Synergistic Ability and Effect of Leaf Color and Leaf Thickness to Improve the Photosynthetic Performance of Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Measurement Index and Method
2.3.1. Leaf Thickness Measurement
2.3.2. Net Photosynthetic Rate Determination
2.3.3. Measurement of Light Saturation Point and Light Compensation Point
2.3.4. Measurement of Light Reflectivity
2.3.5. Determination of Chlorophyll Content
2.3.6. Chlorophyll Fluorescence Parameters
2.3.7. Material Accumulation
2.3.8. Production Testing and Seed Testing
2.4. Data Analysis
3. Results
3.1. Daily Variations in Photosynthetic Rate
3.2. Light Saturation Point and Light Compensation Point
3.3. Chlorophyll Content
3.4. Chlorophyll Fluorescence
3.5. Characteristics of Light Absorption Capacity in Wheat Population
3.6. Dry Matter Accumulation and Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Tang, Y.; Li, C.S.; Wu, X.; Tao, X.; Liu, M. Climate warming causes changes in wheat phenological development that benefit yield in the Sichuan Basin of China. Eur. J. Agron. 2022, 139, 126574. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Men, X.Y.; Hui, C.; Ge, F.; Fang, O.Y. Wheat yield losses from pests and pathogens in China. Agric. Ecosyst. Environ. 2022, 326, 107821. [Google Scholar] [CrossRef]
- Bhandari, R.; Samir, G.; Shivalal, N.; Shiva, K.; Muktiram, P.; Prabin, P. Effect of drought & irrigated environmental condition on yield & yield attributing characteristic of bread wheat—A review. Rev. Food Agric. 2021, 2, 59–62. [Google Scholar]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef]
- Iqbal, N.; Sehar, Z.; Fatma, M.; Khan, S.; Alvi, A.F.; Iqbal, R.M.; Masood, A.; Khan, N.A. Melatonin reverses high-temperature-stress-inhibited photosynthesis in the presence of excess sulfur by modulating ethylene sensitivity in mustard. Plants 2023, 12, 3160. [Google Scholar] [CrossRef]
- Niu, Y.F.; Li, J.Y.; Sun, F.T.; Song, T.Y.; Han, B.J.; Liu, Z.J.; Su, P.S. Comparative transcriptome analysis reveals the key genes and pathways involved in drought stress response of two wheat (Triticum aestivum L.) varieties. Genomics 2023, 115, 110688. [Google Scholar] [CrossRef]
- Dradrach, A.; Iqbal, M.; Lewinska, K.; Jedroszka, N.; Gull-e-Faran; Rana, M.A.K.; Tanzeem-ul-Haq, H.S. Effects of soil application of chitosan and foliar melatonin on growth, photosynthesis, and heavy metals accumulation in wheat growing on wastewater polluted soil. Sustainability 2022, 14, 8293. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, V.; Kumari, P.S.; Kumar, S.P.; Kaur, A.; Sharma, D. Abiotic Stress and Wheat Grain Quality: A Comprehensive Review. In Wheat Production in Changing Environments; Springer: Singapore, 2019; pp. 63–87. [Google Scholar]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Abdul, S.; Ahmad, S.; Muhammad, I.; Sami, U.; Sajjad, H.; Umair, R.; Jamshad, H.; Salem, M.A.; Nadi, A.A.; Samy, F.M.; et al. Modulation of antioxidant defense mechanisms and Morpho-physiological attributes of wheat through exogenous application of silicon and melatonin under water deficit conditions. Sustainability 2023, 15, 7426. [Google Scholar] [CrossRef]
- Smith, E.N.; van Aalst, M.; Tosens, T.; Niinemets, U.; Stich, B.; Morosinotto, T.; Alboresi, A.; Erb, T.J.; Gomez-Coronado, P.A.; Tolleter, D.; et al. Improving photosynthetic efficiency toward food security: Strategies, advances, and perspectives. Mol. Plant 2023, 16, 1674–2052. [Google Scholar] [CrossRef]
- Song, Q.; Su, R.; Chai, Y.; Goudia, B.D.; Chen, L.; Hu, Y.G. High photosynthetic capability observed in the wheat germplasm with rye chromosomes. J. Plant Physiol. 2017, 216, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Lawson, T.; Kramer, D.M.; Raines, C.A. Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Curr. Opin. Biotechnol. 2012, 23, 215–220. [Google Scholar] [CrossRef]
- Ma, Z.T.; Zhang, Z.; Wang, X.Z.; Yu, Z.W.; Shi, Y. Effect of Nitrogen Management Practices on Photosynthetic Characteristics and Grain Yield of Wheat in High-Fertility Soil. Agronomy 2024, 14, 2197. [Google Scholar] [CrossRef]
- Xu, C.L.; Yin, Y.P.; Cai, R.G.; Wang, Z.L. Photosynthetic characteristics and antioxidative metabolism of flag leaves in responses to shading during grain filling in winter wheat cultivars with different spike types. Acta Agron. Sin. 2012, 38, 1296. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, W.; Li, T.T.; Sun, W.J.; Yu, Y.Q.; Wang, G.C. Projective Analysis of Staple Food Crop Productivity in Adaptation to Future Climate Change in China. Int. J. Biometeorol. 2017, 61, 1445–1460. [Google Scholar] [CrossRef]
- Meenakshi, T.; Rakesh, K. Microclimatic buffering on medicinal and aromatic plants: A Review. Ind. Crops Prod. 2021, 160, 113144. [Google Scholar]
- Li, Y.T.; Yang, C.; Zhang, Z.S.; Zhao, S.J.; Gao, H.Y. Photosynthetic acclimation strategies in response to intermittent exposure to high light intensity in wheat (Triticum aestivum L.). Environ. Exp. Bot. 2021, 181, 104275. [Google Scholar] [CrossRef]
- Daisuke, T.; Hiroaki, I.; Shigeo, T.; Chikahiro, M. Growth light environment changes the sensitivity of photosystem I photoinhibition depending on common wheat cultivars. Front. Plant Sci. 2019, 10, 686. [Google Scholar]
- Ogren, E.M. Estimation of the effect of photoinhibition on the carbon gain in leaves of awillow canopy. Planta 1990, 181, 560–567. [Google Scholar] [CrossRef]
- Wang, X.; Chen, G.D.; Du, S.J.; Wu, H.X.; Fu, R.; Yu, X.B. Light intensity influence on growth and photosynthetic characteristics of Horsfieldia hainanensis. Front. Ecol. Evol. 2021, 9, 636804. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Zhao, Q.; Wang, Z.; Wang, L.H.; Li, X.R.; Fan, Z.R.; Zhang, Y.Q.; Li, J.F.; Gao, X.; Shi, J.; et al. Effects of nitrogen fertilizer on photosynthetic characteristics, biomass, and yield of wheat under different shading conditions. Agronomy 2021, 11, 1989. [Google Scholar] [CrossRef]
- Li, W.Y.; Sun, M.X.; Zeng, F.L.; Wang, F.W. Hyperspectral estimation chlorophyll content in winter wheat leaves under low temperature stress. Chin. J. Agrometeorol. 2022, 43, 137–147, (In Chinese with an English abstract). [Google Scholar]
- Li, H.W.; Jiang, D.; Wollenweber, B.; Dai, T.B.; Cao, W.X. Effiects of shading on morphology, physiology and grain yield of winter wheat. Eur. J. Agron. 2010, 33, 267–275. [Google Scholar] [CrossRef]
- Mu, H.R.; Jiang, D.; Wollenweber, B.; Dai, T.B.; Jing, Q.; Cao, W.X. Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat. J. Agron. Crop Sci. 2010, 196, 38–47. [Google Scholar] [CrossRef]
- Pik, D.; Lucero, J.E.; Lortie, C.J.; Braun, J. Light intensity and seed density differentially affect the establishment, survival, and biomass of an exotic invader and three species of native competitors. Community Ecol. 2020, 21, 259–272. [Google Scholar] [CrossRef]
- Samuel, H.T.; Stephen, P.L. Slow Induction of Photosynthesis on Shade to Sun Transitions in Wheat May Cost at Least 21% of Productivity. Biol. Sci. 2017, 372, 20160543. [Google Scholar]
- Li, G.W.; Ren, Y.; Yang, Y.X.; Chen, S.L.; Zheng, J.Z.; Zhang, X.Q.; Li, J.L.; Chen, M.G.; Sun, X.N.; Lv, C.L.; et al. Genomic analysis of Zhou8425B, a key founder parent, reveals its genetic contributions to elite agronomic traits in wheat breeding. Plant Commun. 2024, 101222. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Hao, C.Y.; Jiao, C.Z.; Hou, J.; Li, T.; Liu, H.X.; Wang, Y.Q.; Zheng, J.; Liu, H.; Bi, Z.H.; Xu, F.F.; et al. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol. Plant 2020, 13, 1733–1751. [Google Scholar] [CrossRef]
- Liu, C.G.; Zhou, X.Q.; Chen, D.G.; Li, L.J.; Li, J.C.; Chen, Y.D. Natural variation of leaf thickness and its association to yield traits in indica rice. J. Integr. Agric. 2014, 13, 316–325. [Google Scholar] [CrossRef]
- Niu, Y.Y.; Chen, T.X.; Zheng, Z.; Zhao, C.C.; Liu, C.J.; Jia, J.Z.; Zhou, M.X. A New Major QTL for Flag Leaf Thickness in Barley (Hordeum vulgare L.). BMC Plant Biol. 2022, 22, 305. [Google Scholar] [CrossRef] [PubMed]
- Umakanta, S.; Shinya, O. Leaf pigmentation, its profiles and radical scavenging activity in selected amaranthus tricolor leafy vegetables. Sci. Rep. 2020, 10, 18617. [Google Scholar]
- Xin, Y.N.U.; Cheng, Q.Q.; Zhang, T.; Liu, X.J.; Huang, H.; Yao, P.J.; Liu, Z.X.; Wan, Z.J.; Fu, T.D. Fine-mapping of the BjPur Gene for Purple Leaf Color in Brassica juncea. Theor. Appl. Genet. 2020, 133, 2989–3000. [Google Scholar]
- Michele, G.; Valentin, R.; Georgi, D.; Sanna, R.; Arpit, J.; Manuela, L.; Kerstin, N.; Vitus, B.; Doris, E.; Gert, B.; et al. Adjustment of photosynthetic activity to drought and fluctuating l Light in wheat. Plant Cell Environ. 2020, 43, 1484–1500. [Google Scholar]
- Zhang, F.; Jiang, N.; Zhang, H.; Huo, Z.; Yang, Z. Effect of Low Temperature on Photosynthetic Characteristics, Senescence Characteristics, and Endogenous Hormones of Winter Wheat “Ji Mai 22” during the Jointing Stage. Agronomy 2023, 13, 2650. [Google Scholar] [CrossRef]
- Wang, Z.X.; Xu, H.Y.; Wang, F.X.; Sun, L.L.; Meng, X.R.; Li, Z.C.; Xie, C.; Jiang, H.J.; Ding, G.S.; Hu, X.R.; et al. EMS-induced missense mutation in TaCHLI-7D affects leaf color and yield-related traits in wheat. Theor. Appl. Genet. 2024, 137, 223. [Google Scholar] [CrossRef]
- Yang, M.; Li, W.B.; Shi, Y. Effects of synergistic phosphate fertilizer on photosynthetic characteristics and senescence of wheat flag leaf in saline-alkali soil. Acta Physiol. Plant. 2024, 46, 56. [Google Scholar] [CrossRef]
- Wang, Z.W.; Qiao, X.M.; Cheng, J.S.; Zong, X.M.; Ding, L.Y.; He, L.X.; Yang, J.H.; Hu, Y.X.; Cheng, G.; Huang, J.; et al. Study on leaf area, relative chlorophyll contents, root traits and yields among the different types of wheat cultivars. J. Southwest Univ. Nat. Sci. Ed. 2016, 38, 10–15. [Google Scholar]
- Nawaz, R.; Nadeem, A.A.; Ishfaq, A.H.; Azeem, K. Impact of climate variables on growth and development of Kinnow fruit (Citrus nobilis Lour x Citrus deliciosa Tenora) grown at different ecological zones under climate change scenario. Sci. Hortic. 2019, 260, 108868. [Google Scholar] [CrossRef]
- Colpo, A.; Demaria, S.; Baldisserotto, C.; Pancaldi, S.; Brestič, M.; Živčak, M.F.L. Long-Term Alleviation of the Functional Phenotype in Chlorophyll-Deficient Wheat and Impact on Productivity: A Semi-Field Phenotyping Experiment. Plants 2023, 12, 822. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.H.; Qin, B.Y.; Yang, J.H.; Ma, L.L.; Cui, G.J.; He, W.; Tang, Y.; Zhang, W.J.; Ma, S.Y.; Ma, C.X.; et al. Night warming increases wheat yield by improving pre-anthesis plant growth and post-anthesis grain starch biosynthesis. J. Integr. Agric. 2024, 23, 536–550. [Google Scholar] [CrossRef]
- Talaat, N.B. Effective Microorganisms: An innovative tool for inducing common bean (Phaseolus vulgaris L.) salt-tolerance by regulating photosynthetic rate and endogenous phytohormones production. Sci. Hortic. 2019, 250, 254–265. [Google Scholar] [CrossRef]
- Huang, Y.J.; Zhai, Y.N.; Huang, Y.; Huang, Y.F.; Liu, K.; Zhang, J.; Zhou, J.H. Effects of light intensity on physiological characteristics and expression of genes in coumarin biosynthetic pathway of Angelica dahurica. Int. J. Mol. Sci. 2022, 23, 15912. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Li, J.; Xu, Q.J.; Chen, C.X.; Nie, S.H.; Lei, J.J.; Duan, L.S. Cytokinin modulates the inhibitory effect of shade stress on photosynthesis, antioxidant capacity and hormone homeostasis to regulate the grain yield in wheat. Front. Plant Sci. 2024, 15, 1498123. [Google Scholar] [CrossRef]
- Yang, W.; Lin, Y.; Xue, Y.; Mao, M.; Zhou, X.; Hu, H.; Liu, J.; Feng, L.; Zhang, H.; Luo, J.; et al. Light Intensity Affects the Coloration and Structure of Chimeric Leaves of Ananas comosus var. Bracteatus. Phyton 2022, 91, 333–348. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2013, 59, 89. [Google Scholar] [CrossRef]
- Lee, B.; Pham, M.D.; Cui, M.Y.; Lee, H.; Hwang, H.; Jang, I.; Chun, C.H. Growth and physiological responses of panax ginseng seedlings as affected by light intensity and photoperiod. Hortic. Environ. Biotechnol. 2022, 63, 835–846. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Yang, Z.Q.; Hou, M.Y. Simulation of light response of photosynthesis of Cucumis sativus L. Leaves under water stress. Chin. J. Agrometeorol. 2017, 38, 644–654. [Google Scholar]
- Zhao, H.; Dai, T.B.; Jing, Q.; Cao, W.X. Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivars. Plant Growth Regul. 2007, 51, 149–158. [Google Scholar] [CrossRef]
- Chu, J.P.; Guo, X.H.; Zheng, F.N.; Zhang, X.; Dai, X.L.; He, M.R. Effect of delayed sowing on grain number, grain weight, and protein concentration of wheat grains at specific positions within spikes. J. Integr. Agric. 2023, 22, 2359–2369. [Google Scholar] [CrossRef]
- Li, T.Y.; Ullah, S.; Liang, H.; Ali, I.; Zhao, Q.; Iqbal, A.; Wei, S.Q.; Shah, T.; Luo, Y.Q.; Jiang, L.G. The enhancement of soil fertility, dry matter transport and accumulation, nitrogen uptake and yield in rice via green manuring. Phyton 2021, 90, 223–243. [Google Scholar] [CrossRef]
Light Intensity (μmol m−2 s−1) | ||||||
---|---|---|---|---|---|---|
8:00 | 10:00 | 12:00 | 14:00 | 16:00 | 18:00 | |
flowering stage | 600 | 900 | 1200 | 1000 | 750 | 400 |
10 days after flowering | 700 | 950 | 1300 | 1100 | 800 | 450 |
15 days after flowering | 700 | 900 | 1300 | 1200 | 800 | 500 |
20 days after flowering | 800 | 1000 | 1400 | 1200 | 1000 | 600 |
Variety | Dry Matter Weight at Flowering Stage | Dry Matter Weight at Maturiity | Transshipment Volume (kg hm−2) | Transfer Efficiency (%) | Contribution Rate (%) | |
---|---|---|---|---|---|---|
2021–2022 | BN4199 | 11,511.92 a | 8890.23 a | 2621.69 a | 22.71 ab | 31.84 a |
AK58 | 9515.09 b | 7699.19 ab | 1815.90 b | 18.96 b | 22.52 b | |
2022–2023 | BN4199 | 10,798.54 ab | 8062.35 ab | 2736.20 a | 25.41 a | 31.24 ab |
AK58 | 9778.10 b | 7547.80 b | 2230.30 ab | 22.85 ab | 31.20 ab |
Year | Variety | Spike Numbers /(104/hm−2) | Grain Number per Spike | 1000-Grain Weight/g | Yield/(kg.hm−2) |
---|---|---|---|---|---|
2021–2022 | BN4199 | 602.9 | 47.3 | 42.7 | 9284 |
AK58 | 628.99 | 45.2 | 41.39 | 8634.5 | |
2022–2023 | BN4199 | 795.76 | 45.2 | 42.98 | 11,200 |
AK58 | 710.15 | 45.8 | 41.55 | 10,511 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, W.; Chang, S.; Feng, S.; Sun, H.; Yue, J.; Qiao, J.; Zheng, W.; Ru, Z. Synergistic Ability and Effect of Leaf Color and Leaf Thickness to Improve the Photosynthetic Performance of Wheat. Agronomy 2025, 15, 325. https://doi.org/10.3390/agronomy15020325
Ding W, Chang S, Feng S, Sun H, Yue J, Qiao J, Zheng W, Ru Z. Synergistic Ability and Effect of Leaf Color and Leaf Thickness to Improve the Photosynthetic Performance of Wheat. Agronomy. 2025; 15(2):325. https://doi.org/10.3390/agronomy15020325
Chicago/Turabian StyleDing, Weihua, Sujing Chang, Suwei Feng, Haili Sun, Junlong Yue, Jian Qiao, Weihua Zheng, and Zhengang Ru. 2025. "Synergistic Ability and Effect of Leaf Color and Leaf Thickness to Improve the Photosynthetic Performance of Wheat" Agronomy 15, no. 2: 325. https://doi.org/10.3390/agronomy15020325
APA StyleDing, W., Chang, S., Feng, S., Sun, H., Yue, J., Qiao, J., Zheng, W., & Ru, Z. (2025). Synergistic Ability and Effect of Leaf Color and Leaf Thickness to Improve the Photosynthetic Performance of Wheat. Agronomy, 15(2), 325. https://doi.org/10.3390/agronomy15020325