Evaluating Two Crop Circle Active Canopy Sensors for In-Season Diagnosis of Winter Wheat Nitrogen Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Active Canopy Sensor Data Collection
2.4. Plant Sampling and Measurements
2.5. Data Analysis
3. Results
3.1. Variability of the N Status Indicators
3.2. Single Wavelength Reflectance at Different Measurement Heights
3.3. Formatting of Mathematical Components
3.4. Correlations between N Status Indicators and Single Wavelength
3.5. Correlations between N Status Indicators and Vegetation Indices
3.6. Evaluating Nitrogen Status Diagnostic Accuracy
4. Discussion
4.1. Impacts of Measurement Heights on Single Wavelengths and Vegetation Indices
4.2. Impacts of Growths Stages on the Estimations of N Status Indicators
4.3. Nitrogen Nutrition Index-Based N Status Diagnosis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miao, Y.; Stewart, B.A.; Zhang, F. Long-term experiments for sustainable nutrient management in China. A review. Agron. Sustain. Dev. 2011, 31, 397–414. [Google Scholar] [CrossRef]
- Diacono, M.; Rubino, P.; Montemurro, F. Precision nitrogen management of wheat. A review. Agron. Sustain. Dev. 2013, 33, 219–241. [Google Scholar] [CrossRef]
- Colaço, A.; Bramley, R. Do crop sensors promote improved nitrogen management in grain crops? Field Crops Res. 2018, 218, 126–140. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Feng, G.; Gao, X.; Liu, B.; Liu, Y.; Li, F.; Khosla, R.; Mulla, D.J.; Zhang, F. Improving nitrogen use efficiency with minimal environmental risks using an active canopy sensor in a wheat-maize cropping system. Field Crops Res. 2017, 214, 365–372. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Li, F.; Gao, X.; Liu, B.; Lu, D.; Chen, X. Developing a new crop circle active canopy sensor-based precision nitrogen management strategy for winter wheat in north china plain. Precis. Agric. 2017, 18, 2–18. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Feng, G.; Gao, X.; Li, F.; Liu, B.; Yue, S.; Cheng, S.; Ustin, S.L.; Khosla, R. Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Comput. Electron. Agric. 2015, 112, 54–67. [Google Scholar] [CrossRef]
- Bushong, J.T.; Mullock, J.L.; Miller, E.C.; Raun, W.R.; Klatt, A.R.; Arnall, D.B. Development of an in-season estimate of yield potential utilizing optical crop sensors and soil moisture data for winter wheat. Precis. Agric. 2016, 17, 451–469. [Google Scholar] [CrossRef]
- Holland, K.H.; Lamb, D.W.; Schepers, J.S. Radiometry of proximal active optical sensors (aos) for agricultural sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1793–1802. [Google Scholar] [CrossRef]
- Barker, D.W.; Sawyer, J.E. Factors affecting active canopy sensor performance and reflectance measurements. Soil Sci. Soc. Am. J. 2013, 77, 1673–1683. [Google Scholar] [CrossRef]
- Kipp, S.; Mistele, B.; Schmidhalter, U. The performance of active spectral reflectance sensors as influenced by measuring distance, device temperature and light intensity. Comput. Electron. Agric. 2014, 100, 24–33. [Google Scholar] [CrossRef]
- Solari, F. Developing a Crop Based Strategy for On-The-Go Nitrogen Management in Irrigated Cornfields. Ph.D. Thesis, University of Nebraska, Lincoln, NE, USA, August 2006. [Google Scholar]
- Hatfield, J.L.; Prueger, J.H. Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sens. 2010, 2, 562–578. [Google Scholar] [CrossRef]
- Li, F.; Miao, Y.; Hennig, S.D.; Gnyp, M.L.; Chen, X.; Jia, L.; Bareth, G. Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precis. Agric. 2010, 11, 335–357. [Google Scholar] [CrossRef]
- Yu, K.; Li, F.; Gnyp, M.L.; Miao, Y.; Bareth, G.; Chen, X. Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the northeast china plain. ISPRS J. Photogram. Remote Sens. 2013, 78, 102–115. [Google Scholar] [CrossRef]
- Eitel, J.U.H.; Keefe, R.F.; Long, D.S.; Davis, A.S.; Vierling, L.A. Active ground optical remote sensing for improved monitoring of seedling stress in nurseries. Sensors 2010, 10, 2843–2850. [Google Scholar] [CrossRef] [PubMed]
- Erdle, K.; Mistele, B.; Schmidhalter, U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Res. 2011, 124, 74–84. [Google Scholar] [CrossRef]
- Shiratsuchi, L.; Ferguson, R.; Shanahan, J.; Adamchuk, V.; Rundquist, D.; Marx, D.; Slater, G. Water and nitrogen effects on active canopy sensor vegetation indices. Agron. J. 2011, 103, 1815–1826. [Google Scholar] [CrossRef]
- Amaral, L.; Molin, J.; Portz, G.; Finazzi, F.; Cortinove, L. Comparison of crop canopy reflectance sensors used to identify sugarcane biomass and nitrogen status. Precis. Agric. 2015, 16, 15–28. [Google Scholar] [CrossRef]
- Li, F.; Mistele, B.; Hu, Y.; Yue, X.; Yue, S.; Miao, Y.; Chen, X.; Cui, Z.; Meng, Q.; Schmidhalter, U. Remotely estimating aerial N status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic zones in China and Germany. Field Crops Res. 2012, 138, 21–32. [Google Scholar] [CrossRef]
- Shaver, T.M.; Khosla, R.; Westfall, D.G. Evaluation of two ground-based active crop canopy sensors in maize: Growth stage, row spacing, and sensor movement speed. Soil Sci. Soc. Am. J. 2010, 74, 2101–2108. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Shen, J.; Yu, W.; Yuan, F.; Cheng, S.; Huang, S.; Wang, H.; Yang, W.; Liu, F. Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with crop circle active crop canopy sensor. Precis. Agric. 2016, 17, 136–154. [Google Scholar] [CrossRef]
- Holland Scientifc. Available online: https://hollandscientific.com/portfolio/crop-circle-acs-430/ (accessed on 11 September 2018).
- Cui, Z.; Zhang, F.; Chen, X.; Miao, Y.; Li, J.; Shi, L.; Xu, J.; Ye, Y.; Liu, C.; Yang, Z.; et al. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crops Res. 2008, 105, 48–55. [Google Scholar] [CrossRef]
- Lu, D.; Lu, F.; Pan, J.; Cui, Z.; Zou, C.; Chen, X.; He, M.; Wang, Z. The effects of cultivar and nitrogen management on wheat yield and nitrogen use efficiency in the north China plain. Field Crops Res. 2015, 171, 157–164. [Google Scholar] [CrossRef]
- Large, E.C. Growth stages in cereals illustration of the feekes scale. Plant Pathol. 1954, 3, 128–129. [Google Scholar] [CrossRef]
- Barnes, E.; Clarke, T.; Richards, S.; Colaizzi, P.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Gitelson, A.A.; Viña, A.S.; Ciganda, V.N.; Rundquist, D.C. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis; Association of Official Agricultural Chemists: Washington, DC, USA, 1970; pp. 17–18. [Google Scholar]
- Lemaire, G.; Jeuffroy, M.-H.; Gastal, F. Diagnosis tool for plant and crop n status in vegetative stage. Eur. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Yue, S.; Meng, Q.; Zhao, R.; Li, F.; Chen, X.; Zhang, F.; Cui, Z. Critical nitrogen dilution curve for optimizing nitrogen management of winter wheat production in the north china plain. Agron. J. 2012, 104, 523–529. [Google Scholar] [CrossRef]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 575–581. ISBN 978-1-118-34328-9. [Google Scholar]
- Winterhalter, L.; Mistele, B.; Schmidhalter, U. Evaluation of active and passive sensor systems in the field to phenotype maize hybrids with high-throughput. Field Crops Res. 2013, 154, 236–245. [Google Scholar] [CrossRef]
- Miao, Y.; Mulla, D.J.; Randall, G.W.; Vetsch, J.A.; Vintila, R. Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn. Precis. Agric. 2009, 10, 45–62. [Google Scholar] [CrossRef]
- Ata-Ul-Karim, S.T.; Liu, X.; Lu, Z.; Zheng, H.; Cao, W.; Zhu, Y. Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crops Res. 2017, 201, 32–40. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Wang, H.; Huang, S.; Cheng, S.; Khosla, R.; Jiang, R. Non-destructive estimation of rice plant nitrogen status with crop circle multispectral active canopy sensor. Field Crops Res. 2013, 154, 133–144. [Google Scholar] [CrossRef]
- Mistele, B.; Schmidhalter, U. Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. Eur. J. Agron. 2008, 29, 184–190. [Google Scholar] [CrossRef]
- Prost, L.; Jeuffroy, M.-H. Replacing the nitrogen nutrition index by the chlorophyll meter to assess wheat N status. Agron. Sustain. Dev. 2007, 27, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Cui, Z.; Chen, X.; Khosla, R.; Dao, T.H.; Miao, Y. Quantifying spatial variability of indigenous nitrogen supply for precision nitrogen management in small scale farming. Precis. Agric. 2012, 13, 45–61. [Google Scholar] [CrossRef]
- Xia, T.; Miao, Y.; Wu, D.; Shao, H.; Khosla, R.; Mi, G. Active optical sensing of spring maize for in-season diagnosis of nitrogen status based on nitrogen nutrition index. Remote Sens. 2016, 8, 605. [Google Scholar] [CrossRef]
- Lu, J.; Miao, Y.; Shi, W.; Li, J.; Yuan, F. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable rapidscan active canopy sensor. Sci. Rep. 2017, 7, 14073. [Google Scholar] [CrossRef] [PubMed]
- Chen, P. A comparison of two approaches for estimating the wheat nitrogen nutrition index using remote sensing. Remote Sens. 2015, 7, 4527–4548. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Zhao, G.; Yuan, F.; Ma, X.; Tan, C.; Yu, W.; Gnyp, M.; Lenz-Wiedemann, V.; Rascher, U.; et al. Satellite remote sensing-based in-season diagnosis of rice nitrogen status in northeast china. Remote Sens. 2015, 7, 10646–10667. [Google Scholar] [CrossRef]
Feekes Growth Stages | Cultivars 1 | N 2 | PNU (kg N ha−1) | NNI | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Range | Mean | SD 3 | CV 4 (%) | Range | Mean | SD | CV (%) | |||
6–7 | LX | 40 | 21.3–195.0 | 108.3 | 49.5 | 45.7 | 0.45–1.61 | 1.11 | 0.36 | 33.7 |
TN | 40 | 22.4–204.8 | 114.4 | 56.3 | 49.2 | 0.42–1.69 | 1.16 | 0.42 | 36.6 | |
All | 80 | 21.3–204.8 | 111.4 | 52.7 | 47.3 | 0.42–1.69 | 1.13 | 0.39 | 34.6 | |
9–10 | LX | 40 | 29.3–246.3 | 155.5 | 68.5 | 44.0 | 0.31–1.35 | 0.96 | 0.33 | 34.7 |
TN | 40 | 23.9–268.4 | 160.5 | 71.7 | 44.6 | 0.32–1.51 | 0.99 | 0.36 | 36.0 | |
All | 80 | 23.9–268.4 | 158.0 | 69.7 | 44.1 | 0.31–1.51 | 0.97 | 0.34 | 35.2 | |
All | LX | 80 | 21.3–246.3 | 131.9 | 63.9 | 48.5 | 0.31–1.61 | 1.03 | 0.35 | 34.3 |
TN | 80 | 22.4–268.4 | 137.5 | 68.1 | 49.5 | 0.32–1.69 | 1.07 | 0.40 | 37.0 | |
All | 160 | 21.3–268.4 | 134.7 | 65.9 | 48.9 | 0.31–1.69 | 1.05 | 0.38 | 35.7 |
Growth Stages | Cultivars 1 | Heights (cm) | PNU | NNI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC-470 | CC-430 | CC-470 | CC-430 | |||||||||||
R550 | R730 | R760 | R670 | R730 | R780 | R550 | R730 | R760 | R670 | R730 | R780 | |||
Feekes 6–7 growth stages | LX | 40 | 0.62 | 0.44 | 0.00 | 0.73 | 0.77 | 0.79 | 0.62 | 0.38 | 0.03 | 0.75 | 0.83 | 0.84 |
70 | 0.54 | 0.29 | 0.49 | 0.77 | 0.80 | 0.84 | 0.54 | 0.29 | 0.49 | 0.81 | 0.85 | 0.87 | ||
100 | 0.48 | 0.16 | 0.72 | 0.76 | 0.80 | 0.83 | 0.63 | 0.28 | 0.68 | 0.74 | 0.83 | 0.83 | ||
TN | 40 | 0.70 | 0.57 | 0.02 | 0.83 | 0.81 | 0.81 | 0.71 | 0.53 | 0.00 | 0.80 | 0.85 | 0.84 | |
70 | 0.68 | 0.52 | 0.23 | 0.84 | 0.82 | 0.82 | 0.64 | 0.46 | 0.30 | 0.85 | 0.86 | 0.84 | ||
100 | 0.53 | 0.38 | 0.65 | 0.84 | 0.85 | 0.86 | 0.67 | 0.55 | 0.55 | 0.79 | 0.86 | 0.83 | ||
All | 40 | 0.66 | 0.51 | 0.00 | 0.76 | 0.78 | 0.79 | 0.66 | 0.46 | 0.01 | 0.75 | 0.83 | 0.83 | |
70 | 0.63 | 0.45 | 0.28 | 0.77 | 0.80 | 0.82 | 0.59 | 0.38 | 0.36 | 0.79 | 0.84 | 0.84 | ||
100 | 0.50 | 0.27 | 0.64 | 0.77 | 0.82 | 0.83 | 0.64 | 0.42 | 0.58 | 0.74 | 0.83 | 0.81 | ||
Feekes 9–10 growth stages | LX | 40 | 0.16 | 0.00 | 0.24 | 0.76 | 0.87 | 0.87 | 0.27 | 0.02 | 0.15 | 0.85 | 0.91 | 0.93 |
70 | 0.23 | 0.01 | 0.75 | 0.84 | 0.92 | 0.93 | 0.32 | 0.00 | 0.69 | 0.84 | 0.92 | 0.93 | ||
100 | 0.37 | 0.05 | 0.73 | 0.74 | 0.87 | 0.87 | 0.44 | 0.08 | 0.72 | 0.83 | 0.91 | 0.93 | ||
TN | 40 | 0.23 | 0.02 | 0.15 | 0.70 | 0.82 | 0.83 | 0.35 | 0.07 | 0.07 | 0.79 | 0.86 | 0.88 | |
70 | 0.31 | 0.03 | 0.61 | 0.71 | 0.83 | 0.82 | 0.38 | 0.05 | 0.56 | 0.79 | 0.86 | 0.87 | ||
100 | 0.35 | 0.13 | 0.47 | 0.69 | 0.81 | 0.81 | 0.40 | 0.15 | 0.49 | 0.77 | 0.85 | 0.86 | ||
All | 40 | 0.19 | 0.00 | 0.19 | 0.73 | 0.84 | 0.85 | 0.29 | 0.04 | 0.11 | 0.81 | 0.88 | 0.90 | |
70 | 0.27 | 0.00 | 0.67 | 0.72 | 0.85 | 0.84 | 0.35 | 0.02 | 0.61 | 0.81 | 0.88 | 0.89 | ||
100 | 0.36 | 0.09 | 0.58 | 0.71 | 0.84 | 0.84 | 0.41 | 0.12 | 0.58 | 0.79 | 0.87 | 0.89 | ||
All growth stages | LX | 40 | 0.28 | 0.15 | 0.00 | 0.51 | 0.57 | 0.49 | 0.42 | 0.09 | 0.12 | 0.80 | 0.87 | 0.88 |
70 | 0.06 | 0.00 | 0.45 | 0.45 | 0.61 | 0.55 | 0.43 | 0.14 | 0.58 | 0.83 | 0.87 | 0.90 | ||
100 | 0.19 | 0.05 | 0.46 | 0.54 | 0.64 | 0.60 | 0.53 | 0.17 | 0.71 | 0.78 | 0.85 | 0.87 | ||
TN | 40 | 0.32 | 0.19 | 0.00 | 0.59 | 0.62 | 0.54 | 0.53 | 0.23 | 0.03 | 0.79 | 0.85 | 0.86 | |
70 | 0.13 | 0.04 | 0.38 | 0.55 | 0.65 | 0.59 | 0.50 | 0.29 | 0.40 | 0.81 | 0.85 | 0.86 | ||
100 | 0.25 | 0.17 | 0.25 | 0.62 | 0.69 | 0.65 | 0.50 | 0.27 | 0.53 | 0.76 | 0.83 | 0.83 | ||
All | 40 | 0.30 | 0.17 | 0.00 | 0.54 | 0.59 | 0.51 | 0.47 | 0.15 | 0.07 | 0.78 | 0.85 | 0.86 | |
70 | 0.10 | 0.01 | 0.10 | 0.49 | 0.63 | 0.57 | 0.46 | 0.22 | 0.47 | 0.80 | 0.85 | 0.87 | ||
100 | 0.22 | 0.11 | 0.39 | 0.57 | 0.66 | 0.62 | 0.51 | 0.23 | 0.59 | 0.75 | 0.83 | 0.84 |
Cultivars 1 | Heights (cm) | PNU | NNI | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CC-470 | CC-430 | CC-470 | CC-430 | |||||||
NDRE | CIRE | NDRE | CIRE | NDRE | CIRE | NDRE | CIRE | |||
Feekes 6–7 growth stages | ||||||||||
LX | 40 | 0.51 | 0.47 | 0.78 | 0.79 | 0.67 | 0.64 | 0.84 | 0.84 | |
70 | 0.81 | 0.82 | 0.82 | 0.84 | 0.83 | 0.83 | 0.86 | 0.87 | ||
100 | 0.70 | 0.70 | 0.82 | 0.83 | 0.80 | 0.81 | 0.84 | 0.83 | ||
TN | 40 | 0.52 | 0.47 | 0.81 | 0.81 | 0.66 | 0.62 | 0.85 | 0.84 | |
70 | 0.86 | 0.87 | 0.82 | 0.82 | 0.86 | 0.84 | 0.86 | 0.84 | ||
100 | 0.73 | 0.71 | 0.86 | 0.86 | 0.80 | 0.79 | 0.86 | 0.83 | ||
All | 40 | 0.51 | 0.46 | 0.79 | 0.79 | 0.65 | 0.62 | 0.83 | 0.83 | |
70 | 0.83 | 0.83 | 0.81 | 0.82 | 0.83 | 0.82 | 0.85 | 0.84 | ||
100 | 0.70 | 0.69 | 0.83 | 0.83 | 0.78 | 0.78 | 0.84 | 0.81 | ||
Feekes 9–10 growth stages | ||||||||||
LX | 40 | 0.78 | 0.75 | 0.87 | 0.87 | 0.87 | 0.85 | 0.92 | 0.93 | |
70 | 0.88 | 0.88 | 0.88 | 0.87 | 0.93 | 0.93 | 0.93 | 0.93 | ||
100 | 0.86 | 0.85 | 0.87 | 0.87 | 0.92 | 0.92 | 0.92 | 0.93 | ||
TN | 40 | 0.72 | 0.68 | 0.83 | 0.83 | 0.82 | 0.79 | 0.87 | 0.88 | |
70 | 0.84 | 0.83 | 0.83 | 0.82 | 0.88 | 0.87 | 0.87 | 0.87 | ||
100 | 0.80 | 0.79 | 0.82 | 0.81 | 0.85 | 0.84 | 0.86 | 0.86 | ||
All | 40 | 0.75 | 0.71 | 0.85 | 0.85 | 0.83 | 0.81 | 0.89 | 0.90 | |
70 | 0.86 | 0.85 | 0.85 | 0.84 | 0.90 | 0.89 | 0.89 | 0.89 | ||
100 | 0.83 | 0.82 | 0.84 | 0.84 | 0.87 | 0.87 | 0.89 | 0.89 | ||
All growth stages | ||||||||||
LX | 40 | 0.25 | 0.18 | 0.54 | 0.49 | 0.73 | 0.68 | 0.88 | 0.88 | |
70 | 0.31 | 0.24 | 0.60 | 0.55 | 0.82 | 0.77 | 0.89 | 0.89 | ||
100 | 0.48 | 0.43 | 0.63 | 0.60 | 0.86 | 0.86 | 0.87 | 0.87 | ||
TN | 40 | 0.27 | 0.20 | 0.60 | 0.54 | 0.71 | 0.65 | 0.86 | 0.86 | |
70 | 0.39 | 0.31 | 0.63 | 0.59 | 0.83 | 0.78 | 0.86 | 0.86 | ||
100 | 0.53 | 0.49 | 0.68 | 0.65 | 0.82 | 0.82 | 0.84 | 0.83 | ||
All | 40 | 0.26 | 0.19 | 0.57 | 0.51 | 0.71 | 0.65 | 0.86 | 0.86 | |
70 | 0.35 | 0.27 | 0.61 | 0.57 | 0.82 | 0.77 | 0.86 | 0.87 | ||
100 | 0.50 | 0.45 | 0.66 | 0.62 | 0.83 | 0.83 | 0.84 | 0.84 |
Sensors | Areal Agreement (%) | Kappa Statistic | ||||
---|---|---|---|---|---|---|
40 cm | 70 cm | 100 cm | 40 cm | 70 cm | 100 cm | |
CC-470_NDRE | 73 | 80 | 85 | 0.50 | 0.64 | 0.69 |
CC-430_NDRE | 88 | 88 | 88 | 0.74 | 0.75 | 0.74 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Q.; Miao, Y.; Shen, J.; Yuan, F.; Cheng, S.; Cui, Z. Evaluating Two Crop Circle Active Canopy Sensors for In-Season Diagnosis of Winter Wheat Nitrogen Status. Agronomy 2018, 8, 201. https://doi.org/10.3390/agronomy8100201
Cao Q, Miao Y, Shen J, Yuan F, Cheng S, Cui Z. Evaluating Two Crop Circle Active Canopy Sensors for In-Season Diagnosis of Winter Wheat Nitrogen Status. Agronomy. 2018; 8(10):201. https://doi.org/10.3390/agronomy8100201
Chicago/Turabian StyleCao, Qiang, Yuxin Miao, Jianning Shen, Fei Yuan, Shanshan Cheng, and Zhenling Cui. 2018. "Evaluating Two Crop Circle Active Canopy Sensors for In-Season Diagnosis of Winter Wheat Nitrogen Status" Agronomy 8, no. 10: 201. https://doi.org/10.3390/agronomy8100201
APA StyleCao, Q., Miao, Y., Shen, J., Yuan, F., Cheng, S., & Cui, Z. (2018). Evaluating Two Crop Circle Active Canopy Sensors for In-Season Diagnosis of Winter Wheat Nitrogen Status. Agronomy, 8(10), 201. https://doi.org/10.3390/agronomy8100201