Mitigation Potential and Yield-Scaled Global Warming Potential of Early-Season Drainage from a Rice Paddy in Tamil Nadu, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Experimental Design and Treatments
2.3. Gas Sample Collection, Analysis, and Calculation
2.4. Other Data Measurements
2.5. Statistical Analysis
3. Results
3.1. Weather Conditions and Irrigation Water Use
3.2. Soil Temperature and Redox Potential
3.3. Methane Fluxes
3.4. Nitrous Oxide Fluxes
3.5. Rice Grain Yield and above Crop Biomass
3.6. GWP and Yield-Scaled GWP
4. Discussion
4.1. Methane Emission in Relation to Different AWD Management
4.2. N2O Emission in Relation to Different AWD Management
4.3. Rice Productivity
4.4. GWP and Yield-Scaled GWP
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linquist, B.A.; Anders, M.M.; Adviento-Borbe, M.A.A.; Chaney, R.L.; Nalley, L.L.; da Rosa, E.F.F.; van Kessel, C. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Chang. Biol. 2015, 21, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tubiello, F.N.; Salvatore, M.; Rossi, S.; Ferrara, A.; Fitton, N.; Smith, P. The Faostat database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 2013, 8, 1–11. [Google Scholar] [CrossRef]
- Van der Hoek, W.; Sakthivadivel, R.; Renshaw, M.; Silver, J.B.; Birley, M.H.; Konradsen, F. Alternate Wet/Dry Irrigation in Rice Cultivation: A Practical Way to Save Water and Control Malaria and Japanese Encephalitis; Research Report 47; International Water Management Institute: Colombo, Sri Lanka, 2001; p. 30. [Google Scholar]
- Bouman, B.A.M.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Cassman, K.G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parent, B.; Suard, B.; Serraj, R.; Tardieu, F. Rice leaf growth and water potential are resilient to evaporative demand and soil water deficit once the effects of root system are neutralized. Plant Cell Environ. 2010, 33, 1256–1267. [Google Scholar] [PubMed]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Yao, F.; Huang, J.; Cui, K.; Nie, L.; Xiang, J.; Liu, X.; Wu, W.; Chen, M.; Peng, S. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crop Res. 2012, 126, 16–22. [Google Scholar] [CrossRef]
- Oo, A.Z.; Sudo, S.; Inubushi, K.; Mano, M.; Yamamoto, A.; Ono, K.; Osawa, T.; Hayashida, S.; Patra, P.K.; Terao, Y.; et al. Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agric. Ecosyst. Env. 2018, 252, 148–158. [Google Scholar] [CrossRef]
- Yang, J.C.; Huang, D.F.; Duan, H.; Tan, G.L.; Zhang, J.H. Alternate wetting and moderate soil drying increases grain yield and reduces cadmium accumulation in rice grains. J. Sci. Food Agric. 2009, 89, 1728–1736. [Google Scholar] [CrossRef]
- Chu, G.; Wang, Z.Q.; Zhang, H.; Liu, L.J.; Yang, J.C.; Zhang, J.H. Alternate wetting and moderate drying increases rice yield and reduces methane emission in paddy field with wheat straw residue incorporation. Food Energy Secur. 2015, 4, 238–254. [Google Scholar] [CrossRef] [Green Version]
- Belder, P.; Bouman, B.A.; Cabangon, R.; Lu, G.; Quilang, E.J.; Li, Y.; Spiertz, J.H.; Tuong, T. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric. Water Manag. 2004, 65, 193–210. [Google Scholar] [CrossRef]
- Xu, Y.; Ge, J.; Tian, S.; Li, S.; Nguy-Robertson, A.L.; Zhan, M.; Cao, C. Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Sci. Total Environ. 2015, 505, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Richards, M.; Sander, B.O. Alternate Wetting and Drying in Irrigated Rice: Implementation Guidance for Policymakers and Investors. Available online: https://cgspace.cgiar.org/bitstream/handle/10568/35402/infonote_CCAFS_AWD_final_A4.pdf (accessed on 20 September 2014).
- Pandey, A.; Mai, V.T.; Vu, D.Q.; Bui, T.P.L.; Mai, T.L.A.; Jensen, L.S.; de Neergaard, A. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agric. Ecosyst. Environ. 2014, 196, 137–146. [Google Scholar] [CrossRef]
- Zou, J.; Huang, Y.; Zheng, X.; Wang, Y. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime. Atmos. Environ. 2007, 41, 8032–8042. [Google Scholar] [CrossRef]
- Wang, J.; Jia, J.; Xiong, Z.; Khalil, M.A.K.; Xing, G. Water regime-nitrogen fertilizer-straw incorporation interaction: Field study on nitrous oxide emissions from a rice agro ecosystem in Nanjing, China. Agric. Ecosyst. Environ. 2011, 3, 437–446. [Google Scholar] [CrossRef]
- Peyron, M.; Bertora, C.; Pelissetti, S.; Said-Pullicino, D.; Celi, L.; Miniotti, E.; Romani, M.; Sacco, D. Greenhouse gas emissions as affected by different water management practices in temperate rice paddies. Agric. Ecosyst. Environ. 2016, 232, 17–28. [Google Scholar] [CrossRef]
- Gujja, B.; Thyiyagarajan, T.M. New hope for Indian food security? The system of rice intensification. Gatekeeper 2009, 143, 1–20. [Google Scholar]
- Inubushi, K.; Takeuchi, D.; Mano, M.; Sudo, S.; Oo, A.Z.; Ono, K.; Yamamoto, A.; Hayashida, S.; Ravi, V. Greenhouse-gasses emission and their influencing factors in paddy fields in South India. Res. Trop. Agric. 2017, 1, 15–16. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Manning, M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Mitra, S.; Aulakh, M.S.; Wassmann, R.; Olk, D.C. Triggering of methane production in rice soils by root exudates: Effects of soil properties and crop management. Soil Sci. Soc. Am. J. 2005, 69, 563–570. [Google Scholar] [CrossRef]
- Das, K.; Baruah, K.K. Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant. Physiol. Plant. 2008, 134, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Oo, A.Z.; Nguyen, L.; Win, K.T.; Cadisch, G.; Bellingrath-Kimura, S.D. Toposequential variation in methane emissions from double-cropping paddy rice in Northwest Vietnam. Geoderma 2013, 209–210, 41–49. [Google Scholar] [CrossRef]
- Oo, A.Z.; Win, K.T.; Bellingrath-Kimura, S.D. Within field spatial variation in methane emissions from lowland rice in Myanmar. SpringerPlus 2015, 4, 145. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ji, Y.; Zhang, G.; Xu, H.; Yagi, K. Timing of midseason aeration to reduce CH4 and N2O emissions from double rice cultivation in China. Soil Sci. Plant Nutr. 2013, 59, 35–45. [Google Scholar] [CrossRef]
- Wang, M.X.; Shangguan, X.J. CH4 emission from various rice fields in P. R. China. Theor. Appl. Climatiol. 1996, 55, 129–138. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, Y.Q.; Huang, Y.; Li, T.T.; Wang, P. Modeling methane emissions from irrigated rice cultivation in China from 1960 to 2050. Glob. Chang. Biol. 2011, 17, 3511–3523. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, H.; Fan, X.; Yang, Y.; Ma, J.; Xu, H. Drainage and tillage practices in the winter fallow season mitigate CH4 and N2O emissions from a double-rice field in China. Atmos. Chem. Phys. 2016, 16, 11853–11866. [Google Scholar] [CrossRef]
- Setyanto, P.; Pramono, A.; Adriany, T.A.; Susilawati, H.L.; Tokida, T.; Agnes, T.; Padre, A.T.; Minamikawa, K. Alternate wetting and drying reduces methane emission from a rice paddy in Central Java, Indonesia without yield loss. Soil Sci. Plant Nutr. 2018, 1, 23–30. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, S.; Fu, Z.; Chen, G.; Zou, G.; Song, X. A two-year field measurement of methane and nitrous oxide fluxes from rice paddies under contrasting climate conditions. Sci. Rep. 2016, 6, 28255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, S.F.; van Groenigen, J.W.; Jensen, L.S.; Sander, B.O.; de Neergaard, A. The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage. Sci. Total Environ. 2018, 612, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Woese, C.R.; Magrum, L.J.; Fox, G.E. Archaebacteria. J. Mol. Evol. 1978, 11, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Tariq, A.; Jensen, L.S.; de Tourdonnet, S.; Sander, B.O.; de Neergaard, A. Early drainage mitigates methane and nitrous oxide emissions from organically amended paddy soils. Geoderma 2017, 304, 49–58. [Google Scholar] [CrossRef]
- Ly, P.; Vu, Q.D.; Jensen, L.S.; Pandey, A.; de Neergaard, A. Effects of rice straw, biochar and mineral fertilizer on methane (CH4) and nitrous oxide (N2O) emissions from rice (Oryza sativa L.) grown in a rain-fed lowland rice soil of Cambodia: A pot experiment. Paddy Water Environ. 2015, 4, 465–475. [Google Scholar] [CrossRef]
- Kludze, H.K.; De Laune, R.D.; Patrick, W.H. Aerenchyma Formation and Methane and Oxygen Exchange in Rice. Soil Sci. Soc. Am. J. 1993, 57, 386–391. [Google Scholar] [CrossRef]
- Sibayan, E.B.; Samoy-Pascual, K.; Grospe, F.S.; Casil, M.E.D.; Tokida, T.; Padre, A.T.; Minamikawa, K. Effects of alternate wetting and drying technique on greenhouse gas emissions from irrigated rice paddy in Central Luzon, Philippines. Soil Sci. Plant Nutr. 2018, 1, 39–46. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Bodenbender, J.; Wassmann, R.; Rennenberg, H. Methane transport capacity of rice plants. I. Influence of CH4 concentration and growth stage analyzed with an automated measuring system. Nutr. Cycl. Agroecosyst. 2000, 58, 357–366. [Google Scholar] [CrossRef]
- Setyanto, P.; Rosenani, A.B.; Boer, R.; Fauziah, C.I.; Khanif, M.J. The effect of rice cultivars on methane emission from irrigated rice field. Indones. J. Agric. 2004, 1, 20–31. [Google Scholar]
- Oo, A.Z.; Win, K.T.; Motobayashi, T.; Bellingrath-Kimura, S.D. Effect of cattle manure amendment and rice cultivars on methane emission from paddy rice soil under continuously flooded conditions. J. Environ. Biol. 2016, 37, 1029–1036. [Google Scholar]
- Xu, Y.C.; Shen, Q.R.; Li, M.L.; Dittert, K.; Sattelmacher, B. Effect of soil water status and mulching on N2O and CH4 emission from lowland rice field in China. Biol. Fertil. Soils 2004, 39, 215–217. [Google Scholar] [CrossRef]
- Zou, J.W.; Huang, Y.; Jiang, J.Y.; Zheng, X.H.; Sass, R.L. A 3-year field measurement of methane and nitrous oxide emission from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Glob. Biogeochem. Cycles 2005, 19, GB2021. [Google Scholar] [CrossRef]
- Ussiri, D.; Lal, R. Nitrous oxide emissions from rice fields. In Soil Emission of Nitrous Oxide and Its Mitigation; Ussiri, D., Lal, R., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 213–242. [Google Scholar]
- Yao, Z.; Zheng, X.; Dong, H.; Wang, R.; Mei, B.; Zhu, J. A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agric. Ecosyst. Environ. 2012, 152, 1–9. [Google Scholar] [CrossRef]
- Hou, H.; Peng, S.; Xu, J.; Yang, S.; Mao, Z. Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in Southeast China. Chemosphere 2012, 89, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Brentrup, F.; Küsters, J.; Lammel, J.; Kuhlmann, H. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. LCA 2000, 5, 349–357. [Google Scholar] [CrossRef]
- Kato, Y.; Okami, M. Root growth dynamics and stomatal behaviour of rice (Oryza sativa L.) grown under aerobic and flooded conditions. Field Crops Res. 2010, 117, 9–17. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D.; Liu, H.; Yang, F.; Xaio, C.; Yang, H. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy Water Environ. 2013, 11, 1–15. [Google Scholar] [CrossRef]
- Dong, N.M.; Brandt, K.K.; Sørensen, J.; Hung, N.N.; Hach, C.V.; Tan, P.S.; Dalsgaard, T. Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta, Vietnam. Soil Biol. Biochem. 2012, 47, 166–174. [Google Scholar] [CrossRef]
- Grassini, P.; Cassman, K.G. High-yield maize with large net energy yield and small global warming intensity. Proc. Natl. Acad. Sci. USA 2012, 109, 1074–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Season | Treatment | No. of Irrigation |
---|---|---|
Dry season rice | ||
(June–September 2017) | Full-AWD | 6 |
Two-AWD | 17 | |
One-AWD | 17 | |
CF | 21 | |
Wet season rice | ||
(October 2017–January 2018) | Full-AWD | 6 |
Two-AWD | 18 | |
One-AWD | 19 | |
CF | 24 |
Grain Yield (t ha−1) | Straw Yield (t ha−1) | Yield-Scaled GWP (kg CO2-eq t−1) | ||
---|---|---|---|---|
Dry season rice | ||||
ADT 43 | Full-AWD | 5.18 ± 0.21 | 9.30 ± 0.25 | 371 ± 95 |
Two-AWD | 5.23 ± 0.20 | 8.64 ± 0.55 | 347 ± 87 | |
One-AWD | 5.42 ± 0.34 | 9.05 ± 0.40 | 453 ± 163 | |
CF | 5.41 ± 0.40 | 9.45 ± 0.19 | 661 ± 58 | |
CO51 | Full-AWD | 5.85 ± 0.37 | 9.47 ± 0.41 | 349 ± 49 |
Two-AWD | 5.53 ± 0.20 | 9.33 ± 0.14 | 369 ± 125 | |
One-AWD | 5.61 ± 0.36 | 9.44 ± 0.32 | 408 ± 89 | |
CF | 5.85 ± 0.22 | 9.52 ± 0.25 | 584 ± 27 | |
Wet season rice | ||||
ADT 46 | Full-AWD | 6.44 ± 0.36 | 8.59 ± 0.26 | 859 ± 546 |
Two-AWD | 6.10 ± 0.84 | 8.87 ± 0.49 | 1956 ± 498 | |
One-AWD | 6.58 ± 0.17 | 8.76 ± 0.29 | 1525 ± 196 | |
CF | 6.26 ± 0.58 | 8.90 ± 0.18 | 2063 ± 455 | |
TKM 13 | Full-AWD | 3.35 ± 0.17 | 4.70 ±0.44 | 1642 ± 401 |
Two-AWD | 2.64 ± 0.18 | 4.97 ± 0.59 | 3501 ± 310 | |
One-AWD | 3.41 ± 0.27 | 5.23 ± 0.42 | 3267 ± 859 | |
CF | 2.89 ± 0.32 | 5.43 ± 1.19 | 4658 ± 1175 | |
Analysis of Variance | ||||
Dry season rice | Treat. | ns | ns | ** |
Var. | ** | * | ns | |
Treat. × Var. | ns | ns | ns | |
Wet season rice | Treat. | ns | ns | ** |
Var. | ** | ** | ** | |
Treat. × Var. | ns | ns | ns |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oo, A.Z.; Sudo, S.; Inubushi, K.; Chellappan, U.; Yamamoto, A.; Ono, K.; Mano, M.; Hayashida, S.; Koothan, V.; Osawa, T.; et al. Mitigation Potential and Yield-Scaled Global Warming Potential of Early-Season Drainage from a Rice Paddy in Tamil Nadu, India. Agronomy 2018, 8, 202. https://doi.org/10.3390/agronomy8100202
Oo AZ, Sudo S, Inubushi K, Chellappan U, Yamamoto A, Ono K, Mano M, Hayashida S, Koothan V, Osawa T, et al. Mitigation Potential and Yield-Scaled Global Warming Potential of Early-Season Drainage from a Rice Paddy in Tamil Nadu, India. Agronomy. 2018; 8(10):202. https://doi.org/10.3390/agronomy8100202
Chicago/Turabian StyleOo, Aung Zaw, Shigeto Sudo, Kazuyuki Inubushi, Umamageswari Chellappan, Akinori Yamamoto, Keitsuke Ono, Masayoshi Mano, Sachiko Hayashida, Vanitha Koothan, Takeshi Osawa, and et al. 2018. "Mitigation Potential and Yield-Scaled Global Warming Potential of Early-Season Drainage from a Rice Paddy in Tamil Nadu, India" Agronomy 8, no. 10: 202. https://doi.org/10.3390/agronomy8100202
APA StyleOo, A. Z., Sudo, S., Inubushi, K., Chellappan, U., Yamamoto, A., Ono, K., Mano, M., Hayashida, S., Koothan, V., Osawa, T., Terao, Y., Palanisamy, J., Palanisamy, E., & Venkatachalam, R. (2018). Mitigation Potential and Yield-Scaled Global Warming Potential of Early-Season Drainage from a Rice Paddy in Tamil Nadu, India. Agronomy, 8(10), 202. https://doi.org/10.3390/agronomy8100202