Maize (Zea mays L.) Response to Secondary and Micronutrients for Profitable N, P and K Fertilizer Use in Poorly Responsive Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Area
2.2. Description of Experimental Sites
2.3. Crop Variety and Treatment Structure
2.4. Trial Establishment and Maintenance
2.5. Soil and Leaf Tissue Analysis and Grain Yield
2.6. Field Observations
2.7. Economic Analysis
kg−1)) / (amount of fertilizer applied × cost of fertilizer ($ kg−1))…………………
2.8. Statistical Analysis
3. Results
3.1. Effect of Fertilizer Treatments on Maize Yield
3.2. Maize Agronomic Response Clusters
3.2.1. Relationship between Nutrient Content in Maize Ear Leaf and Type of Maize Response to NPK Amendments
3.2.2. Soil Characteristics Corresponding to Maize Response Clusters
3.2.3. Relationship between Significant Soil Parameters and Influential Ear Leaf Nutrients for Maize Response Clusters
3.3. Economic Benefit from NPK Amendments for Maize Grain Production
4. Discussion
4.1. Effect of Fertilizer Treatments on Maize Yield
4.2. Maize Agronomic Response Clusters
4.3. Economic Benefit from NPK Amendments for Maize Grain Production
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bindraban, P.S.; Dimkpa, C.; Nagarajan, L.; Roy, A.; Rabbinge, R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol. Fertil. Soils 2015, 51, 897–911. [Google Scholar] [CrossRef]
- Hossain, M.; Singh, V.P. Fertilizer use in asian agriculture: Implications for sustaining food security and the environment. Nutr. Cycl. Agroecosyst. 2000, 57, 155–169. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). Regional Overview of Food Insecurity: African Food Security Prospects Brighter than Ever; FAO: Accra, Ghana, 2015. [Google Scholar]
- IFDC (International Fertilizer Development Center). Proceedings of the Africa Fertilizer Summit, Fertilizer Africa Congress. Abuja, Nigeria, 9–13 June 2006; Thigpen, L.L., Hargrove, T.R., Eds.; IFDC: Abuja, Nigeria. [Google Scholar]
- Sasson, A. Food security for africa: An urgent global challenge. Agric. Food Secur. 2012, 1, 1–16. [Google Scholar] [CrossRef]
- Ozor, N.; Umunnakwe, C.P.; Acheampong, E. Challenges of food security in africa and the way forward. Development 2013, 56, 404–411. [Google Scholar] [CrossRef]
- Diriye, M.; Nur, A.; Khalif, A. Food aid and the challenge of food security in africa. Development 2013, 56, 396–403. [Google Scholar] [CrossRef]
- Marenya, P.P.; Barrett, C.B. State-conditional fertilizer yield response on western kenyan farms. Am. J. Agric. Econ. 2009, 91, 991–1006. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Giller, K.E. Popular myths around soil fertility management in sub-saharan africa. Agric. Ecosyst. Environ. 2006, 116, 34–46. [Google Scholar] [CrossRef]
- Tamene, L.; Mponela, P.; Ndengu, G.; Kihara, J. Assessment of maize yield gap and major determinant factors between smallholder farmers in the dedza district of malawi. Nutr. Cycl. Agroecosyst. 2016, 105, 291–308. [Google Scholar] [CrossRef]
- Drechsel, P.; Kunze, D.; de Vries, F.P. Soil nutrient depletion and population growth in sub-saharan africa: A malthusian nexus? Popul. Environ. 2001, 22, 411–423. [Google Scholar] [CrossRef]
- Stoorvogel, J.J.; Smaling, E.M.A.; Janssen, B.H. Calculating soil nutrient balances in africa at different scales. Fertil. Res. 1993, 35, 227–235. [Google Scholar] [CrossRef]
- Ricker-Gilbert, J.; Mason, N.M.; Darko, F.A.; Tembo, S.T. What are the effects of input subsidy programs on maize prices? Evidence from malawi and zambia. Agric. Econ. 2013, 44, 671–686. [Google Scholar] [CrossRef]
- Druilhe, Z.; Barreiro-Hurlé, J. Fertilizer Subsidies in Sub-Saharan Africa; FAO: Rome, Italy, 2012. [Google Scholar]
- Vanlauwe, B.; Kihara, J.; Chivenge, P.; Pypers, P.; Coe, R.; Six, J. Agronomic use efficiency of n fertilizer in maize-based systems in sub-saharan africa within the context of integrated soil fertility management. Plant Soil 2011, 339, 35–50. [Google Scholar] [CrossRef]
- Nziguheba, G.; Tossah, B.K.; Diels, J.; Franke, A.C.; Aihou, K.; Iwuafor, E.N.O.; Nwoke, C.; Merckx, R. Assessment of nutrient deficiencies in maize in nutrient omission trials and long-term field experiments in the west african savanna. Plant Soil 2008, 314, 143–157. [Google Scholar] [CrossRef]
- Nziguheba, G.; Zingore, S.; Kihara, J.; Merckx, R.; Njoroge, S.; Otinga, A.; Vandamme, E.; Vanlauwe, B. Phosphorus in smallholder farming systems of sub-saharan africa: Implications for agricultural intensification. Nutr. Cycl. Agroecosyst. 2016, 104, 321–340. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Coe, R.I.C.; Giller, K.E. Beyond averages: New approaches to understand heterogeneity and risk of technology success or failure in smallholder farming. Exp. Agric. 2016, 1–23. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Descheemaeker, K.; Giller, K.E.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S. Integrated soil fertility management in sub-saharan africa: Unravelling local adaptation. Soil 2015, 1, 491–508. [Google Scholar] [CrossRef]
- Tittonell, P.; Vanlauwe, B.; Corbeels, M.; Giller, K.E. Yield gaps, nutrient use efficiencies and response to fertilisers by maize across heterogeneous smallholder farms of western kenya. Plant Soil 2008, 313, 19–37. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Bationo, A.; Chianu, J.; Giller, K.E.; Merckx, R.; Mokwunye, U.; Ohiokpehai, O.; Pypers, P.; Tabo, R.; Shepherd, K.D.; et al. Integrated soil fertility management: Operational definition and consequences for implementation and dissemination. Outlook Agric. 2010, 39, 17–24. [Google Scholar] [CrossRef]
- Kelly, A.V. Factors affecting demand for fertilizer in sub-Saharan Africa. In Discussion Paper; World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Kihara, J.; Nziguheba, G.; Zingore, S.; Coulibaly, A.; Esilaba, A.; Kabambe, V.; Njoroge, S.; Palm, C.; Huising, J. Understanding variability in crop response to fertilizer and amendments in sub-saharan africa. Agric. Ecosyst. Environ. 2016, 229, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.L.; Cross, P.; Withers, P.J.A.; DeLuca, T.H.; Robinson, D.A.; Quilliam, R.S.; Harris, I.M.; Chadwick, D.R.; Edwards-Jones, G.; Kardol, P. Review: Nutrient stripping: The global disparity between food security and soil nutrient stocks. J. Appl. Ecol. 2013, 50, 851–862. [Google Scholar] [CrossRef]
- Jaetzold, R.; Schmidt, H.; Hornetz, B.; Shisanya, C. Farm Management Handbook of Kenya: Natural Conditions and Farm Management Information. Part A: West Kenya, Subpart a1, Western Province, 2nd ed.; Ministry of Agriculture and German Agency for Technical Cooperation: Nairobi, Kenya, 2005; Volume 2. [Google Scholar]
- Sombroek, W.G.; Braun, H.M.H.; Pouw, B.J.A.V.D. Exploratory Soil Map and Agro-Climatic Zone Map of Kenya, 1980, Scale 1:1,000,000; 9789032701628; Kenya Soil Survey: Nairobi, Kenya, 1982. [Google Scholar]
- Njoroge, R.; Otinga, A.N.; Okalebo, J.R.; Pepela, M.; Merckx, R. Occurrence of poorly responsive soils in western kenya and associated nutrient imbalances in maize (zea mays l.). Field Crop. Res. 2017, 210, 162–174. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Reports; FAO: Rome, Italy, 2015. [Google Scholar]
- NAAIAP (National Accelerated Agricultural Inputs Access Programme); KARI (Kenya Agricultural Research Institute). Soil Suitability Evaluation for Maize Production in Kenya, Agriculture, Ed.; Ministry of Agriculture Livestock & Fisheries: Nairobi, Kenya, 2014.
- Okalebo, J.R.; Gathua, K.W.; Woomer, P.L. Laboratory Methods of Soil and Plant Analysis. A Working Manual, 2nd ed.; TSBF-CIAT and SACRED AFRICA: Nairobi, Kenya, 2002. [Google Scholar]
- Dumas, J.B.A. Procedes de l’analyse organic. Ann. Chim. Phys. 1931, 247, 198–213. [Google Scholar]
- Ciesielski, H.; Sterckeman, T.; Santerne, M.; Willery, J.P. Determination of cation exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions. Agronomie 1997, 17, 1–7. [Google Scholar] [CrossRef]
- Jones, J.B. Field sampling procedures for conducting a plant analysis. In Handbook of Reference Methods for Plant Analysis; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Havlin, J.L.; Soltanpour, P.N. A nitric acid plant tissue digest method for use with inductively coupled plasma spectrometry. Commun. Soil Sci. Plant Anal. 1980, 11, 969–980. [Google Scholar] [CrossRef]
- Bremner, J.; Tabatabai, M. Use of automated combustion techniques for total carbon, total nitrogen, and total sulfur analysis of soils. In Instrumental Methods for Analysis of Soils and Plant Tissue; Soil Science Society of America: Madison, WI, USA, 1971; pp. 1–15. [Google Scholar]
- Townsend, R.F. Agricultural Incentives in Sub-Saharan Africa: Policy Challenges; World Bank: Washington, DC, USA, 1999; Volume 23. [Google Scholar]
- Tittonell, P.; Shepherd, K.D.; Vanlauwe, B.; Giller, K.E. Unravelling the effects of soil and crop management on maize productivity in smallholder agricultural systems of western Kenya—An application of classification and regression tree analysis. Agric. Ecosyst. Environ. 2008, 123, 137–150. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth & Brooks: Monterey, CA, USA, 1984. [Google Scholar]
- SAS Institute. Discovering Jmp 12®; SAS Institute: Cary, NC, USA, 2015. [Google Scholar]
- Sanchez, P.A. Tripling crop yields in tropical africa. Nat. Geosci. 2010, 3, 299–300. [Google Scholar] [CrossRef]
- Kanyanjua, S.M.; Ireri, L.; Wambua, S.; Nandwa, S.M. Acidic soils in Kenya: Constraints and remedial options. In KARI Technical Note Series; Mugah, J.O.E.A., Ed.; KARI Headquarters, Nairobi, Kenya: Nairobi, 2002; p. 27. [Google Scholar]
- Otinga, A.N.; Pypers, P.; Okalebo, J.R.; Njoroge, R.; Emong’ole, M.; Six, L.; Vanlauwe, B.; Merckx, R. Partial substitution of phosphorus fertiliser by farmyard manure and its localised application increases agronomic efficiency and profitability of maize production. Field Crops Res. 2013, 140, 32–43. [Google Scholar] [CrossRef]
- Opala, P.; Okalebo, J.; Othieno, C. Effects of organic and inorganic materials on soil acidity and phosphorus availability in a soil incubation study. ISRN Agron. 2012, 2012. [Google Scholar] [CrossRef]
- Cooper, P.J.M.; Dimes, J.; Rao, K.P.C.; Shapiro, B.; Shiferaw, B.; Twomlow, S. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agric. Ecosyst. Environ. 2008, 126, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Saini, H.S.; Westgate, M.E. Reproductive development in grain crops during drought. Adv. Agron. 1999, 68, 59–96. [Google Scholar]
- Kihara, J.; Njoroge, S. Phosphorus agronomic efficiency in maize-based cropping systems: A focus on western Kenya. Field Crops Res. 2013, 150, 1–8. [Google Scholar] [CrossRef]
- Palm, C.A.; Gachengo, C.N.; Delve, R.J.; Cadisch, G.; Giller, K.E. Organic inputs for soil fertility management in tropical agroecosystems: Application of an organic resource database. Agric. Ecosyst. Environ. 2001, 83, 27–42. [Google Scholar] [CrossRef]
- Zingore, S.; Delve, R.J.; Nyamangara, J.; Giller, K.E. Multiple benefits of manure: The key to maintenance of soil fertility and restoration of depleted sandy soils on African smallholder farms. Nutr. Cycl. Agroecosyst. 2008, 80, 267–282. [Google Scholar] [CrossRef]
- Reuters, D.J.; Robinson, J.B. Plant Analysis: An Interpretation Manual, 2nd ed.; CSIRO: Collinwood, Australia, 1997. [Google Scholar]
- FAO. Fertilizer and Plant Nutrition Guide; FAO: Rome, Italy, 1984; Volume M-52, pp. 2–14. [Google Scholar]
- Sillanpää, M. Micronutrient assessment at the country level: An international study. In FAO Soils Bulletin; FAO: Rome, Italy, 1990; Volume 63. [Google Scholar]
- Kopriva, S.; Koprivova, A. Plant adenosine 5′-phosphosulphate reductase: The past, the present, and the future. J. Exp. Bot. 2004, 55, 1775–1783. [Google Scholar] [CrossRef] [PubMed]
- Scherer, H.W. Sulphur in crop production. Eur. J. Agron. 2001, 14, 81–111. [Google Scholar] [CrossRef]
- Van Biljon, J.; Fouche, D.; Botha, A. Threshold values for sulphur in soils of the main maize-producing areas of South Africa. South Afr. J. Plant Soil 2004, 21, 152–156. [Google Scholar] [CrossRef]
- Poulton, C.; Kydd, J.; Dorward, A. Increasing fertilizer use in Africa: What have we learned? In Discussion Paper; World Bank: Washington, DC, USA, 2006; Volume 25. [Google Scholar]
- Channabasamma, A.; Habsur, N.S.; Bangaremma, S.W.; Akshaya, M.C. Effect of nitrogen and sulphur levels and ratios on growth and yield of maize. Mol. Plant Breed. 2013, 4, 292–296. [Google Scholar]
- Gransee, A.; Führs, H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 2013, 368, 5–21. [Google Scholar] [CrossRef]
- Walsh, T.; O'Donohoe, T.F. Magnesium deficiency in some crop plants in relation to the level of potassium nutrition. J. Agric. Sci. 2009, 35, 254–263. [Google Scholar] [CrossRef]
- Cai, J.; Chen, L.; Qu, H.; Lian, J.; Liu, W.; Hu, Y.; Xu, G. Alteration of nutrient allocation and transporter genes expression in rice under N, P, K, and Mg deficiencies. Acta Physiol. Plant. 2012, 34, 939–946. [Google Scholar] [CrossRef]
- Bowen, J.E. Absorption of copper, zinc, and manganese by sugarcane leaf tissue. Plant Physiol. 1969, 44, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Okalebo, J.; Simpson, J.; Probert, M. A search for strategies for sustainable dryland cropping in semi-arid Eastern Kenya, Nairobi. In Phosphorus Status of Cropland Soils in the Semi-Arid Areas of Machakos and Kitui Districts, Kenya; Probert, M., Ed.; Australian Centre for International Agricultura1 Research: Nairobi, Kenya, 1990; pp. 50–54. [Google Scholar]
- Lordkaew, S.; Dell, B.; Jamjod, S.; Rerkasem, B. Boron deficiency in maize. Plant Soil 2011, 342, 207–220. [Google Scholar] [CrossRef]
- Woodruf, J.R.; Moore, F.W.; Musen, H.L. Potassium, boron, nitrogen, and lime effects on corn yield and earleaf nutrient concentrations1. Agron. J. 1987, 79, 520–524. [Google Scholar] [CrossRef]
- Kanwal, S.; Rahmatullah; Aziz, T.; Maqsood, M.A.; Abbas, N. Critical ratio of calcium and boron in maize shoot for optimum growth. J. Plant Nutr. 2008, 31, 1535–1542. [Google Scholar] [CrossRef]
- Gupta, U.C. Boron nutrition of crops. Adv. Agron. 1980, 31, 273–307. [Google Scholar]
- Chatterjee, C.; Sinha, P.; Nautiyal, N.; Agarwala, S.C.; Sharma, C.P. Metabolic changes associated with boron-calcium interaction in maize. Soil Sci. Plant Nutr. 1987, 33, 607–617. [Google Scholar] [CrossRef]
- Günes, A.; Alpaslan, M. Boron uptake and toxicity in maize genotypes in relation to boron and phosphorus supply. J. Plant Nutr. 2000, 23, 541–550. [Google Scholar] [CrossRef]
- Suri, T. Selection and comparative advantage in technology adoption. Econometrica 2011, 79, 159–209. [Google Scholar]
- Koussoubé, E.; Nauges, C. Returns to fertiliser use: Does it pay enough? Some new evidence from sub-Saharan Africa. Eur. Rev. Agric. Econ. 2017, 44, 183–210. [Google Scholar] [CrossRef]
- Kihara, J.; Huising, J.; Nziguheba, G.; Waswa, B.S.; Njoroge, S.; Kabambe, V.; Iwuafor, E.; Kibunja, C.; Esilaba, A.O.; Coulibaly, A. Maize response to macronutrients and potential for profitability in sub-Saharan Africa. Nutr. Cycl. Agroecosyst. 2016, 105, 171–181. [Google Scholar] [CrossRef]
- Zingore, S. Maize productivity and response to fertilizer use as affected by soil fertility variability, manure application, and cropping system. Better Crops 2011, 95, 4–6. [Google Scholar]
- Ngetich, F.K.; Shisanya, C.A.; Mugwe, J.; Mucheru-Muna, M.; Mugendi, D. The potential of organic and inorganic nutrient sources in sub-Saharan African crop farming systems. In Soil Fertility Improvement and Integrated Nutrient Management–A Global Perspective; Intech: Rijeka, Croatia, 2011; p. 135. [Google Scholar]
Region | # Site | Soil Type | Elevation (masl) | Slope (%) | Effective Soil Depth (cm) | Textural Class | Available P (mg kg−1) | Total N (%) | Exchangeable K (cmolc kg−1) |
---|---|---|---|---|---|---|---|---|---|
Bungoma-Southwest | |||||||||
1 | Stagnic Luvisols | 1297 | >5 | 85+ | Sandy Loam | 18.47 | 0.09 | 0.06 | |
2 | Plinthic Acrisols | 1300 | <5 | 38 | Sandy Loam | 13.98 | 0.10 | 0.35 | |
3 | Gleyic Cambisols | 1364 | <5 | 50 | Sandy Loam | 6.99 | 0.10 | 0.40 | |
4 | Gleyic Acrisols | 1287 | <5 | 85+ | Sandy Loam | 4.72 | 0.07 | 0.20 | |
5 | Ferric Alisols | 1270 | <5 | 87 | Sandy Loam | 3.90 | 0.13 | 0.13 | |
6 | Eutric Cambisols | 1270 | <5 | 110+ | Sandy Loam | 27.48 | 0.08 | 0.16 | |
7 | Eutric Cambisols | 1293 | <5 | 120 | Loamy Sand | 5.04 | 0.10 | 0.19 | |
8 | Eutric Cambisols | 1292 | <5 | 120 | Loamy Sand | 6.99 | 0.11 | 0.18 | |
9 | Cambic Arenosols | 1295 | <5 | 110 | Sandy Clay | 2.93 | 0.06 | 0.11 | |
Busia-North | |||||||||
1 | Eutric Planosols | 1194 | <5 | 100+ | Loam | 5.31 | 0.11 | 0.11 | |
2 | Gleyic Arenosols | 1219 | <5 | 100+ | Loamy sand | 5.20 | 0.07 | 0.13 | |
3 | Gleyic Arenosols | 1201 | <5 | 70+ | Loamy sand | 5.20 | 0.05 | 0.18 | |
4 | Gleyic Arenosols | 1202 | <5 | 70 | Loamy sand | 5.20 | 0.03 | 0.16 | |
5 | Luvic Arenosols | 1215 | <5 | 100+ | Loamy sand | 9.43 | 0.05 | 0.16 | |
6 | Ferric Cambisols | 1317 | 5 | 90+ | Loamy sand | 18.86 | 0.05 | 0.51 | |
7 | Plinthic Lixisols | 1330 | 5 | 85 | Sandy Loam | 6.02 | 0.08 | 0.12 | |
8 | Plinthic Acrisols | 1270 | <5 | 38 | Loamy sand | 2.44 | 0.07 | 0.51 | |
9 | Plinithic Acrisols | 1399 | 5 | 130 | Loamy Sand | 2.89 | 0.03 | 0.36 |
Treatment | Nutrient Added (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|
N | P | K | Ca | Zn | Cu | Source | |
Control | - | - | - | - | - | - | No nutrient added |
NPK1 | 100 | 30 | 60 | - | - | - | Urea, TSP, MOP |
NPK2 | 100 | 30 | 60 | 16 | 0.3 | 0.2 | FYM, Urea, TSP |
NPK3 | 100 | 30 | 60 | 16 | 3 | 3 | Mavuno, Zn and Cu oxides |
NPK4 | 100 | 30 | 60 | - | 3 | 3 | Urea, TSP, MOP, Zn and Cu oxides |
Fertilizer Cost ($ kg −1) | |||
---|---|---|---|
Treatment | LR | SR | Average Cost |
Control | 0.00 | 0.00 | 0.00 |
NPK1 | 1.76 | 1.50 | 1.63 |
NPK2 | 2.64 | 2.31 | 2.48 |
NPK3 | 2.24 | 1.96 | 2.10 |
NPK4 | 2.11 | 1.81 | 1.96 |
Bungoma-Southwest | Busia North | ||||||
---|---|---|---|---|---|---|---|
LR | SR | Mean (Site) | LR | SR | Mean (Site) | Mean (Season and Site) | |
Treatment | t ha−1 | ||||||
Control | 2.22 | 1.27 | 1.75 | 2.31 | 0.78 | 1.55 | 1.65 |
NPK1 | 3.58 | 2.62 | 3.10 | 3.24 | 1.73 | 2.49 | 2.79 |
NPK2 | 3.72 | 3.24 | 3.46 | 4.26 | 2.31 | 3.29 | 3.38 |
NPK3 | 4.49 | 3.58 | 4.04 | 3.86 | 2.29 | 3.08 | 3.56 |
NPK4 | 3.82 | 3.32 | 3.57 | 4.18 | 2.21 | 3.20 | 3.38 |
Mean (Season) | 3.57 | 2.80 | 3.18 | 3.57 | 1.86 | 2.72 | 2.95 |
SED Treatment | 0.13 ** | ||||||
SED Season | 0.08 ** | ||||||
SED Region | ns | ||||||
SED Treatment × Region | 0.32 * | ||||||
SED Season × Region | 0.29 ** | ||||||
SED Treatment × Season | ns | ||||||
SED Season × Region × site | ns |
Cluster 1 | Cluster 2 | Cluster 3 | |
---|---|---|---|
Macronutrient (%) | |||
N | 2.37 (1.82, 2.91) | 2.27 (1.82, 2.91) | 2.32 (2.07, 2.59) a |
P | 0.22 (0.18, 0.26) | 0.23 (0.18, 0.30) a | 0.22 (0.18, 0.25) |
K | 1.88 (1.50, 2.17) | 1.88 (1.54, 2.21) a | 1.75 (1.56, 1.88) |
S | 0.15 (0.12, 0.17) | 0.14 (0.11, 0.16) b | 0.13 (0.11, 0.15) b |
Ca | 0.46 (0.33, 0.61) | 0.44 (0.34, 0.56) | 0.48 (0.38, 0.54) a |
Mg | 0.13 (0.09, 0.16) | 0.11 (0.08, 0.14) b | 0.12 (0.10, 0.15) b |
Micronutrient (mg kg−1) | |||
B | 4.90 (3.86, 6.85) | 4.93 (3.86, 6.85) | 4.51 (3.85, 5.01) b |
Cu | 9.19 (6.68, 13.23) | 8.11 (5.97, 10.39) b | 7.86 (5.86, 9.98) b |
Zn | 15.91 (12.35, 20.52) | 16.22 (13.28, 20.58) a | 15.67 (12.95, 17.94). |
Units | Cluster 1 | Cluster 2 | Cluster 3 | |
---|---|---|---|---|
pH (H2O) | 5.59 (5.15, 6.01) | 5.69 (5.50, 6.06) | 5.56 (5.30, 5.90) | |
Available P | mg kg−1 | 6.45 (2.44, 18.37) | 6.91 (2.93, 13.98) * | 17.18 (5.20, 27.48) * |
Total N | % | 0.09 (0.03, 0.13) | 0.07 (0.05, 0.10) | 0.05 (0.03, 0.08) |
Organic C | % | 0.80 (0.04, 1.72) | 0.95 (0.50, 1.60) | 1.02 (0.48, 1.98) |
Effective CEC | cmolc kg−1 | 4.10 (-0.37, 8.53) | 3.52 (1.31, 7.19) | 1.42 (-0.49, 3.07) |
Exch. K | cmolc kg−1 | 0.23 (0.06, 0.51) | 0.19 (0.11, 0.35) | 0.28 (0.16, 0.51) |
Exch. Ca | cmolc kg−1 | 2.80 (0.81, 5.75) | 2.43 (1.43, 3,7) | 1.61 (0.77, 2.36) |
Exch. Mg | cmolc kg−1 | 0.58 (0.14, 1.25) | 0. 74 (0.26, 1.72) | 0.49 (0.13, 0.88) |
Sand | % | 71 (46, 87) | 71. (52, 83) | 82 (79, 85) |
Clay | % | 11 (4, 21) | 13 (3, 37) | 7 (3, 12) |
Soil Available P | ||
---|---|---|
Ear Leaf Nutrient | Cluster 2 | Cluster 3 |
N | 0.39 | 0.59 * |
P | 0.79 *** | 0.19 |
K | 0.57 ** | −0.08 |
S | 0.56 ** | −0.39 |
Ca | −0.06 | 0.62 * |
Mg | −0.01 | −0.01 |
B | 0.25 | −0.32 |
Cu | 0.16 | 0.91 *** |
Zn | 0.23 | 0.07 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Njoroge, R.; Otinga, A.N.; Okalebo, J.R.; Pepela, M.; Merckx, R. Maize (Zea mays L.) Response to Secondary and Micronutrients for Profitable N, P and K Fertilizer Use in Poorly Responsive Soils. Agronomy 2018, 8, 49. https://doi.org/10.3390/agronomy8040049
Njoroge R, Otinga AN, Okalebo JR, Pepela M, Merckx R. Maize (Zea mays L.) Response to Secondary and Micronutrients for Profitable N, P and K Fertilizer Use in Poorly Responsive Soils. Agronomy. 2018; 8(4):49. https://doi.org/10.3390/agronomy8040049
Chicago/Turabian StyleNjoroge, Ruth, Abigael N. Otinga, John R. Okalebo, Mary Pepela, and Roel Merckx. 2018. "Maize (Zea mays L.) Response to Secondary and Micronutrients for Profitable N, P and K Fertilizer Use in Poorly Responsive Soils" Agronomy 8, no. 4: 49. https://doi.org/10.3390/agronomy8040049
APA StyleNjoroge, R., Otinga, A. N., Okalebo, J. R., Pepela, M., & Merckx, R. (2018). Maize (Zea mays L.) Response to Secondary and Micronutrients for Profitable N, P and K Fertilizer Use in Poorly Responsive Soils. Agronomy, 8(4), 49. https://doi.org/10.3390/agronomy8040049