Effects of Different Nursery Substrates on the Growth Physiology and Rhizosphere Microorganisms of Two Species of Ornamental Bamboo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Design
2.2. Physicochemical Properties of Nursery Substrates
2.3. Growth Physiology Indicators of Ornamental Bamboo
2.4. Rhizosphere Microorganisms
2.5. Statistical Analysis
3. Results
3.1. Physical and Chemical Properties of the Two Nursery Substrates
3.2. Ornamental Bamboo Growth and Physiological Indicators
3.3. Rhizosphere Microbes
3.3.1. Bacteria
3.3.2. Fungi
3.3.3. Correlation Analysis
4. Discussion
4.1. Effects of the Physicochemical Properties of Nursery Substrates on the Growth and Physiology of Ornamental Bamboo
4.2. Response of Rhizosphere Microorganisms to the Physicochemical Properties of Nursery Substrates
4.3. Synergism Between Rhizosphere Microorganisms and Ornamental Bamboo Growth
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Xue, X.; Tan, J.; Mai, X.; Tian, J. Research on the formulation of organic fertilizer for seedling nursery. Anhui Agric. Sci. 2024, 52, 119–122. [Google Scholar]
- Su, Y.; Zhang, L. Addition of Coco Coir and Rice Hull Ash Improves the Quality of Seedling Substrate Based on Green Waste Compost for Cucurbitaceae Vegetable Seedlings. J. Mater. Cycles Waste Manag. 2024, 26, 562–577. [Google Scholar] [CrossRef]
- Rodríguez-Ortega, W.M.; Martínez, V.; Nieves, M.; Simón, I.; Lidón, V.; Fernandez-Zapata, J.C.; Martinez-Nicolas, J.J.; Cámara-Zapata, J.M.; García-Sánchez, F. Agricultural and Physiological Responses of Tomato Plants Grown in Different Soilless Culture Systems with Saline Water under Greenhouse Conditions. Sci. Rep. 2019, 9, 6733. [Google Scholar] [CrossRef] [PubMed]
- Rasool, S.; Ahmad, I.; Ziaf, K.; Naveed, M. Plant Growth Promoting Rhizobacteria Incorporated Soilless Substrates—A Potential Arena for High Quality Nursery Production of Ornamentals. Sci. Hortic. 2024, 326, 112745. [Google Scholar] [CrossRef]
- Kader, S. Analysis of Physical and Chemical Properties of Alternative Substrate Material for Sustainable Green Roofs. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Ku, C.S. Preplant Superphosphate Amendment and Leaching Fraction on Growth of Potted Poinsettia. HortScience 1995, 30, 858G–858. [Google Scholar] [CrossRef]
- Zhang, X.; Ling, C.; Wu, X.; Fan, S.; Liang, Q.; Zhou, F. Bacterial Diversity and Function Shift of Strawberry Root in Different Cultivation Substrates. Rhizosphere 2023, 26, 100696. [Google Scholar] [CrossRef]
- Shi, B.; Wang, X.; Yang, S.; Chen, H.; Zhao, Y. Addition Pinus massoniana Fallen Wood Improved the Growth of Plagiomnium acutum in a Substrate Cultivation. Sci. Rep. 2022, 12, 17755. [Google Scholar] [CrossRef]
- Wajid, H.A.; Alderfasi, A.A.; Afzal, I.; Junaid, M.B.; Mahmood, A.; Ahmad, A.; Arsal, M.N.; Tahir, M.U. Evaluating the Potential Effect of Seed Priming Techniques in Improving Germination and Root Shoot Length of Maize Seed. Cercet. Agron. Mold. 2018, 51, 5–15. [Google Scholar] [CrossRef]
- Sun, M.; Meng, X.; Peng, T.; Hu, X. Effect of Bacillus methylotrophicus on Tomato Plug Seedling. Horticulturae 2022, 8, 947. [Google Scholar] [CrossRef]
- Gossen, B.D.; Kasinathan, H.; Deora, A.; Peng, G.; McDonald, M.R. Effect of Soil Type, Organic Matter Content, Bulk Density and Saturation on Clubroot Severity and Biofungicide Efficacy. Plant Pathol. 2016, 65, 1238–1245. [Google Scholar] [CrossRef]
- Tang, X.; Xia, M.; Guan, F.; Fan, S. Spatial Distribution of Soil Nitrogen, Phosphorus and Potassium Stocks in Moso Bamboo Forests in Subtropical China. Forests 2016, 7, 267. [Google Scholar] [CrossRef]
- Donatus, E.O.; Essien, B.A.; Nwanja, O.U.; Nweke, P.E. Rice Husk Dust and NPK Improve Soil Chemical Properties and Growth Response of Jatropha. Int. J. Plant Soil Sci. 2021, 33, 10–21. [Google Scholar] [CrossRef]
- Liu, J.; Wang, D.; Yan, X.; Jia, L.; Chen, N.; Liu, J.; Zhao, P.; Zhou, L.; Cao, Q. Effect of Nitrogen, Phosphorus and Potassium Fertilization Management on Soil Properties and Leaf Traits and Yield of Sapindus mukorossi. Front. Plant Sci. 2024, 15, 1300683. [Google Scholar] [CrossRef] [PubMed]
- Simón-Grao, S.; Nieves, M.; Martínez-Nicolás, J.J.; Cámara-Zapata, J.M.; Alfosea-Simón, M.; García-Sánchez, F. Response of Three Citrus Genotypes Used as Rootstocks Grown under Boron Excess Conditions. Ecotoxicol. Environ. Saf. 2018, 159, 10–19. [Google Scholar] [CrossRef]
- Simiele, M.; Argentino, O.; Baronti, S.; Scippa, G.S.; Chiatante, D.; Terzaghi, M.; Montagnoli, A. Biochar Enhances Plant Growth, Fruit Yield, and Antioxidant Content of Cherry Tomato (Solanum lycopersicum L.) in a Soilless Substrate. Agriculture 2022, 12, 1135. [Google Scholar] [CrossRef]
- Ma, C.; Qin, C. Effects of different organic matter ratios on the growth of maize seedlings. Mod. Agric. Sci. Technol. 2021, 13, 9–11. [Google Scholar]
- Jansson, J.K.; McClure, R.; Egbert, R.G. Soil microbiome engineering for sustainability in a changing environment. Nat. Biotechnol. 2023, 41, 1716–1728. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H.; Yao, H.; Zhang, B.; Li, Y.; Jin, S.; Cao, H. Reducing Application of Nitrogen Fertilizer Increases Soil Bacterial Diversity and Drives Co-Occurrence Networks. Microorganisms 2024, 12, 1434. [Google Scholar] [CrossRef]
- Huang, B.; Yan, D.; Wang, Q.; Fang, W.; Song, Z.; Cheng, H.; Li, Y.; Ouyang, C.; Han, Q.; Jin, X.; et al. Effects of Dazomet Fumigation on Soil Phosphorus and the Composition of phoD-Harboring Microbial Communities. J. Agric. Food Chem. 2020, 68, 5049–5058. [Google Scholar] [CrossRef]
- Grunert, O.; Hernandez-Sanabria, E.; Vilchez-Vargas, R.; Jauregui, R.; Pieper, D.H.; Perneel, M.; Van Labeke, M.-C.; Reheul, D.; Boon, N. Mineral and Organic Growing Media Have Distinct Community Structure, Stability and Functionality in Soilless Culture Systems. Sci. Rep. 2016, 6, 18837. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, J.; Zheng, Y.; Jiang, R.; Sang, Y.; Zhang, J. The Effects of Mixed Robinia pseudoacacia and Quercus variabilis Plantation on Soil Bacterial Community Structure and Nitrogen-Cycling Gene Abundance in the Southern Taihang Mountain Foothills. Microorganisms 2024, 12, 1773. [Google Scholar] [CrossRef]
- Ali, A.; Ghani, M.I.; Haiyan, D.; Iqbal, M.; Cheng, Z.; Cai, Z. Garlic Substrate Induces Cucumber Growth Development and Decreases Fusarium Wilt through Regulation of Soil Microbial Community Structure and Diversity in Replanted Disturbed Soil. Int. J. Mol. Sci. 2020, 21, 6008. [Google Scholar] [CrossRef] [PubMed]
- Mechergui, T.; Vanderschaaf, C.L.; Jhariya, M.K.; Banerjee, A.; Raj, A. Sheep Manure Compost: A Viable Growing Substrate for Lettuce Seedling Production. J. Soil Sci. Plant Nutr. 2024, 24, 5108–5119. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Alves-Pereira, I.; Ferreira, R.; Gruda, N.S. Coir, an Alternative to Peat—Effects on Plant Growth, Phytochemical Accumulation, and Antioxidant Power of Spinach. Horticulturae 2021, 7, 127. [Google Scholar] [CrossRef]
- Mariotti, B.; Martini, S.; Raddi, S.; Tani, A.; Jacobs, D.F.; Oliet, J.A.; Maltoni, A. Coconut Coir as a Sustainable Nursery Growing Media for Seedling Production of the Ecologically Diverse Quercus Species. Forests 2020, 11, 522. [Google Scholar] [CrossRef]
- Saviozzi, A.; Levi-Minzi, R.; Cardelli, R.; Riffaldi, R. A Comparison of Soil Quality in Adjacent Cultivated, Forest and Native Grassland Soils. Plant Soil 2001, 233, 251–259. [Google Scholar] [CrossRef]
- Xiang, Y.; Wu, K.; Lu, G.; Peng, L. Methodological study on the determination of organic matter in bulk soil samples by graphite electric hot plate digestion. Arid. Environ. Monit. 2019, 33, 26–29+48. [Google Scholar]
- LY/T1228-2015; State Forestry Administration. Determination of Forest Soil Nitrogen. Forestry Research Institute of China Academy of Forestry Sciences: Beijing, China, 2015; pp. 1–16.
- LY/T1232-2015; State Forestry Administration. Determination of Phosphorus in Forest Soil. Forestry Research Institute of China Academy of Forestry Sciences: Beijing, China, 2015; pp. 1–15.
- LY/T 1234-2015; State Forestry Administration. Determination of Potassium in Forest Soil. Forestry Research Institute of China Academy of Forestry Sciences: Beijing, China, 2015; pp. 1–8.
- Hao, J.J.; Kang, Z.L.; Yu, Y. Experimental Techniques in Plant Physiology; Chemical Industry Press: Beijing, China, 2007. [Google Scholar]
- Yao, X.; Ren, H.; Cao, Z.; Tian, Y.; Cao, W.; Zhu, Y.; Cheng, T. Detecting leaf nitrogen content in wheat with canopy hyperspectrum under different soil backgrounds. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 114–124. [Google Scholar] [CrossRef]
- Ge, J.; Xie, Z. Leaf litter carbon, nitrogen, and phosphorus stoichiometric patterns as related to climatic factors and leaf habits across Chinese broad-leaved tree species. Plant Ecol. 2017, 218, 1063–1076. [Google Scholar] [CrossRef]
- Berg, W.K.; Cunningham, S.M.; Brouder, S.M.; Joern, B.C.; Johnson, K.D.; Volenec, J.J. Influence of phosphorus and potassium on alfalfa yield, taproot C and N pool, and transcript levels of key genes after defoliation. Crop Sci. 2009, 49, 974–982. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, J.; Wang, G.; Guan, Q.; Kuzyakov, Y. Fine Root Extension in Urban Forest Soil Depends on Organic Mulching. Agrofor. Syst. 2023, 97, 235–247. [Google Scholar] [CrossRef]
- Mohawesh, O.; Albalasmeh, A.; Gharaibeh, M.; Deb, S.; Simpson, C.; Singh, S.; Al-Soub, B.; Hanandeh, A.E. Potential use of biochar as an amendment to improve soil fertility and tomato and bell pepper growth performance under arid conditions. J. Soil Sci. Plant Nutr. 2021, 21, 2946–2956. [Google Scholar] [CrossRef]
- Calcan, S.I.; Pârvulescu, O.C.; Ion, V.A.; Răducanu, C.E.; Bădulescu, L.; Madjar, R.; Dobre, T.; Egri, D.; Moț, A.; Iliescu, L.M.; et al. Effects of Biochar on Soil Properties and Tomato Growth. Agronomy 2022, 12, 1824. [Google Scholar] [CrossRef]
- Huang, X.; Li, S.; Li, S.; Ye, G.; Lu, L.; Zhang, L.; Yang, L.; Qian, X.; Liu, J. The Effects of Biochar and Dredged Sediments on Soil Structure and Fertility Promote the Growth, Photosynthetic and Rhizosphere Microbial Diversity of Phragmites communis (Cav.) Trin. Ex Steud. Sci. Total Environ. 2019, 697, 134073. [Google Scholar] [CrossRef]
- Gong, X.; Huang, D.; Liu, Y.; Zeng, G.; Chen, S.; Wang, R.; Xu, P.; Cheng, M.; Zhang, C.; Xue, W. Biochar Facilitated the Phytoremediation of Cadmium Contaminated Sediments: Metal Behavior, Plant Toxicity, and Microbial Activity. Sci. Total Environ. 2019, 666, 1126–1133. [Google Scholar] [CrossRef]
- Luan, M.; Tang, R.J.; Tang, Y.; Tian, W.; Hou, C.; Zhao, F.; Lan, W.; Luan, S. Transport and homeostasis of potassium and phosphate: Limiting factors for sustainable crop production. J. Exp. Bot. 2017, 68, 3091–3105. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, X.; Zhang, X.; Wan, L.; Wang, Z. Effects of biochar application on soil nitrogen and phosphorous leaching loss and oil peony growth. Agric. Water Manag. 2021, 255, 107022. [Google Scholar] [CrossRef]
- Yu, D.; Xiao, L. Correlation analysis of soil nutrients and leaf nutrients with yield in hazelnut orchard. Liaoning For. Sci. Technol. 2020, 3, 11–13+33. [Google Scholar]
- Tang, Y.; Peng, L.; Chun, C.; Lin, L.; Fang, Y.; Yan, X. Correlation analysis of soil and leaf nutrient elements in red soil sweet orange orchard. J. Hortic. 2013, 40, 623–632. [Google Scholar] [CrossRef]
- Lu, C.; Xue, X.; Wang, C.; An, G.; Wang, J. Correlation analysis of fruit quality indexes, leaf nutrition and soil nutrients in apple orchards in Shandong Province. China Agron. Bull. 2011, 27, 168–172. [Google Scholar]
- Tan, P.; Wang, S.; Ameen, A.; Xie, J.; Jiang, G.; Han, L. Fertilizer Application to Balance Nitrogen and Phosphorus Nutrients and Improve Agronomic Traits of Okra (Abelmoschus esculentus L.) in Coastal Saline Soil Under Subsurface Pipe Salt Drainage. J. Soil Sci. Plant Nutr. 2023, 23, 5454–5467. [Google Scholar] [CrossRef]
- Amaresan, N.; Jayakumar, V.; Kumar, K.; Thajuddin, N. Plant Growth-Promoting Effects of Proteus Mirabilis Isolated from Tomato (Lycopersicon esculentum Mill) Plants. Natl. Acad. Sci. Lett. 2021, 44, 453–455. [Google Scholar] [CrossRef]
- Zhu, H.X.; Hu, L.F.; Wang, Y.L.; Mei, P.P.; Zhou, F.; Rozhkova, T.; Li, C.W. Effects of Streptomyces sp. HU2014 inoculation on wheat growth and rhizosphere microbial diversity under hexavalent chromium stres. Ecotoxicol. Environ. Saf. 2024, 276, 116313. [Google Scholar] [CrossRef]
- Jenkins, S.N.; Rushton, S.P.; Lanyon, C.V.; Whiteley, A.S.; Waite, I.S.; Brookes, P.C.; Kemmitt, S.; Evershed, R.P.; O’donnell, A.G. Taxon-specific responses of soil bacteria to the addition of low level C inputs. Soil Biol. Biochem. 2010, 42, 1624–1631. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Metaanalysis of decomposition and priming effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef]
- Dai, Z.; Su, W.; Chen, H.; Barberán, A.; Zhao, H.; Yu, M.; Yu, L.; Brookes, P.C.; Schadt, C.W.; Chang, S.X. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Glob. Change Biol. 2018, 24, 3452–3461. [Google Scholar] [CrossRef]
- Fraser, T.D.; Lynch, D.H.; Bent, E.; Entz, M.H.; Dunfield, K.E. Soil Bacterial phoD Gene Abundance and Expression in Response to Applied Phosphorus and Long-Term Management. Soil Biol. Biochem. 2015, 88, 137–147. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, V.K. Microbial Endophytes; Woodhead Publishing: Cambridge, UK, 2020; pp. 189–229. [Google Scholar]
- Li, J.; Wu, X.; Lu, X.; Hou, D.; Liu, H.; Wang, Y.; Wu, L. Study on the Changes in the Microbial Community in Rhizosphere Soil of Blueberry Plants at Different Growth Stages. Agronomy 2024, 14, 2393. [Google Scholar] [CrossRef]
- Liu, C.; Xia, R.; Tang, M.; Chen, X.; Zhong, B.; Liu, X.; Bian, R.; Yang, L.; Zheng, J.; Cheng, K.; et al. Improved Ginseng Production under Continuous Cropping through Soil Health Reinforcement and Rhizosphere Microbial Manipulation with Biochar: A Field Study of Panax ginseng from Northeast China. Hortic. Res. 2022, 9, uhac108. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Xue, S.; Wang, G. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol. Biochem. 2016, 97, 40–49. [Google Scholar] [CrossRef]
- Liao, J.; Hao, G.; Guo, H.; Chen, H. Effects of biochar on plant and microbial communities in landfill soil. Appl. Soil Ecol. 2024, 204, 105749. [Google Scholar] [CrossRef]
- Yan, K.; Ma, Y.; Bao, S.; Li, W.; Wang, Y.; Sun, C.; Lu, X.; Ran, J. Exploring the Impact of Coconut Peat and Vermiculite on the Rhizosphere Microbiome of Pre-Basic Seed Potatoes under Soilless Cultivation Conditions. Microorganisms 2024, 12, 584. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, L.; Chang, J.; Wang, E.; Wang, C.; Zhang, H.; Pang, Y.; Tian, C. Straw Soil Conditioner Modulates Key Soil Microbes and Nutrient Dynamics across Different Maize Developmental Stages. Microorganisms 2024, 12, 295. [Google Scholar] [CrossRef]
- Simões, M.F.; Antunes, A.; Ottoni, C.A.; Amini, M.S.; Alam, I.; Alzubaidy, H.; Mokhtar, N.; Archer, J.A.C.; Bajic, V.B. Soil and Rhizosphere Associated Fungi in Gray Mangroves (Avicennia marina) from the Red Sea—A Metagenomic Approach. Genom. Proteom. Bioinform. 2015, 13, 310–320. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, X.; Suo, F.; You, X.; Yuan, Y.; Cheng, Y.; Zhang, C.; Li, Y. Effect of biochar and hydrochar from cow manure and reed straw on lettuce growth in an acidified soil. Chemosphere 2022, 298, 134191. [Google Scholar] [CrossRef]
- Shen, C.; Li, X.; Qin, J. Kiwifruit-Agaricus Blazei Intercropping Effectively Improved Yield Productivity, Nutrient Uptake, and Rhizospheric Bacterial Community. Sci. Rep. 2024, 14, 16546. [Google Scholar]
- Visioli, G.; Sanangelantoni, A.M.; Vamerali, T.; Dal Cortivo, C.; Blandino, M. 16S rDNA Profiling to Reveal the Influence of Seed-Applied Biostimulants on the Rhizosphere of Young Maize Plants. Molecules 2018, 23, 1461. [Google Scholar] [CrossRef]
- Ran, T.; Li, J.; Liao, H.; Zhao, Y.; Yang, G.; Long, J. Effects of Biochar Amendment on Bacterial Communities and Their Function Predictions in a Microplastic-Contaminated Capsicum annuum L. Soil. Environ. Technol. Innov. 2023, 31, 103174. [Google Scholar] [CrossRef]
- Heo, Y.M.; Lee, H.; Kim, K.; Kwon, S.L.; Park, M.Y.; Kang, J.E.; Kim, G.-H.; Kim, B.S.; Kim, J.-J. Fungal diversity in intertidal mudflats and abandoned solar salterns as a source for biological resources. Mar. Drugs 2019, 17, 601. [Google Scholar] [CrossRef]
- Tian, L.; Ou, J.; Sun, X.; Miao, Y.; Pei, J.; Zhao, L.; Huang, L. The Discovery of Pivotal Fungus and Major Determinant Factor Shaping Soil Microbial Community Composition Associated with Rot Root of American Ginseng. Plant Signal. Behav. 2021, 16, 1952372. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Xie, H.; Gao, D.; Khashi, U.; Rahman, M.; Zhou, X.; Wu, F. Biochar and Intercropping With Potato–Onion Enhanced the Growth and Yield Advantages of Tomato by Regulating the Soil Properties, Nutrient Uptake, and Soil Microbial Community. Front. Microbiol. 2021, 12, 695447. [Google Scholar] [CrossRef] [PubMed]
- Puchkova, E.P.; Ivchenko, V.K. Incidence of microorganisms antagonistic to plant pathogenic fungi Bipolaris sorokiniana and Fusarium sp. in different soil communities. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 052069. [Google Scholar] [CrossRef]
- Song, M.; Yun, H.Y.; Kim, Y.H. Antagonistic Bacillus Species as a Biological Control of Ginseng Root Rot Caused by Fusarium Cf. incarnatum. J. Ginseng Res. 2014, 38, 136–145. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Jiang, M.; Quan, Y.; Yang, M.; Li, Z.; Yao, J.; Wang, K.; Luo, Z.; Chen, Q. Effects of Different Nursery Substrates on the Growth Physiology and Rhizosphere Microorganisms of Two Species of Ornamental Bamboo. Agronomy 2025, 15, 326. https://doi.org/10.3390/agronomy15020326
Yang M, Jiang M, Quan Y, Yang M, Li Z, Yao J, Wang K, Luo Z, Chen Q. Effects of Different Nursery Substrates on the Growth Physiology and Rhizosphere Microorganisms of Two Species of Ornamental Bamboo. Agronomy. 2025; 15(2):326. https://doi.org/10.3390/agronomy15020326
Chicago/Turabian StyleYang, Menglian, Mingyan Jiang, Yixuan Quan, Meng Yang, Zhi Li, Jieying Yao, Kaiqing Wang, Zhenghua Luo, and Qibing Chen. 2025. "Effects of Different Nursery Substrates on the Growth Physiology and Rhizosphere Microorganisms of Two Species of Ornamental Bamboo" Agronomy 15, no. 2: 326. https://doi.org/10.3390/agronomy15020326
APA StyleYang, M., Jiang, M., Quan, Y., Yang, M., Li, Z., Yao, J., Wang, K., Luo, Z., & Chen, Q. (2025). Effects of Different Nursery Substrates on the Growth Physiology and Rhizosphere Microorganisms of Two Species of Ornamental Bamboo. Agronomy, 15(2), 326. https://doi.org/10.3390/agronomy15020326