Assessing the Impact of Best Management Practices in a Highly Anthropogenic and Ungauged Watershed Using the SWAT Model: A Case Study in the El Beal Watershed (Southeast Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Model
2.2.1. Model Inputs
2.2.2. Model Setup, Sensitivity Analysis, Calibration and Validation
2.3. Best Management Practice Scenarios
2.3.1. Baseline Scenario
2.3.2. Contour Planting
2.3.3. Filter Strips
2.3.4. Reforestation
2.3.5. Fertilizer Application
2.3.6. Check Dam Restoration
2.3.7. BMP Combination
3. Results and Discussion
3.1. Sensitivity Analysis
3.2. Model Calibration and Validation
3.3. BMP Effectiveness
3.3.1. Individual BMPs
3.3.2. Combination BMPs
3.4. Cost-Effective BMP Simulation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Herman, M.R.; Nejadhashemi, A.P.; Abouali, M.; Hernandez-Suarez, J.S.; Daneshvar, F.; Zhang, Z.; Anderson, M.C.; Sadeghi, A.M.; Hain, C.R.; Sharifi, A. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability. J. Hydrol. 2018, 556, 39–49. [Google Scholar] [CrossRef]
- Comunidad Autónoma de la Región de Murcia. Ley 1/2018, de 7 de Febrero, de Medidas Urgentes Para Garantizar la Sostenibilidad Ambiental en el Entorno Del Mar Menor; Boletín Oficial de la Región de Murcia: Murcia, Spain, 2018. (In Spanish) [Google Scholar]
- Comunidad Autónoma de la Región de Murcia. Orden de 29 de Julio de 2016 Por la Que se Crea el Comité de Asesoramiento Científico Del Mar Menor; Boletín Oficial de la Región de Murcia: Murcia, Spain, 2016. (In Spanish) [Google Scholar]
- Comunidad Autónoma de la Región de Murcia. Decreto-Ley nº 1/2017, de 4 de abril, de Medidas Urgentes Para Garantizar la Sostenibilidad Ambiental en el Entorno Del Mar Menor; Boletín Oficial de la Región de Murcia: Murcia, Spain, 2017. (In Spanish) [Google Scholar]
- La Opinión de Murcia. Available online: https://www.laopiniondemurcia.es/comunidad/2018/01/13/pasando/889517.html (accessed on 10 July 2019).
- Sharpley, A.N.; Daniel, T.; Gibson, G.; Bundy, L.; Cabrera, M.; Sims, T.; Stevens, R.; Lemunyon, J.; Kleinman, P.; Parry, R. Best Management Practices to Minimize Agricultural Phosphorus Impacts on Water Quality; Agricultural Research Service of the United States Department of Agriculture (USDA-ARS): Washington, DC, USA, 2006.
- Bosch, N.S.; Allan, J.D.; Selegean, J.P.; Scavia, D. Scenario-testing of agricultural best management practices in Lake Erie watersheds. J. Great Lakes Res. 2013, 39, 429–436. [Google Scholar] [CrossRef]
- Arabi, M.; Frankenberger, J.R.; Engel, B.A.; Arnold, J.G. Representation of agricultural conservation practices with SWAT. Hydrol. Process. 2008, 22, 3042–3055. [Google Scholar] [CrossRef]
- Tuppad, P.; Kannan, N.; Srinivasan, R.; Rossi, C.G.; Arnold, J.G. Simulation of agricultural management alternatives for watershed protection. Water Resour. Manag. 2010, 24, 3115–3144. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment Part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Mannschatz, T.; Wolf, T.; Hülsmann, S. Nexus Tools Platform: Web-based comparison of modelling tools for analysis of water-soil-waste nexus. Environ. Modell. Softw. 2016, 76, 137–153. [Google Scholar] [CrossRef]
- Park, J.Y.; Yu, Y.S.; Hwang, S.J.; Kim, C.; Kim, S.J. SWAT modeling of best management practices for Chungju dam watershed in South Korea under future climate change scenarios. Paddy Water Environ. 2014, 12, 65–75. [Google Scholar] [CrossRef]
- Xie, H.; Chen, L.; Shen, Z. Assessment of agricultural best management practices using models: Current issues and future perspectives. Water 2015, 7, 1088–1108. [Google Scholar] [CrossRef]
- Cerro, I.; Antigüedad, I.; Srinivasan, R.; Sauvage, S.; Volk, M.; Sánchez-Pérez, J.M. Simulating land management options to reduce nitrate pollution in an agricultural watershed dominated by an alluvial aquifer. J. Environ. Qual. 2014, 43, 67–74. [Google Scholar] [CrossRef]
- Epelde, A.M.; Cerro, I.; Sánchez-Pérez, J.M.; Sauvage, S.; Srinivasan, R.; Antigüedad, I. Application of the SWAT model to assess the impact of changes in agricultural management practices on water quality. Hydrolog. Sci. J. 2015, 60, 825–843. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Droogers, P. Calibration of a distributed hydrological model based on satellite evapotranspiration. J. Hydrol. 2008, 349, 411–424. [Google Scholar] [CrossRef]
- Odusanya, A.; Mehdi, B.; Schürz, C.; Oke, A.O.; Awokola, S.O.; Awomeso, J.A.; Adejuwon, J.O.; Schulz, K. Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data sparse catchment in southwestern Nigeria. Hydrol. Earth Syst. Sci. 2019, 23, 1113–1144. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.H.R.; de Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Ha, L.; Bastiaanssen, W.G.M.; van Griensven, A.; van Dijk, A.I.J.M.; Senay, G.B. Calibration of spatially distributed hydrological processes and model parameters in SWAT using remote sensing data and an auto-calibration procedure: A case study in a Vietnamese river basin. Water 2018, 10, 212. [Google Scholar] [CrossRef]
- Tobin, K.; Marvin, E.B. Constraining SWAT calibration with remotely sensed evapotranspiration data. J. Am. Water Resour. Assoc. 2017, 53, 593–604. [Google Scholar] [CrossRef]
- Cheema, M.J.M.; Immerzeel, W.W.; Bastiaanssen, W.G.M. Spatial quantification of groundwater abstraction in the irrigated indus basin. Groundwater 2014, 52, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Velasco, J.; Lloret, J.; Millán, A.; Marín, A.; Barahona, J.; Abellán, P.; Sánchez-Fernández, D. Nutrient and particulate inputs into the Mar Menor Lagoon (SE Spain) from an intensive agricultural watershed. Water Air Soil Pollut. 2006, 176, 37–56. [Google Scholar] [CrossRef]
- Senent-Aparicio, J.; Pérez-Sánchez, J.; García-Aróstegui, J.L.; Bielsa-Artero, A.; Domingo-Pinillos, J.C. Evaluating groundwater management sustainability under limited data availability in semiarid zones. Water 2015, 7, 4305–4322. [Google Scholar] [CrossRef]
- Navarro, M.C.; Pérez-Sirvent, C.; Martínez-Sánchez, M.J.; Vidal, J.; Tovar, P.J.; Bech, J. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. J. Geochem. Explor. 2008, 96, 183–193. [Google Scholar] [CrossRef]
- Pérez-Rufaza, A.; Navarro, S.; Barba, A.; Marcos, C.; Cámara, M.A.; Salas, F.; Gutiérrez, J.M. Presence of pesticides through trophic compartments of the food web in the Mar Menor lagoon (SE Spain). Mar. Pollut. Bull. 2000, 40, 140–151. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations–International Soil Reference and Information Centre (FAO–ISRIC). Guidelines for Profile Description, 3rd ed.; FAO–ISRIC: Roma, Italy, 1990. [Google Scholar]
- Krysanova, V.; White, M. Advances in water resources assessment with SWAT—An overview. Hydrol. Sci. J. 2015, 60, 771–783. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J.; King, K. Soil and Water Assessment Tool: Theoretical Documentation, version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Francés, F. Informe Sobre el Análisis de Afecciones de Diferentes Actuaciones en la Zona Sur Del Mar Menor Sobre Aportaciones a la Laguna de Agua, Sedimentos y Nitrógeno; Comunidad Autónoma de la Región de Murcia: Murcia, Spain, 2018. (In Spanish) [Google Scholar]
- Martens, B.; Miralles, D.G.; Lievens, H.; Fernández-Prieto, D.; Verhoest, N.E.C. GLEAMv3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Klemes, V. Operational testing of hydrological simulation models. Hydrolog. Sci. J. 1986, 31, 13–24. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Griensven, A.V.; Liew, M.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT-CUP-2012: SWAT Calibration and Uncertainty Program—A User Manual; Swiss Federal Institute of Aquatic Science and Technology: Dubendorf, Switzerland, 2012. [Google Scholar]
- Sun, C.; Ren, L. Assessment of surface water resources and evapotranspiration in the Haihe River basin of China using SWAT model. Hydrol. Process. 2013, 27, 1200–1222. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models. Part I: A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Waidler, D.; White, M.; Steglich, E.; Wang, S.; Williams, J.; Jones, C.A.; Srinivasan, R. Conservation Practice Modeling Guide for SWAT and APEX; Texas Water Resources Institute: College Station, TX, USA, 2009. [Google Scholar]
- Mtibaa, S.; Hotta, N.; Irie, M. Analysis of the efficacy and cost-effectiveness of best management practices for controlling sediment yield: A case study of the Joumine watershed, Tunisia. Sci. Total Environ. 2018, 616, 1–16. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Contreras, S.; Hunink, J.E.; Baille, A. Building a Watershed Information System for the Campo de Cartagena basin (Spain) integrating hydrological modeling and remote sensing. Report Future Water 2014, 125. [Google Scholar] [CrossRef]
- Dirección General de Conservación de la Naturaleza. Inventario Nacional de Erosión de Suelos 2002–2012; Ministerio de Medio Ambiente: Murcia, Spain, 2002; ISBN 84-8014-483-1. (In Spanish)
- Durán-Zuazo, V.H.; Rodríguez-Pleguezuelo, C.R. Soil-erosion and runoff prevention by plant covers. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef]
- Yuan, Y.; Bingner, R.A.; Locke, M.A. Review of effectiveness of vegetative buffers on sediment trapping in agricultural areas. Ecohydrology 2009, 2, 321–336. [Google Scholar] [CrossRef]
- Parajuli, P.B.; Mankin, K.R.; Barnes, P.L. Applicability of targeting vegetative filter strips to abate fecal bacteria and sediment yield using SWAT. Agric. Water Manag. 2008, 95, 1189–1200. [Google Scholar] [CrossRef]
- Briak, H.a.; Mrabet, R.; Moussadek, R.A.; Aboumaria, K. Use of a calibrated SWAT model to evaluate the effects of agricultural BMPs on sediments of the Kalaya river basin (North of Morocco). Int. Soil Water Conserv. Res. 2019, 7, 176–183. [Google Scholar] [CrossRef]
- Leh, M.; Sharpley, A.N.; Singh, G.; Matlock, M. Assessing the impact of the MRBI program in a data limited Arkansas watershed using the SWAT model. Agric. Water Manag. 2018, 202, 202–219. [Google Scholar] [CrossRef]
- Wagena, M.; Zachary, M.E. Agricultural conservation practices can help mitigate the impact of climate change. Sci. Total Environ. 2018, 635, 132–143. [Google Scholar] [CrossRef]
- Uribe, N.; Corzo, G.; Quintero, M.; van Griensven, A.; Solomatine, D. Impact of conservation tillage on nitrogen and phosphorus runoff losses in a potato crop system in Fuquene watershed, Colombia. Agric. Water Manag. 2018, 209, 62–72. [Google Scholar] [CrossRef]
- Ministerio de Agricultura y Pesa, Alimentación y Medio Ambiente (2018). Análisis de Soluciones Para el Objetivo Del Vertido Cero al Mar Menor Proveniente Del Campo de Cartagena. Available online: https://www.chsegura.es/chs/servicios/informacionpublica/vcerommenor/ (accessed on 4 September 2019).
- Cuttle, S.; Macleod, C.; Chadwick, D.; Scholefield, D.; Havgarth, P.; Newell-Price, P.; Harris, D.; Sepherd, M.; Chambers, B.; Humphrey, R. An Inventory of Methods to Control Diffuse Water Pollution from Agriculture (DWPA). User Manual. Defra Report, Project ES0203 2007. Available online: http://www.cost869.alterra.nl/UK_Manual.pdf (accessed on 2 September 2019).
- Perni, A.; Martínez-Carrasco, F.; Martínez-Paz, J.M. Economic valuation of coastal lagoon environmental restoration: The Mar Menor (Spain). Cienc. Mar. 2011, 37, 175–190. [Google Scholar] [CrossRef]
Data | Description | Source |
---|---|---|
DEM | 5 m × 5 m resolution map | Spanish National Geographic Institute (IGN) |
Land use map | Vector database | Corine Land Cover programme of year 2012 (CLC2012) |
Soil map | 1 km × 1 km resolution map | Harmonized World Soil Map (HWSD) |
Climate data | Daily meteorological station called TP42 | Murcian Institute of Agrarian and Food Research and Development (IMIDA) |
Parameter | Description | p-Value | Rank |
---|---|---|---|
ESCO.hru | Soil evaporation compensation factor | 0.00 | 1 |
CN2.mgt | Initial SCS runoff curve number | 0.00 | 2 |
EPCO.hru | Plant uptake compensation factor | 0.00 | 3 |
SOL_BD.sol | Moist bulk density (g/cm3) | 0.01 | 4 |
CANMX.hru | Maximum canopy storage (mm) | 0.08 | 5 |
SOL_AWC.sol | Soil available water content (mm/mm) | 0.19 | 6 |
SOL_K.sol | Saturated hydraulic conductivity (mm/h) | 0.25 | 7 |
GWQMN.gw | Threshold depth of water in the shallow aquifer for return flow to occur (m) | 0.27 | 8 |
GW_DELAY.gw | Groundwater delay (days) | 0.30 | 9 |
GW_REVAP.gw | Groundwater revap coefficient | 0.41 | 10 |
ALPHA_BF.gw | Base flow recession constant (days) | 0.88 | 11 |
REVAPMN.gw | Threshold depth of water in the shallow aquifer for revap to occur (m) | 0.99 | 12 |
Year | Date | Operation | Application Rate | Crop | |
---|---|---|---|---|---|
Month | Day | ||||
1 | January | 1 | Planting begin | Broccoli | |
1 | January | 1 | Irrigation | ~36 mm/month | Broccoli |
1 | January | 1 | Auto fertilization | Max. 250 KgN/ha | Broccoli |
1 | April | 30 | Harvest and kill | Broccoli | |
1 | June | 1 | Planting begin | Cantaloupe | |
1 | June | 1 | Irrigation | ~72 mm/month | Cantaloupe |
1 | June | 1 | Auto fertilization | Max. 130 KgN/ha | Cantaloupe |
1 | August | 31 | Harvest and kill | Cantaloupe | |
1 | October | 1 | Planting begin | Lettuce | |
1 | October | 1 | Irrigation | ~25 mm/month | Lettuce |
1 | October | 1 | Auto fertilization | Max. 130 KgN/ha | Lettuce |
1 | December | 31 | Harvest and kill | Lettuce |
BMP Combination | Description | BMPs |
---|---|---|
1 | Structural BMPs | Reforestation Check dam restoration |
2 | Agricultural BMPs | Contour planting 3 m filter strips Fertilizer application |
3 | All BMPs | Reforestation Check dam restoration Contour planting 3 m filter strips Fertilizer application |
Parameter | Value Range | Default Value | Fitted Value |
---|---|---|---|
ESCO.hru | 0–1 | 0.95 | 0.86 |
CN2.mgt | ±20% | - | −7.24% |
EPCO.hru | 0–1 | 1 | 0.14 |
SOL_BD.sol | ±20% | - | −8.2% |
CANMX.hru | 0–100 | 0 | 12.1 |
SOL_AWC.sol | ±20% | - | +14.84% |
SOL_K.sol | ±20% | - | −5.32% |
ALPHA_BF.gw | 0–1 | 0.048 | 0.16 |
BMP Combination | Description | Average Annual Reduction (%) | ||
---|---|---|---|---|
Sediment | TN | TP | ||
1 | Structural BMPs | 92% | 18% | 23% |
2 | Agricultural BMPs | 7% | 14% | 10% |
3 | All BMPs | 93% | 32% | 33% |
BMP | Cost per Hectare | Land Use | Total Cost (€) | Cost per Ton of Reduction | ||
---|---|---|---|---|---|---|
Sediment | TN | TP | ||||
Reforestation | 46000 € | Abandoned mineral extraction sites | 10212000 | 24898 | 33594 | 85331 |
Check dam restoration | 200000 € 1 | - | 800000 | 575 | 2790 | 5885 |
Fertilizer application | 100 € | Cropland | 10800 | - | 267 | - |
3 m filter strips | 30 € | Cropland | 3240 | 48 | 21 | 91 |
Contour planting | 10 € | Cropland | 1080 | 11 | 6 | 24 |
Structural BMPs | - | - | 11012000 | 7693 | 32124 | 79397 |
Agricultural BMPs | - | - | 15120 | 132 | 57 | 257 |
All BMPs | - | - | 11027120 | 7640 | 18109 | 55922 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Ballesteros, A.; Senent-Aparicio, J.; Srinivasan, R.; Pérez-Sánchez, J. Assessing the Impact of Best Management Practices in a Highly Anthropogenic and Ungauged Watershed Using the SWAT Model: A Case Study in the El Beal Watershed (Southeast Spain). Agronomy 2019, 9, 576. https://doi.org/10.3390/agronomy9100576
López-Ballesteros A, Senent-Aparicio J, Srinivasan R, Pérez-Sánchez J. Assessing the Impact of Best Management Practices in a Highly Anthropogenic and Ungauged Watershed Using the SWAT Model: A Case Study in the El Beal Watershed (Southeast Spain). Agronomy. 2019; 9(10):576. https://doi.org/10.3390/agronomy9100576
Chicago/Turabian StyleLópez-Ballesteros, Adrián, Javier Senent-Aparicio, Raghavan Srinivasan, and Julio Pérez-Sánchez. 2019. "Assessing the Impact of Best Management Practices in a Highly Anthropogenic and Ungauged Watershed Using the SWAT Model: A Case Study in the El Beal Watershed (Southeast Spain)" Agronomy 9, no. 10: 576. https://doi.org/10.3390/agronomy9100576
APA StyleLópez-Ballesteros, A., Senent-Aparicio, J., Srinivasan, R., & Pérez-Sánchez, J. (2019). Assessing the Impact of Best Management Practices in a Highly Anthropogenic and Ungauged Watershed Using the SWAT Model: A Case Study in the El Beal Watershed (Southeast Spain). Agronomy, 9(10), 576. https://doi.org/10.3390/agronomy9100576