23, 85. [Google Scholar] [CrossRef]
- Sun, S.; Yang, Y.; Hao, S.; Liu, Y.; Zhang, X.; Yang, P.; Zhang, X.; Luo, Y. Comparison of Transcriptome and Metabolome Analysis Revealed Cold-Resistant Metabolic Pathways in Cucumber Roots under Low-Temperature Stress in Root Zone. Front. Plant Sci. 2024, 15, 1413716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, Y.; Qiu, X.; Lu, H.; Hwang, I.; Wang, T. Tolerant Mechanism of Model Legume Plant Medicago Truncatula to Drought, Salt, and Cold Stresses. Front. Plant Sci. 2022, 13, 847166. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-R.; Markhart, A.H.; Shanmugasundaram, S.; Lin, T.-Y. Early Developmental and Stress Responsive ESTs from Mungbean, Vigna radiata (L.) Wilczek, Seedlings. Plant Cell Rep. 2008, 27, 535–552. [Google Scholar] [CrossRef]
- Amini, S.; Maali-Amiri, R.; Kazemi-Shahandashti, S.-S.; López-Gómez, M.; Sadeghzadeh, B.; Sobhani-Najafabadi, A.; Kariman, K. Effect of Cold Stress on Polyamine Metabolism and Antioxidant Responses in Chickpea. J. Plant Physiol. 2021, 258–259, 153387. [Google Scholar] [CrossRef]
- Kazemi-Shahandashti, S.-S.; Maali-Amiri, R.; Zeinali, H.; Khazaei, M.; Talei, A.; Ramezanpour, S.-S. Effect of Short-Term Cold Stress on Oxidative Damage and Transcript Accumulation of Defense-Related Genes in Chickpea Seedlings. J. Plant Physiol. 2014, 171, 1106–1116. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xiong, Y.; Zhao, J.; Bai, S.; Li, D.; Chen, L.; Feng, J.; Li, Y.; Ma, X.; Zhang, J. Molecular Mechanism of Cold Tolerance of Centipedegrass Based on the Transcriptome. Int. J. Mol. Sci. 2023, 24, 1265. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, X.; Zhang, Z.; Wang, A.; Zhu, J. Cold-Regulated Gene LeCOR413PM2 Confers Cold Stress Tolerance in Tomato Plants. Gene 2021, 764, 145097. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Yang, W.; Zhang, J.; Zhao, L.; Quan, Y.; He, Z.; Xu, Y.; Zhang, F.; Yin, M.; Wang, Y.; et al. Overexpression of ClRAP2.4 in Chrysanthemum Enhances Tolerance to Cold Stress. Funct. Plant Biol. 2023, 50, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Sheng, S.; Guo, X.; Wu, C.; Xiang, Y.; Duan, S.; Yang, W.; Li, W.; Cao, F.; Liu, L. Genome-Wide Identification and Expression Analysis of DREB Genes in Alfalfa (Medicago sativa) in Response to Cold Stress. Plant Signal. Behav. 2022, 17, 2081420. [Google Scholar] [CrossRef] [PubMed]
- Hwarari, D.; Guan, Y.; Ahmad, B.; Movahedi, A.; Min, T.; Hao, Z.; Lu, Y.; Chen, J.; Yang, L. ICE-CBF-COR Signaling Cascade and Its Regulation in Plants Responding to Cold Stress. Int. J. Mol. Sci. 2022, 23, 1549. [Google Scholar] [CrossRef]
- Sohrabi, S.S.; Ismaili, A.; Nazarian-Firouzabadi, F.; Fallahi, H.; Hosseini, S.Z. Identification of Key Genes and Molecular Mechanisms Associated with Temperature Stress in Lentil. Gene 2022, 807, 145952. [Google Scholar] [CrossRef]
- Waititu, J.K.; Cai, Q.; Sun, Y.; Sun, Y.; Li, C.; Zhang, C.; Liu, J.; Wang, H. Transcriptome Profiling of Maize (Zea mays L.) Leaves Reveals Key Cold-Responsive Genes, Transcription Factors, and Metabolic Pathways Regulating Cold Stress Tolerance at the Seedling Stage. Genes 2021, 12, 1638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, H.; Li, M.; Bai, Y.; Chen, C.; Guo, D.; Guo, C.; Shu, Y. A Pan-Transcriptome Analysis Indicates Efficient Downregulation of the FIB Genes Plays a Critical Role in the Response of Alfalfa to Cold Stress. Plants 2022, 11, 3148. [Google Scholar] [CrossRef]
- Legrand, S.; Marque, G.; Blassiau, C.; Bluteau, A.; Canoy, A.-S.; Fontaine, V.; Jaminon, O.; Bahrman, N.; Mautord, J.; Morin, J.; et al. Combining Gene Expression and Genetic Analyses to Identify Candidate Genes Involved in Cold Responses in Pea. J. Plant Physiol. 2013, 170, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, J.; Sarwar, R.; Zhang, W.; Geng, R.; Zhu, K.-M.; Tan, X.-L. Research Progress on the Physiological Response and Molecular Mechanism of Cold Response in Plants. Front. Plant Sci. 2024, 15, 1334913. [Google Scholar] [CrossRef] [PubMed]
- Rui, D.; Ben, L.; Li, T.; Xia, W.Q.; Jie, L.Z.; Chao, C.; Feng, Y.; Song, W.; Jin, H. A Comparative Transcriptomic Analysis Reveals a Coordinated Mechanism Activated in Response to Cold Acclimation in Common Vetch (Viciasativa L.). BMC Genom. 2022, 23, 814. [Google Scholar]
- Dou, N.; Li, L.; Fang, Y.; Fan, S.; Wu, C. Comparative Physiological and Transcriptome Analyses of Tolerant and Susceptible Cultivars Reveal the Molecular Mechanism of Cold Tolerance in Anthurium Andraeanum. Int. J. Mol. Sci. 2023, 25, 250. [Google Scholar] [CrossRef]
- Sui, J.J.; Zhao, G.L.; Jin, X.; Bu, Q.Y.; Tang, J.Q. Research Progress on the Molecular and Physiological Mechanisms of Cold Tolerance Regulation during the Booting Stage in Rice. Chin. J. Rice Sci. 2024, 1–12. [Google Scholar]
- Goharrizi, K.; Karami, S.; Basaki, T.; Dehnavi, M.; Nejat, M.A.; Momeni, M.M.; Meru, G. Transcriptomic and Proteomic Mechanisms Underlying Cold Tolerance in Plants. Biol. Plant. 2022, 66, 240–254. [Google Scholar] [CrossRef]
- Cheng, M.; Zheng, J.; Cui, K.; Luo, X.; Yang, T.; Pan, Z.; Zhou, Y.; Chen, S.; Chen, Y.; Wang, H.; et al. Transcriptomics Integrated with Metabolomics Provides a New Strategy for Mining Key Genes in Response to Low Temperature Stress in Helictotrichon Virescens. Int. J. Biol. Macromol. 2023, 242, 125070. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, H.; Li, X.; Ji, H. Enhancement of Plant Cold Tolerance by Soybean RCC1 Family Gene GmTCF1a. BMC Plant Biol. 2021, 21, 369. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, A.; Bipfubusa, M.; Castonguay, Y.; Rocher, S.; Szopinska-Morawska, A.; Papadopoulos, Y.; Renaut, J. A Proteome Analysis of Freezing Tolerance in Red Clover (Trifolium pratense L.). BMC Plant Biol. 2016, 16, 65. [Google Scholar] [CrossRef]
- Zheng, S.; Su, M.; Wang, L.; Zhang, T.; Wang, J.; Xie, H.; Wu, X.; Haq, S.I.U.; Qiu, Q.-S. Small Signaling Molecules in Plant Response to Cold Stress. J. Plant Physiol. 2021, 266, 153534. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Feng, J.; Liu, D.; Long, C. Different Phenylalanine Pathway Responses to Cold Stress Based on Metabolomics and Transcriptomics in Tartary Buckwheat Landraces. J. Agric. Food Chem. 2022, 70, 687–698. [Google Scholar] [CrossRef] [PubMed]
NO. | Gene ID | Forward Primer | Reverse Primer |
---|---|---|---|
1 | evm.TU.ctg3729.65 | ATGGCTGCTTCTTCCAACAC | AGCTCATGAGACGTTCAATG |
2 | evm.TU.ctg8859.158 | CAAAGACAGTTTGTGTCACG | TCTTGGATGGTGGCATGGAC |
3 | evm.TU.ctg10104.25 | CTTCCTCAACTCCCTCACCT | GAAGTTGATTCGGCGTCGAT |
4 | evm.TU.ctg5993.28 | AGAAGACAAGCTTTGGAGAG | CCCAATAGGGTACACTTTCT |
5 | evm.TU.ctg3507.25 | TTTGGCCTCTGGTTTGGTTC | ACTGGTTCGGTGGCTACAAC |
6 | evm.TU.ctg6312.12 | ACCCTCCAATTTCCAAAGTC | CTATGGTACCAATTACGAGG |
7 | evm.TU.ctg4592.109 | ATGGGGGGTCTTTGTTCTAA | CCCTCCTTTACACTTGTCAA |
8 | evm.TU.ctg7070.226 | CTTCACTTCACTCACTCACT | AGCGAGATGCTTTCAATGAG |
9 | evm.TU.ctg4437.300 | ATGGGCACTGTGATTGACTC | CAAATTTGAGGAGTGCAGTG |
10 | evm.TU.ctg5993.15 | CTGTTTTCAGGAGAGTTACC | GAACTCCCCGAAGTGTGAAA |
11 | evm.TU.ctg1707.227 | CCATCTAACCAAACCCGACG | AACTCAACTTCGTCGTCAGG |
12 | evm.TU.ctg11098.136 | GAGTTGTGCACTTAGATTGC | CGCTAGATGAGAATAGGAGA |
13 | evm.TU.ctg3686.26 | TTGGTGGAGCTTTTTGTGAG | CTCCCTTTGCCAAATCCAAA |
14 | evm.TU.ctg10149.89 | ATGGCGAGTAAAAGTGCTGA | TTTCCCGAGCTAGCATTGCC |
15 | evm.TU.ctg8474.31 | GTTTTCTGAAAGATTGGGGG | CAACTTCTGGCTAACACTCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, K.; Wang, S.; Zhang, H.; Ma, Y.; Wu, Q.; Wang, M. Widely Targeted Metabolomics and Transcriptomics Analysis of the Response and Adaptation Mechanisms of Trifolium ambiguum to Low-Temperature Stress. Agronomy 2025, 15, 308. https://doi.org/10.3390/agronomy15020308
Cao K, Wang S, Zhang H, Ma Y, Wu Q, Wang M. Widely Targeted Metabolomics and Transcriptomics Analysis of the Response and Adaptation Mechanisms of Trifolium ambiguum to Low-Temperature Stress. Agronomy. 2025; 15(2):308. https://doi.org/10.3390/agronomy15020308
Chicago/Turabian StyleCao, Kefan, Sijing Wang, Huimin Zhang, Yiming Ma, Qian Wu, and Mingjiu Wang. 2025. "Widely Targeted Metabolomics and Transcriptomics Analysis of the Response and Adaptation Mechanisms of Trifolium ambiguum to Low-Temperature Stress" Agronomy 15, no. 2: 308. https://doi.org/10.3390/agronomy15020308
APA StyleCao, K., Wang, S., Zhang, H., Ma, Y., Wu, Q., & Wang, M. (2025). Widely Targeted Metabolomics and Transcriptomics Analysis of the Response and Adaptation Mechanisms of Trifolium ambiguum to Low-Temperature Stress. Agronomy, 15(2), 308. https://doi.org/10.3390/agronomy15020308