Progress in Developing Bacterial Spot Resistance in Tomato
Abstract
:1. Introduction
2. Non-Host Resistance
3. Host Resistance
3.1. Hypersensitive Resistance
3.1.1. Race T1
3.1.2. Race T3
3.1.3. Race T4
3.1.4. Xanthomonas gardneri
4. Non-Hypersensitive Resistance
Race 2
5. Broad-Spectrum Resistance
6. Genetic Engineering
6.1. Transgenic Approach
6.2. Genome Editing
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bouzar, H.; Minsavage, G.V.; Stall, R.E.; Schaad, N.W.; Jones, J.B.; Lacy, G.H. Bacterial spot-worldwide distribution, importance and review. In I International Symposium on Tomato Diseases; ISHS: Orlando, FL, USA, 2004; Volume 695, pp. 27–34. [Google Scholar]
- Pohronezny, K.; Stall, R.E.; Canteros, B.I.; Kegley, M.; Datnoff, L.E.; Subramanya, R. Sudden shift in the prevalent race of Xanthomonas campestris pv. vesicatoria in pepper fields in southern Florida. Plant Dis. 1992, 76, 118–120. [Google Scholar] [CrossRef]
- Sharon, E.; Okon, Y.; Bashan, Y.; Henis, Y. Detached leaf enrichment: A method for detecting small numbers of Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. vesicatoria in seed and symptomless leaves of tomato and pepper. J. Appl. Bacteriol. 1982, 53, 371–377. [Google Scholar] [CrossRef]
- Jones, J.B.; Jones, J.P. The effect of bactericides, tank mixing time and spray schedule on bacterial leaf spot of tomato. Proc. Fla. State Hortic. Soc. 1985, 98, 244–247. [Google Scholar]
- Jones, J.; Scott, J. Hypersensitive Response in Tomato to Xanthomonas campestris pv. vesicatoria. Plant Dis. 1986, 70, 337–339. [Google Scholar] [CrossRef]
- Scott, J.W.; Jones, J.B. Sources of resistance to bacterial spot in tomato. HortScience 1986, 21, 304–306. [Google Scholar]
- Louws, F.J.; Wilson, M.; Campbell, H.L.; Cuppels, D.A.; Jones, J.B.; Shoemaker, P.B.; Miller, S.A. Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Dis. 2001, 85, 481–488. [Google Scholar] [CrossRef]
- Kousik, C.S.; Ritchie, D.F. Race shift in Xanthomonas campestris pv. vesicatoria within a season in field-grown pepper. Phytopathology 1996, 86, 952–958. [Google Scholar] [CrossRef]
- Heath, M.C. Nonhost resistance and nonspecific plant defenses. Curr. Opin. Plant Biol. 2000, 3, 315–319. [Google Scholar] [CrossRef]
- Mysore, K.S.; Ryu, C.M. Nonhost resistance: How much do we know? Trends Plant Sci. 2004, 9, 97–104. [Google Scholar] [CrossRef]
- Zipfel, C.; Kunze, G.; Chinchilla, D.; Caniard, A.; Jones, J.D.; Boller, T.; Felix, G. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 2006, 125, 749–760. [Google Scholar] [CrossRef]
- Tao, Y.; Xie, Z.; Chen, W.; Glazebrook, J.; Chang, H.S.; Han, B.; Katagiri, F. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 2003, 15, 317–330. [Google Scholar] [CrossRef]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323. [Google Scholar] [CrossRef] [PubMed]
- Zipfel, C.; Felix, G. Plants and animals: A different taste for microbes? Curr. Opin. Plant Biol. 2005, 8, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Bent, A.F.; Mackey, D. Elicitors, effectors, and R genes: The new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 2007, 45, 399–436. [Google Scholar] [CrossRef] [PubMed]
- Dangl, J.L.; Horvath, D.M.; Staskawicz, B.J. Pivoting the plant immune system from dissection to deployment. Science 2013, 341, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Zipfel, C. Pattern-recognition receptors in plant innate immunity. Curr. Opin. Immunol. 2008, 20, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, K.; Louws, F.J.; Williamson, J.D.; Panthee, D.R. Differential response of tomato genotypes to Xanthomonas-specific pathogen-associated molecular patterns and correlation with bacterial spot (Xanthomonas perforans) resistance. Hortic. Res. 2016, 3, 16035. [Google Scholar] [CrossRef]
- Bhattarai, K. Screening for Bacterial Spot (Xanthomonas spp.) Resistance in Tomato (Solanum lycopersicum L.) and Microbe Associated Molecular Patterns. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2014. [Google Scholar]
- Bhattarai, K.; Louws, F.J.; Williamson, J.D.; Panthee, D.R. Diversity analysis of tomato genotypes based on morphological traits with commercial breeding significance for fresh market production in eastern USA. Aust. J. Crop Sci. 2016, 10, 1098. [Google Scholar] [CrossRef]
- Niks, R.E.; Marcel, T.C. Nonhost and basal resistance: How to explain specificity? New Phytol. 2009, 182, 817–828. [Google Scholar] [CrossRef]
- Zurbriggen, M.D.; Carrillo, N.; Tognetti, V.B.; Melzer, M.; Peisker, M.; Hause, B.; Hajirezaei, M.R. Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria. Plant J. 2009, 60, 962–973. [Google Scholar] [CrossRef]
- Lacombe, S.; Rougon-Cardoso, A.; Sherwood, E.; Peeters, N.; Dahlbeck, D.; Van Esse, H.P.; Jones, J.D. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat. Biotechnol. 2010, 28, 365. [Google Scholar] [CrossRef] [PubMed]
- Tai, T.H.; Dahlbeck, D.; Clark, E.T.; Gajiwala, P.; Pasion, R.; Whalen, M.C.; Staskawicz, B.J. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA 1999, 96, 14153–14158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearney, B.; Staskawicz, B.J. Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature 1990, 346, 385. [Google Scholar] [CrossRef] [PubMed]
- Andolfo, G.; Jupe, F.; Witek, K.; Etherington, G.J.; Ercolano, M.R.; Jones, J.D. Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biol. 2014, 14, 120. [Google Scholar] [CrossRef]
- Piquerez, S.J.; Harvey, S.E.; Beynon, J.L.; Ntoukakis, V. Improving crop disease resistance: Lessons from research on Arabidopsis and tomato. Front. Plant Sci. 2014, 5, 671. [Google Scholar] [CrossRef]
- Whalen, M.C.; Wang, J.F.; Carland, F.M.; Heiskell, M.E.; Dahlbeck, D.; Minsavage, G.V.; Staskawicz, B.J. Avirulence gene avrRxv from Xanthomonas campestris pv. vesicatoria specifies resistance on tomato line Hawaii 7998. Mol. Plant-Microbe Interact. 1993, 6, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Stall, R.E.; Vallejos, C.E. Genetic analysis of a complex hypersensitive reaction to bacterial spot in tomato. Phytopathology 1994, 84, 126–132. [Google Scholar] [CrossRef]
- Yu, Z.H.; Wang, J.F.; Stall, R.E.; Vallejos, C.E. Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria (Doidge) dye. Genetics 1995, 141, 675–682. [Google Scholar]
- Scott, J.W.; Hutton, S.F.; Shekasteband, R.; Sim, S.C.; Francis, D.M. Identification of tomato bacterial spot race T1, T2, T3, T4, and Xanthomonas gardneri resistance QTLs derived from PI 114490 populations selected for race T4. In IV International Symposium on Tomato Diseases; ISHS: Orlando, FL, USA, 2013; Volume 1069, pp. 53–58. [Google Scholar]
- Yang, W.; Sacks, E.J.; Lewis Ivey, M.L.; Miller, S.A.; Francis, D.M. Resistance in Lycopersicon esculentum intraspecific crosses to race T1 strains of Xanthomonas campestris pv. vesicatoria causing bacterial spot of tomato. Phytopathology 2005, 95, 519–527. [Google Scholar] [CrossRef]
- Sim, S.C.; Robbins, M.D.; Wijeratne, S.; Wang, H.; Yang, W.; Francis, D.M. Association analysis for bacterial spot resistance in a directionally selected complex breeding population of tomato. Phytopathology 2015, 105, 1437–1445. [Google Scholar] [CrossRef]
- Jones, J.B.; Stall, R.E.; Bouzar, H. Diversity among xanthomonads pathogenic on pepper and tomato. Annu. Rev. Phytopathol. 1998, 36, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.B.; Bouzar, H.; Somodi, G.C.; Stall, R.E.; Pernezny, K.; El-Morsy, G.; Scott, J.W. Evidence for the preemptive nature of tomato race 3 of Xanthomonas campestris pv. vesicatoria in Florida. Phytopathology 1998, 88, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.W.; Jones, J.B.; Somodi, G.C.; Stall, R.E. Screening tomato accessions for resistance to Xanthomonas campestris pv. vesicatoria, race T3. HortScience 1995, 30, 579–581. [Google Scholar]
- Scott, J.W.; Jones, J.B.; Somodi, G.C. Inheritance of resistance in tomato to race T3 of the bacterial spot pathogen. J. Am. Soc. Hortic. Sci. 2001, 126, 436–441. [Google Scholar]
- Pei, C.; Wang, H.; Zhang, J.; Wang, Y.; Francis, D.M.; Yang, W. Fine mapping and analysis of a candidate gene in tomato accession PI128216 conferring hypersensitive resistance to bacterial spot race T3. Theor. Appl. Genet. 2012, 124, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.J.; Zhang, J.Y.; Wang, Y.Y.; Scott, J.W.; Francis, D.M.; Yang, W.C. QTL analysis of resistance to bacterial spot race T3 in tomato. Acta Hortic. Sin. 2011, 38, 2297–2308. [Google Scholar]
- Du, H.; Wang, Y.; Yang, J.; Yang, W. Comparative transcriptome analysis of resistant and susceptible tomato lines in response to infection by Xanthomonas perforans race T3. Front. Plant Sci. 2015, 6, 1173. [Google Scholar] [CrossRef]
- Astua-Monge, G.; Minsavage, G.V.; Stall, R.E.; Vallejos, C.E.; Davis, M.J.; Jones, J.B. Xv4-vrxv4: A new gene-for-gene interaction identified between Xanthomonas campestris pv. vesicatoria race T3 and the wild tomato relative Lycopersicon pennellii. Mol. Plant-Microbe Interact. 2000, 13, 1346–1355. [Google Scholar] [CrossRef]
- Minsavage, G.V.; Balogh, B.; Stall, R.E.; Jones, J.B. New tomato races of Xanthomonas campestris pv. vesicatoria associated with mutagenesis of tomato race 3 strains. Phytopathology 2003, 93, S62. [Google Scholar]
- Sharlach, M.; Dahlbeck, D.; Liu, L.; Chiu, J.; Jiménez-Gómez, J.M.; Kimura, S.; Jones, J.B. Fine genetic mapping of RXopJ4, a bacterial spot disease resistance locus from Solanum pennellii LA716. Theor. Appl. Genet. 2013, 126, 601–609. [Google Scholar] [CrossRef]
- Hutton, S.F.; Scott, J.W.; Yang, W.; Sim, S.C.; Francis, D.M.; Jones, J.B. Identification of QTL associated with resistance to bacterial spot race T4 in tomato. Theor. Appl. Genet. 2010, 121, 1275–1287. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, K.; Louws, F.J.; Williamson, J.D.; Panthee, D.R. Resistance to Xanthomonas perforans race T4 causing bacterial spot in tomato breeding lines. Plant Pathol. 2017, 66, 1103–1109. [Google Scholar] [CrossRef]
- Schornack, S.; Minsavage, G.V.; Stall, R.E.; Jones, J.B.; Lahaye, T. Characterization of AvrHah1, a novel AvrBs3-like effector from Xanthomonas gardneri with virulence and avirulence activity. New Phytol. 2008, 179, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Liabeuf, D.; Francis, D.M.; Sim, S.C. Screening cultivated and wild tomato germplasm for resistance to Xanthomonas gardneri. Acta Hortic. 2015, 1069, 65–70. [Google Scholar] [CrossRef]
- Scott, J.W.; Miller, S.A.; Stall, R.E.; Jones, J.B.; Somodi, G.C.; Barbosa, V.; Sahin, F. Resistance to race T2 of the bacterial spot pathogen in tomato. HortScience 1997, 32, 724–727. [Google Scholar]
- Li, J.; Chitwood, J.; Menda, N.; Mueller, L.; Hutton, S.F. Linkage between the I-3 gene for resistance to Fusarium wilt race 3 and increased sensitivity to bacterial spot in tomato. Theor. Appl. Genet. 2018, 131, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.W.; Francis, D.M.; Miller, S.A.; Somodi, G.C.; Jones, J.B. Tomato bacterial spot resistance derived from PI 114490; inheritance of resistance to race T2 and relationship across three pathogen races. J. Am. Soc. Hortic. Sci. 2003, 128, 698–703. [Google Scholar]
- Scott, J.W.; Hutton, S.F.; Jones, J.B.; Francis, D.M.; Miller, S.A. Resistance to bacterial spot race T4 and breeding for durable, broad-spectrum resistance to other races. Rpt Tomato Genet. Coop. 2006, 56, 33–36. [Google Scholar]
- Bhattarai, K.; Sharma, S.; Panthee, D.R. Diversity among Modern Tomato Genotypes at Different Levels in Fresh-Market Breeding. Int. J. Agron. 2018. [Google Scholar] [CrossRef]
- Kunwar, M.S.; Iriarte, F.; Fan, M.Q.; da Silva, M.E.E.; Ritchie, M.L.; Nguyen, M.N.S.; Colee, M.J. Transgenic expression of EFR and Bs2 genes for field management of bacterial wilt and bacterial spot of tomato. Phytopathology 2018. [Google Scholar] [CrossRef]
- Mitsuhara, I.; Matsufuru, H.; Ohshima, M.; Kaku, H.; Nakajima, Y.; Murai, N.; Ohashi, Y. Induced expression of sarcotoxin IA enhanced host resistance against both bacterial and fungal pathogens in transgenic tobacco. Mol. Plant-Microbe Interact. 2000, 13, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Oard, S.V.; Enright, F.M. Expression of the antimicrobial peptides in plants to control phytopathogenic bacteria and fungi. Plant Cell Rep. 2006, 25, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Osusky, M.; Osuska, L.; Hancock, R.E.; Kay, W.W.; Misra, S. Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgen. Res. 2004, 13, 181–190. [Google Scholar] [CrossRef]
- Ohshimax, M.; Mitsuhara, I.; Okamoto, M.; Sawano, S.; Nishiyama, K.; Kaku, F.; Ohashi, Y. Enhanced resistance to bacterial diseases of transgenic tobacco plants overexpressing sarcotoxin IA, a bactericidal peptide of insect. J. Biochem. 1999, 125, 431–435. [Google Scholar] [CrossRef]
- Smith, F.D.; Gadoury, D.M.; Van Eck, J.M.; Blowers, A.; Sanford, J.C.; Van der Meij, J.; Eisenreich, R. Enhanced resistance to powdery mildew in transgenic poinsettia conferred by antimicrobial peptides. Phytopathology 1998, 88, S83. [Google Scholar]
- Hultmark, D.; Engström, Å.; Bennich, H.; Kapur, R.; Boman, H.G. Insect immunity: Isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur. J. Biochem. 1982, 127, 207–217. [Google Scholar] [CrossRef]
- Jan, P.S.; Huang, H.Y.; Chen, H.M. Expression of a synthesized gene encoding cationic peptide cecropin B in transgenic tomato plants protects against bacterial diseases. Appl. Environ. Microbiol. 2010, 76, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.C.; Lu, C.F.; Wu, J.W.; Cheng, M.L.; Lin, Y.M.; Yang, N.S.; Cheng, C.P. Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgen. Res. 2004, 13, 567–581. [Google Scholar] [CrossRef]
- Joung, J.K.; Sander, J.D. TALENs: A widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 2013, 14, 49. [Google Scholar] [CrossRef]
- Liu, L.; Fan, X.D. CRISPR-Cas system: A powerful tool for genome engineering. Plant Mol. Biol. 2014, 85, 209–218. [Google Scholar] [CrossRef]
- Li, J.F.; Norville, J.E.; Aach, J.; McCormack, M.; Zhang, D.; Bush, J.; Sheen, J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 2013, 31, 688. [Google Scholar] [CrossRef] [PubMed]
- De Toledo Thomazella, D.P.; Brail, Q.; Dahlbeck, D.; Staskawicz, B.J. CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. bioRxiv 2016, 064824. [Google Scholar] [CrossRef]
- Zeilmaker, T.; Ludwig, N.R.; Elberse, J.; Seidl, M.F.; Berke, L.; Van Doorn, A.; Van den Ackerveken, G. DOWNY MILDEW RESISTANT 6 and DMR 6-LIKE OXYGENASE 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. Plant J. 2015, 81, 210–222. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Bhattarai, K. Progress in Developing Bacterial Spot Resistance in Tomato. Agronomy 2019, 9, 26. https://doi.org/10.3390/agronomy9010026
Sharma S, Bhattarai K. Progress in Developing Bacterial Spot Resistance in Tomato. Agronomy. 2019; 9(1):26. https://doi.org/10.3390/agronomy9010026
Chicago/Turabian StyleSharma, Sadikshya, and Krishna Bhattarai. 2019. "Progress in Developing Bacterial Spot Resistance in Tomato" Agronomy 9, no. 1: 26. https://doi.org/10.3390/agronomy9010026
APA StyleSharma, S., & Bhattarai, K. (2019). Progress in Developing Bacterial Spot Resistance in Tomato. Agronomy, 9(1), 26. https://doi.org/10.3390/agronomy9010026