Abscisic Acid Can Improve the Salt Tolerance and Yield of Rice by Improving Its Physiological Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Determination of Morphology Indices and Methods
2.2.1. Determination of Morphology Indices
2.2.2. Determination of the Chlorophyll Content of the Leaves
2.2.3. Determination of the Leaf Photosynthetic Parameters
2.2.4. Active Oxygen Content
2.2.5. Osmoregulatory Substance Content
2.2.6. Determination of Enzyme Indexes
2.2.7. Determination of Yield and Its Constituent Factors
2.3. Statistical Analysis
3. Results
3.1. Effect of Abscisic Acid on Rice Morphogenesis Under Salt Stress
3.2. Effects of Abscisic Acid on Photosynthetic Pigments of Rice Under Salt Stress
3.3. Effects of Abscisic Acid on the Photosynthesis of Rice Under Salt Stress
3.4. Effects of Abscisic Acid on the Antioxidant System of Rice Under Salt Stress
3.5. Effects of Abscisic Acid on Oxidative Metabolism Under Salt Stress
3.6. Effects of Abscisic Acid on Osmoregulatory Substances Under Salt Stress
3.7. Effects of Abscisic Acid on Rice Yield and Its Constituent Indices Under Salt Stress
4. Discussion
4.1. Effects of Exogenous Abscisic Acid on the Growth and Development of Rice Under Salt Stress
4.2. Effects of Exogenous Abscisic Acid on Rice Photosynthesis Under Salt Stress
4.3. Effects of Exogenous Abscisic Acid on the Antioxidant System of Rice Under Salt Stress
4.4. Effects of Exogenous Abscisic Acid on Osmotic Regulatory Substances in Rice Leaves Under Salt Stress
4.5. Effects of Exogenous Abscisic Acid on Rice Yield and Yield Composition Under Salt Stress
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lou, Y.; Xu, M.; Wang, W.; Sun, X.; Zhao, K. Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil Tillage Res. 2011, 113, 70–73. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Jagendorf, A.; Zhu, J.K. Understanding and improving salt tolerance in plants. Crop Sci. 2005, 45, 437–448. [Google Scholar] [CrossRef]
- Negacz, K.; Malek, Ž.; de Vos, A.; Vellinga, P. Saline soils worldwide: Identifying the most promising areas for saline agriculture. J. Arid Environ. 2022, 203, 104775. [Google Scholar] [CrossRef]
- Li, J.G.; Pu, L.J.; Zhu, M.; Zhang, R. The Present Situation and Hot Issues in the Salt-affected Soil Research. Acta Geogr. Sin. 2012, 67, 1233–1245. [Google Scholar]
- Thitisaksakul, M.; Tananuwong, K.; Shoemaker, C.F.; Chun, A.; Tanadul, O.-u.-m.; Labavitch, J.M.; Beckles, D.M. Effects of timing and severity of salinity stress on rice (Oryza sativa L.) yield, grain composition, and starch functionality. J. Agric. Food Chem. 2015, 63, 2296–2304. [Google Scholar] [CrossRef] [PubMed]
- Grattan, S.R.; Zeng, L.; Shannon, M.C.; Roberts, S.R. Rice is more sensitive to salinity than previously thought. Calif. Agric. 2002, 56, 189–195. [Google Scholar] [CrossRef]
- Khatun, S.; Flowers, T. Effects of salinity on seed set in rice. Plant Cell Environ. 1995, 18, 61–67. [Google Scholar] [CrossRef]
- Jia, X.-M.; Wang, H.; Svetla, S.; Zhu, Y.-F.; Hu, Y.; Cheng, L.; Zhao, T.; Wang, Y.-X. Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali and saline-alkali stress. Sci. Hortic. 2019, 245, 154–162. [Google Scholar] [CrossRef]
- Chapman, J.M.; Muhlemann, J.K.; Gayomba, S.R.; Muday, G.K. RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem. Res. Toxicol. 2019, 32, 370–396. [Google Scholar] [CrossRef] [PubMed]
- Ponce, K.S.; Guo, L.; Leng, Y.; Meng, L.; Ye, G. Advances in sensing, response and regulation mechanism of salt tolerance in rice. Int. J. Mol. Sci. 2021, 22, 2254. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Y.; Hussain, S.; Yang, S.; Li, R.; Liu, S.; Chen, Y.; Wei, H.; Dai, Q.; Hou, H. Study on the effect of salt stress on yield and grain quality among different rice varieties. Front. Plant Sci. 2022, 13, 918460. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.R.; Ashfaque, F.; Chhillar, H.; Irfan, M.; Khan, N.A. The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators. Plant Physiol. Biochem. 2021, 162, 36–47. [Google Scholar] [CrossRef]
- Desta, B.; Amare, G. Paclobutrazol as a plant growth regulator. Chem. Biol. Technol. Agric. 2021, 8, 1. [Google Scholar] [CrossRef]
- Taheri, Z.; Vatankhah, E.; Jafarian, V. Methyl jasmonate improves physiological and biochemical responses of Anchusa italica under salinity stress. S. Afr. J. Bot. 2020, 130, 375–382. [Google Scholar] [CrossRef]
- Dar, T.A.; Uddin, M.; Khan, M.M.A.; Hakeem, K.; Jaleel, H. Jasmonates counter plant stress: A review. Environ. Exp. Bot. 2015, 115, 49–57. [Google Scholar] [CrossRef]
- Ren, F.; Zhang, R.J.; Chen, Q.; Bai, Y.; Huang, F.; Li, X. Progress in ABA and SA Improving Plant Drought Resistance and Salt Resistance. Biotechnol. Bull. 2012, 29, 17–21. [Google Scholar]
- Jiang, W.; Wang, X.; Wang, Y.; Du, Y.; Zhang, S.; Zhou, H.; Feng, N.; Zheng, D.; Ma, G.; Zhao, L. S-ABA Enhances Rice Salt Tolerance by Regulating Na+/K+ Balance and Hormone Homeostasis. Metabolites 2024, 14, 181. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zheng, D.; Feng, N.; Zhou, H.; Mu, D.; Zhao, L.; Shen, X.; Rao, G.; Meng, F.; Huang, A. Physiological mechanisms of ABA-induced salinity tolerance in leaves and roots of rice. Sci. Rep. 2022, 12, 8228. [Google Scholar] [CrossRef] [PubMed]
- Sripinyowanich, S.; Klomsakul, P.; Boonburapong, B.; Bangyeekhun, T.; Asami, T.; Gu, H.; Buaboocha, T.; Chadchawan, S. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ. Exp. Bot. 2013, 86, 94–105. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Z.; Fu, W.; Ye, J.; Ma, J.; Hao, L.; Chang, Z.; Zheng, Y. Effect of exogenous abscisic acid (ABA) on the growth, stomatal traits, and photosynthesis of maize seedings under NaCl stress. Chin. J. Ecol. 2021, 40, 2005–2015. [Google Scholar]
- Huang, A.Q.; Ma, G.H.; Zhao, L.M.; Jiang, W.X.; Feng, N.J.; Zheng, D.F.; Zhan, P.F.; Zou, W.L. Effects of S-ABA Soaking of Seeds on Growth and Physiological Characteristics of Rice Seedings Under Salt Stress. Hybrid Rice 2023, 38, 124–134. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar]
- Feng, N.; Yu, M.; Li, Y.; Jin, D.; Zheng, D. Prohexadione-calcium alleviates saline-alkali stress in soybean seedlings by improving the photosynthesis and up-regulating antioxidant defense. Ecotox Environ. Safe 2021, 220, 112369. [Google Scholar] [CrossRef] [PubMed]
- Anastasiou, E.; Lorentz, K.O.; Stein, G.J.; Mitchell, P.D. Prehistoric schistosomiasis parasite found in the Middle East. Lancet Infect. Dis. 2014, 14, 553–554. [Google Scholar] [CrossRef] [PubMed]
- Kučerová, K.; Henselová, M.; Slováková, Ľ.; Hensel, K. Effects of plasma activated water on wheat: Germination, growth parameters, photosynthetic pigments, soluble protein content, and antioxidant enzymes activity. Plasma Process. Polym. 2019, 16, 1800131. [Google Scholar] [CrossRef]
- Demiral, T.; Türkan, I. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot. 2005, 53, 247–257. [Google Scholar] [CrossRef]
- Zhang, L.; Pei, Y.; Wang, H.; Jin, Z.; Liu, Z.; Qiao, Z.; Fang, H.; Zhang, Y. Hydrogen sulfide alleviates cadmium-induced cell death through restraining ROS accumulation in roots of Brassica rapa L. ssp. pekinensis. Oxidative Med. Cell. Longev. 2015, 2015, 804603. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Li, G.; Islam, M.; Fu, W.; Zhou, Y.; Chen, T.; Tao, L.; Fu, G. Strengthened antioxidant capacity improves photosynthesis by regulating stomatal aperture and ribulose-1, 5-bisphosphate carboxylase/oxygenase activity. Plant Sci. 2020, 290, 110245. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.-Y.; Liu, J.-Y.; Li, H.; Hu, W.-J.; Shen, Z.-J.; Qiao, F.; Zhu, C.-Q.; Chen, J.; Liu, X.; Zheng, H.-L. Proteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlings. Nitric Oxide 2021, 111, 14–30. [Google Scholar] [CrossRef]
- Kenawy, E.-R.; Rashad, M.; Hosny, A.; Shendy, S.; Gad, D.; Saad-Allah, K.M. Enhancement of growth and physiological traits under drought stress in Faba bean (Vicia faba L.) using nanocomposite. J. Plant Interact. 2022, 17, 404–418. [Google Scholar] [CrossRef]
- Hu, C.-H.; Zheng, Y.; Tong, C.-L.; Zhang, D.-J. Effects of exogenous melatonin on plant growth, root hormones and photosynthetic characteristics of trifoliate orange subjected to salt stress. Plant Growth Regul. 2022, 97, 551–558. [Google Scholar] [CrossRef]
- Parveen, A.; Ahmar, S.; Kamran, M.; Malik, Z.; Ali, A.; Riaz, M.; Abbasi, G.H.; Khan, M.; Sohail, A.B.; Rizwan, M. Abscisic acid signaling reduced transpiration flow, regulated Na+ ion homeostasis and antioxidant enzyme activities to induce salinity tolerance in wheat (Triticum aestivum L.) seedlings. Environ. Technol. Innov. 2021, 24, 101808. [Google Scholar] [CrossRef]
- Yu, M.L.; Zuo, G.Q.; Li, Y.; Zheng, D.F.; Feng, N.J. Effects of prohexadione-calcium on photosynthetic characteristics and protective enzyme activity of soybean seedings under saline-alkali stress. Chin. J. Oil Crop Sci. 2019, 41, 741–749. [Google Scholar]
- Wang, X.; Wang, W.; Huang, J.; Peng, S.; Xiong, D. Diffusional conductance to CO2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa). Physiol. Plant. 2018, 163, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, W.; Li, Q. Responses of rice leaf photosynthetic parameters to light in tensity under NaCl stress. Chin. J. Appl. Ecol. 2006, 17, 1588–1592. [Google Scholar]
- Qiu, G.J.; Yu, M.; Hu, W.X.; Chen, K.; Yao, Z.Y. Effects of salt stress on growth and physiological and biochemical characteristics of Lagerstroemia india “Pink Velour”. Jiangsu Agric. Sci. 2018, 46, 123–126. [Google Scholar]
- Zhu, S.-Q.; Chen, M.-W.; Ji, B.-H.; Jiao, D.-M.; Liang, J.-S. Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris). J. Exp. Bot. 2011, 62, 4617–4625. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Yan, J.; Shen, G.; Fu, L.; Holaday, A.S.; Auld, D.; Blumwald, E.; Zhang, H. Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol. 2005, 46, 1848–1854. [Google Scholar] [CrossRef]
- Harizanova, A.; Koleva-Valkova, L. Effect of silicon on photosynthetic rate and the chlorophyll fluorescence parameters at hydroponically grown cucumber plants under salinity stress. J. Cent. Eur. Agric. 2019, 20, 953–960. [Google Scholar] [CrossRef]
- Ling, Y.H.; Zhou, Y.; Jing, B.; Li, C.L.; Xiao, E.S.; Wang, Z.H. Effects of salt stress on growth and physiological characteristics of sunflower at seeding stage. Agric. Res. Arid Areas 2019, 37, 139–145. [Google Scholar]
- Ye, Z.P.; Zheng, Z.; Kang, H.J.; Wang, F.B.; An, T.; Duan, S.H. Stomatal and non-stomatal limitations on photosynthesis of flag leaf of medium mature indica rice at early earring stage under natural conditions. Chin. J. Ecol. 2019, 38, 1004–1012. [Google Scholar]
- Shabala, S.; Cuin, T.A. Potassium transport and plant salt tolerance. Physiol. Plant. 2008, 133, 651–669. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Xie, Y.; Sun, G.; Wang, L.; Tang, Y. Effects of spraying abscisic acid on photosynthetic physiology of lettuce seedlings under salt stress. In Proceedings of IOP Conference Series: Earth and Environmental Science, Paris, France, 7–9 February 2018; p. 052011. [Google Scholar]
- Theerakulpisut, P.; Nounjan, N.; Kumon-Sa, N. Spermidine priming promotes germination of deteriorated seeds and reduced salt stressed damage in rice seedlings. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12130. [Google Scholar] [CrossRef]
- Liu, X.-L.; Zhang, H.; Jin, Y.-Y.; Wang, M.-M.; Yang, H.-Y.; Ma, H.-Y.; Jiang, C.-J.; Liang, Z.-W. Abscisic acid primes rice seedlings for enhanced tolerance to alkaline stress by upregulating antioxidant defense and stress tolerance-related genes. Plant Soil 2019, 438, 39–55. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Mir, R.A.; Alyemeni, M.N.; Ahmad, P. Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Physiol. Biochem. 2020, 147, 31–42. [Google Scholar] [CrossRef]
- Vaidyanathan, H.; Sivakumar, P.; Chakrabarty, R.; Thomas, G. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—Differential response in salt-tolerant and sensitive varieties. Plant Sci. 2003, 165, 1411–1418. [Google Scholar] [CrossRef]
- Bhaskara, G.B.; Nguyen, T.T.; Yang, T.-H.; Verslues, P.E. Comparative analysis of phosphoproteome remodeling after short term water stress and ABA treatments versus longer term water stress acclimation. Front. Plant Sci. 2017, 8, 523. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lin, B.Y.; Li, C.X.; Wu, H.Q.; Zu, Y.D.; Zhong, L.M. Effects of exogenous abscisic acid on physiological characteristics of eggplant seedlings under salt stress. J. Henan Agric. Univ. 2020, 54, 231–236. [Google Scholar]
- Zhang, W.; Zhao, X.H.; Zhou, M.Y.; Guo, H.J.; Zhang, L.Y.; Fu, Z.Q.; Long, P. Effects of Salt Stress on Stress Resistance Physiology, Yield and Quality of Sea Rice. Mol. Plant Breed. 1–12. Available online: https://link.cnki.net/urlid/46.1068.S.20230301.1422.019 (accessed on 3 December 2024).
- Li, H.Y.; Pan, S.J.; Qian, Y.D.; Ma, Y.; Si, Y.; Gao, S.; Zheng, G.P.; Jiang, Y.W.; Zhou, J. Effects of saline-alkali stress on yield and quality of rice in cold region. J. South. Agric. 2015, 46, 2100–2105. [Google Scholar]
- Yousaf Ali, Y.A.; Aslam, Z.; Awan, A.; Hussain, F.; Cheema, A. Screening rice (Oryza sativa L.) lines/cultivars against salinity in relation to morphological and physiological traits and yield components. Int. J. Agric. Biol. 2004, 6, 572–575. [Google Scholar]
- Chen, S.R.; Yu, Y.H. Research of Applying Combinations of Humic Acid Microbial Fertilizer, S-Abscisic Acid and Titanium in Rice Production. Chem. Fertil. Ind. 2018, 2, 64–69. [Google Scholar]
Treatment | Plant Height (cm) | Stem Thickness (cm) | Leaf Area (cm2) | Above-Ground Dry Weight (g) |
---|---|---|---|---|
CK | 76.10 ± 0.53 a | 12.03 ± 0.15 ab | 9774.57 ± 204.01 a | 3.71 ± 0.19 a |
S1 | 74.37 ± 0.32 ab | 11.50 ± 0.20 bc | 9471.85 ± 286.25 a | 3.28 ± 0.26 abc |
S2 | 72.83 ± 0.55 abc | 11.65 ± 0.05 b | 8771.23 ± 179.75 a | 3.47 ± 0.16 ab |
NA | 63.53 ± 2.03 d | 10.40 ± 0.25 c | 3199.05 ± 87.25 c | 1.83 ± 0.27 d |
NAS1 | 70.13 ± 0.09 c | 13.03 ± 0.26 ab | 4480.00 ± 457.17 c | 2.43 ± 0.13 cd |
NAS2 | 72.13 ± 1.51 bc | 13.15 ± 0.95 a | 5824.20 ± 643.51 b | 2.79 ± 0.55 bc |
Treatment | Effective Panicle Number (Panicle·pot−1) | Number of Primary Branches | Number of Secondary Branches | Number of Spikelets per Panicle (Spikelet·Panicle−1) | Percentage of Filled Grains (%) | 1000-Grain Weight (g−1) | Yield (g/Plant) |
---|---|---|---|---|---|---|---|
CK | 12.50 ± 0.50 ab | 12.00 ± 0.58 ab | 14.67 ± 0.33 ab | 137.67 ± 6.49 a | 66.57 ± 0.01 bc | 19.05 ± 1.27 bc | 6.95 ± 0.09 bc |
S1 | 13.50 ± 1.50 a | 11.33 ± 0.33 bc | 18.33 ± 0.67 a | 141.50 ± 6.50 a | 74.9 ± 0.06 ab | 20.81 ± 0.41 ab | 7.463 ± 0.26 ab |
S2 | 13.67 ± 1.20 a | 12.67 ± 0.33 a | 19.00 ± 3.51 a | 144.67 ± 4.91 a | 79.36 ± 0.01 a | 22.49 ± 0.54 a | 7.67 ± 0.46 a |
NA | 8.50 ± 1.50 b | 10.33 ± 0.33 c | 10.67 ± 0.33 b | 109.00 ± 0.58 b | 55.02 ± 0.02 d | 15.81 ± 0.89 d | 5.02 ± 0.22 e |
NAS1 | 9.00 ± 1.15 b | 10.50 ± 0.50 c | 12.67 ± 0.88 b | 119.33 ± 3.67 ab | 69.35 ± 0.01 cd | 17.65 ± 0.53 cd | 5.76 ± 0.20 d |
NAS2 | 10.00 ± 1.00 ab | 11.00 ± 0.00 bc | 14.00 ± 0.58 ab | 136.00 ± 14.53 a | 69.66 ± 0.03 bc | 19.20 ± 0.73 bc | 6.49 ± 0.10 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ma, G.; Feng, N.; Zheng, D.; Zhou, H.; Li, J.; Wu, J.; Xu, B.; Su, W.; Huang, Y. Abscisic Acid Can Improve the Salt Tolerance and Yield of Rice by Improving Its Physiological Characteristics. Agronomy 2025, 15, 309. https://doi.org/10.3390/agronomy15020309
Wang X, Ma G, Feng N, Zheng D, Zhou H, Li J, Wu J, Xu B, Su W, Huang Y. Abscisic Acid Can Improve the Salt Tolerance and Yield of Rice by Improving Its Physiological Characteristics. Agronomy. 2025; 15(2):309. https://doi.org/10.3390/agronomy15020309
Chicago/Turabian StyleWang, Xi, Guohui Ma, Naijie Feng, Dianfeng Zheng, Hang Zhou, Jiahuang Li, Jiashuang Wu, Bing Xu, Weiling Su, and Yixi Huang. 2025. "Abscisic Acid Can Improve the Salt Tolerance and Yield of Rice by Improving Its Physiological Characteristics" Agronomy 15, no. 2: 309. https://doi.org/10.3390/agronomy15020309
APA StyleWang, X., Ma, G., Feng, N., Zheng, D., Zhou, H., Li, J., Wu, J., Xu, B., Su, W., & Huang, Y. (2025). Abscisic Acid Can Improve the Salt Tolerance and Yield of Rice by Improving Its Physiological Characteristics. Agronomy, 15(2), 309. https://doi.org/10.3390/agronomy15020309