Suitability of Biochar and Biomass Ash in Basket Willow (Salix Viminalis L.) Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Fertiliser Material
2.4. Biomass Production
2.5. Examination of Samples
2.6. Names of Tests
- B1/P1 (control test—no fertiliser);
- P2 (fertilised with ash at a dose of 1.5 t ha−1);
- P3 (fertilised with ash at a dose of 3.0 t ha−1);
- P4 (fertilised with ash at a dose of 4.5 t ha−1);
- B2/P1 (fertilised with biochar at a dose of 11.5 t ha−1);
- B2/P2 (fertilised with biochar and ash at doses of 11.5 and 1.5 t ha−1, respectively);
- B2/P3 (fertilised with biochar and ash at doses of 11.5 and 3.0 t ha−1, respectively);
- B2/P4 (fertilised with biochar and ash at doses of 11.5 and 4.5 t ha−1, respectively).
2.7. Statistical Analyses
3. Results
3.1. Biochar and Biomass Ash
3.2. Soil
3.3. Basket Willow Biomass
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Malińska, K. Biochar—A response to current environmental issues. Inżynieria Ochrona Środowiska 2012, 15, 387–403. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009. [Google Scholar]
- Lehmann, J.; Rilling, M.C.; Thies, J.; Masiell, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biotechnol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Lehman, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [Green Version]
- Ascough, P.L.; Bird, M.I.; Brock, F.; Higham, T.F.G.; Meredith, W.; Snape, C.E.; Vane, C.H. Hydropyrolysis as a new tool for radiocarbon pre-treatment and the quantification of black carbon. Quat. Geochronol. 2009, 4, 140–147. [Google Scholar] [Green Version]
- Gouveia, S.E.M.; Pessenda, L.C.R.; Aravena, R.; Boulet, R.; Scheel-Ybert, R.; Bendassoli, J.A.; Ribero, A.S.; Freitas, H.A. Carbon isotopes in charcoal and soils in studies of paleovegetation and climate changes during the late Pleistocene and the Holocen in the southeast and centerwest regions of Brazil. Glob. Planet Chang. 2002, 33, 95–106. [Google Scholar]
- Solaiman, Z.M.; Murphy, D.V.; Abbott, L.K. Biochars influence seed germination and early growth of seedlings. Plant Soil. 2012, 353, 273–287. [Google Scholar]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629. [Google Scholar]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [Green Version]
- Bis, Z. Biochar—Return to the past, opportunity for the future. In Czysta Energia; Abrys Sp. z o.o.: Poznań Poland, 2012; Volume 6. [Google Scholar]
- McHenry, M.P. Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agric. Ecosyst. Environ. 2009, 129, 1–7. [Google Scholar] [Green Version]
- Jien, S.; Wang, C. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 2010, 110, 225–233. [Google Scholar]
- Yuan, J.; Xu, R.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [PubMed]
- Piekarczyk, M.; Kotwica, K.; Jaskulski, D. Effect of spring barley straw ash on the chemical properties of light soil. Fragm. Agron. 2011, 28, 91–99. [Google Scholar]
- Wacławowicz, R. The effect of ashes from biomass combustion on infection of spring wheat by Gaeumannomyces graminis. Prog. Plant Prot. 2012, 2, 52. [Google Scholar]
- Kalembasa, D. The amount and chemical composition of ash obtained from biomass of energy crops. Acta Agrophys. 2006, 7, 909–914. [Google Scholar]
- Kowalczyk-Juśko, A. Ash from different energy crops. Proc. ECOpole 2009, 3, 159–164. [Google Scholar]
- Piekarczyk, M.; Kotwica, K.; Jaskulski, D. The elemental composition of ash from straw and hay in the context of their agricultural utilization. Acta Sci. Pol. Agric. 2011, 10, 97–104. [Google Scholar]
- Bielińska, E.J.; Baran, S.; Stankowski, S. Assessment concerning usability of fluidal ashes from hard coal for agricultural purposes. Inż. Rol. 2009, 6, 7–15. [Google Scholar]
- Yeledhalli, N.A.; Prakash, S.S.; Ravi, M.V.; Narayanarao, K. Long-term effect of fly ash on crop yield and soil properties. Karnataka J. Agric. Sci. 2008, 21, 507–512. [Google Scholar]
- Antonkiewicz, J.; Radkowski, A. Usability of selected grass and legume species for biological reclamation of ash dumps. Ann. UMCS Agric. 2006, 61, 413–421. [Google Scholar]
- Greinert, H.; Greinert, A. Biological treatment of furnace waste. In Conservation and Restoration of Soil Environment; Wyd. Politechniki Zielonogórskiej: Zielona Góra, Poland, 1999; pp. 234–237. [Google Scholar]
- Dubas, J.W.W. Willow. In Energy Crops; Kościk, B., Ed.; Wydawnictwo AR w Lublinie: Warszawa, Poland, 2003; pp. 56–78. [Google Scholar]
- Król, K. Basket willow—A valuable energy crop. Tech. Rol. Ogrod. Leśna 2004, 3, 18–22. [Google Scholar]
- Godet, J.D. A Guide for Identifying Trees and Shrubs; Oficyna Wydawnicza Delta W–Z: Warszawa, Poland, 2000; Volume 255. [Google Scholar]
- Lisowski, A. Technologies for Energy Crops Harvesting; Wydawnictwo SGGW Warszawa: Warszawa, Poland, 2010. [Google Scholar]
- Szczukowski, S.; Tworkowski, J.; Stolarski, M. Energy Willow; Wydawnictwo Plantpress: Kraków, Poland, 2006; Volume 46. [Google Scholar]
- Szczukowski, S.; Tworkowski, J. Cultivation of Energy Willow and Other Perennial Plants; Wydawnictwo Wieś Jutra: Warszawa, Poland, 2004; Volume 3, pp. 53–55. [Google Scholar]
- Jasiulewicz, M. Economic feasibility of willow cultivation in ‘marginal’ areas and possible use of the biomass in distributed energy. In Economic Determinants of Using Renewable Sources of Energy; Wydawnictwo Wieś Jutra: Warszawa, Poland, 2009; pp. 92–101. [Google Scholar]
- Filipek, T.; Skowrońska, M. Current dominant causes and effects of acidification of soils under agricultural use in Poland. Acta Agrophys. 2013, 20, 283–294. [Google Scholar]
- Bieniek, J.; Żołnierz-Rusinek, A. The willow Salix viminalis as a source of renewable energy, exemplified by plantations established in the Kłodzko Valley. Inżynieria Rol. 2008, 4, 111–118. [Google Scholar]
- Regulation of the Council of Ministers of 12 September 2012 on Soil Classification of Lands; Set Log the Republic of Poland 2012, Official Journal, No. 0, item 1246. Available online: https://eur-lex.europa.eu/oj/direct-access.html (accessed on 27 August 2019).
- Szymańska, B.; Głosek, M.; Gocławski, P.; Lewandowska, T.; Luśniewski, A. Strategic host areas in the Mazowieckie Voivodeship. Wydaw. Anal. Studi. 2012, 2, 1–43. [Google Scholar]
- Polish Committee for Standardization. Soil Quality—Determination of Ph; Polish Committee for Standardization: Warsaw, Poland, 1997.
- Polish Committee for Standardization. Chemical and Agricultural Analysis of the Soil—Determination of the Content of Absorbable Phosphorus in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 1996.
- Polish Committee for Standardization. Chemical and Agricultural Analysis of the Soil—Determination of the Content of Potassium in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 2002.
- Polish Committee for Standardization. Chemical and Agricultural Analysis of the Soil—Determination of the Content of Magnesium in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 2004.
- British Standards Institution. Solid Biofuels—Determination of Total Carbon, Hydrogen and Nitrogen Content—Instrumental Methods; British Standards Institution: London, UK, 2011. [Google Scholar]
- British Standards Institution. Solid Biofuels—Determination of Volatile Part Content; British Standards Institution: London, UK, 2010. [Google Scholar]
- British Standards Institution. Solid Biofuels—Content of volatile substances; British Standards Institution: London, UK, 2011. [Google Scholar]
- British Standards Institution. Solid Biofuels—Determination of Calorific Value; British Standards Institution: London, UK, 2010. [Google Scholar]
- Saletnik, B.; Zaguła, G.; Grabek-Lejko, D.; Kasprzyk, I.; Bajcar, M.; Czernicka, M.; Puchalski, C. Biosorption of cadmium (II), lead (II) and cobalt (II) from aqueous solution by biochar from cones of larch (Larix decidua Mill. subsp. decidua) and spruce (Picea abies L. H. Karst). Environ. Earth Sci. 2017, 76, 574. [Google Scholar] [CrossRef]
- Milestone. SK-10 High Pressure Rotor; HPR-EN-13 Soil Total Digestion; Milestone: Shelton, CT, USA; Available online: http://subitam.sinop.edu.tr/fileman/Uploads/Subitam/Mikrodalga.pdf (accessed on 21 January 2019).
- Milestone. SK-10 High Pressure Rotor; HPR-PE-19 Carbon Black; Milestone: Shelton, CT, USA; Available online: http://subitam.sinop.edu.tr/fileman/Uploads/Subitam/Mikrodalga.pdf (accessed on 21 January 2019).
- Milestone. SK-10 High Pressure Rotor; HPR-AG-02 Dried Plant Tissue; Milestone: Shelton, CT, USA; Available online: http://subitam.sinop.edu.tr/fileman/Uploads/Subitam/Mikrodalga.pdf (accessed on 21 January 2019).
- Milestone. SK-10 High Pressure Rotor; HPR-EN-04 Fly Ash; Milestone: Shelton, CT, USA; Available online: http://subitam.sinop.edu.tr/fileman/Uploads/Subitam/Mikrodalga.pdf (accessed on 21 January 2019).
- Mercik, S. Agricultural Chemistry. Theoretical and Practical Basics; Szkoła Główna Gospodarstwa Wiejskiego: Warsaw, Poland, 2004. [Google Scholar]
- Handzel, A.; Królczyk, J.B.; Latawiec, A.E.; Pluta, K.; Malina, D.; Sobczak-Kupiec, A. Determination of element contens and physicochemical properties of selected soils. Infrastruct. Ecol. Rural Areas 2017, 5, 419–432. [Google Scholar]
- Ciesielczuk, T.; Kusza, G.; Nemś, A. Fertilization with biomass ashes as a source of trace elements for soils. Ochr. Środ. Zas. Nat. 2011, 49, 219–227. [Google Scholar]
- Meller, E.; Niedźwiecki, E.; Wojcieszczuk, T.; Jarnuszewski, G. Comparison of physicochemical properties of ash obtained by combustion of biomass of varied composition. Zesz. Probl. Post Nauk Rol. 2009, 535, 297–303. [Google Scholar]
- Wacławowicz, R. Agricultural Applications of Biomass Ash; UP Wrocław: Wrocław, Poland, 2011. [Google Scholar]
- Blander, M.; Pelton, A.D. The inorganic chemistry of the combustion of wheat straw. Biomass Bioenergy 1997, 12, 295–298. [Google Scholar] [CrossRef]
- Meller, E.; Bilenda, E. Effects of biomass ash on the physicochemical properties of light soil. Polit. Energy 2012, 15, 287–292. [Google Scholar]
- Piekarczyk, M. Effect of winter wheat straw ash on the some macro- and microelements available forms content in light soil. Fragm. Agron. 2013, 30, 92–98. [Google Scholar]
- Górecka, H.; Chojnacka, K.; Hoffmann, J.; Górecki, H.; Dobrzyński, Z. Micronutrients in wood ashes used for deacidification and fertilization of soils. Chem. Nauka Tech. Rynek 2006, 1, 9–12. [Google Scholar]
- Piotrowski, Z.; Uliasz-Bocheńczyk, A. Possible utilization of waste from fluidized bed combustion. Gospod. Surowcami Miner. 2008, 24, 73–83. [Google Scholar]
- Stout, W.; Daily, M.R.; Nickenson, T.L.; Svendsen, R.L.; Thompson, G.P. Agricultural uses of alkaline fluidized combustion ash: Case studies. Fuel 1997, 76, 767–769. [Google Scholar]
- Ciećko, Z.; Żołnowski, A.C.; Kulmaczewska, J.; Chełstowski, A. Long time effect of hard coal fly ashes application on the soil acidity. Zesz. Probl. Post. Nauk Rol. 2009, 535, 73–83. [Google Scholar]
- Carter, S.; Shackley, S.; Sohi, S.; Suy, T.B.; Haefele, S. The Impact of Biochar Application on Soil Properties and Plant Growth of Pot Grown Lettuce (Lactuca sativa) and Cabbage (Brassica chinensis). Agronomy 2013, 3, 404–418. [Google Scholar] [CrossRef]
- Medyńska-Juraszek, A. Biochar as a soil amendment. Soil Sci. Annu. 2016, 67, 151–157. [Google Scholar] [Green Version]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of a Southeastern coastal plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef]
- Kraska, P.; Oleszczuk, P.; Andruszczak, S.; Kwiecińska-Poppe1, E.; Różyło, K.; Pałys, E.; Gierasimiuk, P.; Michałojć, Z. Effect of various biochar rates on winter rye yield and the concentration of available nutrients in the soil. Plant Soil Environ. 2016, 11, 483–489. [Google Scholar]
- Antonkiewicz, J. Use incineration ash for binding heavy metals in soils. Ochr. Środ. Zas. Nat. 2009, 41, 398–405. [Google Scholar]
- Park, B.B.; Yanai, R.D.; Sahm, J.M.; Lee, D.K.; Abrahamson, L.P. Wood ash effects on plant and soil in a willow bioenergy plantation. Biomass Bioenergy 2005, 28, 355–365. [Google Scholar]
- Właśniewski, S. Effect of fertilization with fly ash from black coal on some chemical properties of sandy soil and yields of oat. Ochr. Środ. Zas. Nat. 2009, 41, 479–488. [Google Scholar]
- Saletnik, B.; Zaguła, G.; Bajcar, M.; Czernicka, M.; Puchalski, C. Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus × giganteus). Energies 2018, 11, 2535. [Google Scholar] [CrossRef]
- Osaji, K.M.; Ogbujor, D.A.; Oghenerho, E.A. Effect of biochar on soil properties and yield of cucumber (Cucumis sativus L). Int. J. Soil Sci. Agron. 2017, 4, 131–142. [Google Scholar]
- Bakisgan, C.; Dumanli, A.G.; Yürüm, Y. Trace elements in Turkish biomass fuels: Ashes of wheat straw, olive bagasse and hazelnut shell. Fuel 2009, 88, 1842–1851. [Google Scholar] [Green Version]
- James, A.K.; Thring, R.W.; Helle, S.; Ghuman, H.S. Ash management review—Applications of biomass bottom ash. Energies 2012, 5, 3856–3873. [Google Scholar]
- Gibczyńska, M.; Meller, E.; Stankowski, S.; Prokopowicz, A. Effect of brown coal ash on chemical properties of light soil. Zesz. Probl. Post. Nauk Rol. 2009, 538, 63–71. [Google Scholar]
- Silva, I.C.B.; Basílio, J.J.N.; Fernandes, L.A.; Colen, F.; Sampaio, R.A.; Frazão, L.A. Biochar from different residues on soil properties and common bean production. Sci. Agric. 2016, 74, 378–382. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Biochar sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 395–427. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, Y.; Pan, G.; Hussain, Q.; Li, L.; Zheng, J.; Zhang, X. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 2012, 351, 263–275. [Google Scholar]
- Haefele, S.; Konboon, Y.; Wongboon, W.; Amarante, S.; Maarifat, A.; Pfeiffer, E.; Knoblauch, C. Effects and fate of biochar from rice residues in rice-based systems. Field Crops Res. 2011, 121, 430–441. [Google Scholar]
- Njoku, C.; Inyang, E.D.; Agwu, J.O. Soil Physical Properties and Yield of Cucumber as Influenced by Biochar, Wood Ash and Rice Husk Dust Application in Abakaliki Southeastern Nigeria. IOSR J. Appl. Chem. (IOSR-JAC) 2017, 7, 61–66. [Google Scholar]
- Oleanders, B.; Steenari, B.M. Characterization of ashes from wood and straw. Biomass Bioenergy 1995, 8, 105–115. [Google Scholar]
- Lu, K.; Yang, X.; Shen, J.; Robinson, B.; Huang, H.; Liu, D.; Bolan, N.; Pei, J.; Wang, H. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric. Ecosyst. Environ. 2014, 191, 124–132. [Google Scholar] [CrossRef]
- Szczukowski, S.; Stolarski, M.; Tworkowski, J.; Rutkowski, P.; Goliński, P.; Mleczek, M.; Szentner, K. Yield and quality of biomass of selected willow species grown in a four-year harvest rotation. Fragm. Agron. 2014, 31, 107–114. [Google Scholar]
- Jeżowski, S.; Głowacka, K.; Kaczmarek, Z.; Szczukowski, S. Field traits of eight common osier clones in the first three years following planting in Poland. Biomass Bioenergy 2011, 35, 1205–1210. [Google Scholar]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Mbah, C.N.; Njoku1, C.; Okolo, C.C.; Attoe, E.E.; Osakwe, U.C. Amelioration of a degraded ultisol with hardwood biochar: Effects on soil physico-chemical properties and yield of cucumber (Cucumis sativus L.). Afr. J. Agric. Res. 2017, 12, 1781–1792. [Google Scholar]
- Demeyer, A.; Voundi Nkana, J.C.; Verloo, M.G. Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview. Bioresour. Technol. 2001, 3, 287–295. [Google Scholar]
- Biel, W.; Jaroszewska, A.; Zapałowska, A.; Łysoń, E.; Hury, G. Influence of fertilisation with ash from conifers biomass and sewage sludge on selected nutrients in tubers of Jerusalem artichoke (Helianthus tuberosus L.). Acta Agrophys. 2017, 24, 17–28. [Google Scholar]
- Klašnja, B.; Orlović, S.; Galić, Z. Comparison of different wood species as raw materials for bioenergy. Southeast Eur. For. 2013, 4, 81–88. [Google Scholar] [CrossRef]
- Wróblewska, H.; Komorowicz, M.; Pawłowski, J.; Cichy, W. Chemical and energetical properties of selected lignocellulosic raw materials. Folia For. Pol. 2009, 40, 67–78. [Google Scholar]
- Otepka, P.; Habán, M. Wood ash Fertilization of energy plant basket willow (Salix viminalis L.). Acta Reg. Environ. 2013, 2, 46–50. [Google Scholar]
- Borkowska, H.; Lipiński, W. Content of selected elements in biomass of several species of energy plants. Acta Agrophys. 2007, 10, 287–292. [Google Scholar]
- Kalembasa, S.; Wysokiński, A.; Cichuta, R. Content of heavy metals in willow (Salix viminalis) at diverse doses of nitrogen. Acta Agrophys. 2009, 13, 385–392. [Google Scholar]
- Jiang, J.; Xu, R.K.; Jiang, T.Y.; Li, Z. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J. Hazard. Mater. 2012, 229–230, 145–150. [Google Scholar]
Item | Parameter | Research Method |
---|---|---|
1. | pH in KCl | PN-ISO 10390:1997 [34] |
2. | Content of absorbable forms of phosphorus (P2O5) | PN-R-04023:1996 [35] |
3. | Content of absorbable forms of potassium (K2O) | PN-R-04022:1996/Az1:2002 [36] |
4. | Content of absorbable form of magnesium (Mg) | PN-R-04020:1996/Az1:2004 [37] |
5. | Content of carbon, nitrogen and hydrogen | PN-EN 15104:2011 [38] |
6. | Ash content | PN-EN 14775:2010 [39] |
7. | Content of volatile substances | PN-EN 15148:2011 [40] |
8. | Calorific value | PN-EN 14918:2010 [41] |
9. | Total content of selected macro and microelements | Method using atomic emission spectrometry with excitation in argon plasma (inductively coupled plasma atomic emission spectroscopy ICP—OES) |
Material | Acid | Temperature and Time | Power | Application Note |
---|---|---|---|---|
Soil | 8 mL HNO3 65% 5 mL HCl 37% 1 mL HF 40% 5 mL H3BO3 5% | temperature increase to 200 °C, time: 15 min; maintaining at temperature of 200 °C, time: 15 min | 1500 W | HPR-EN-13 [43] |
Biochar | 7 mL HNO3 65% 1 mL H2O2 30% | HPR-PE-19 [44] | ||
Plant Biomass | 6 mL HNO3 65% 2 mL H2O2 30% | HPR-AG-02 [45] | ||
Ash from biomass | 7 mL HNO3 65% HCl 37% 1.5 HF 40% | temperature increase to 220 °C, time: 20 min; maintaining at temperature of 220 °C, time: 15 min | HPR-EN-04 [46] |
pH (KCl) | Carbon | Nitrogen | P2O5 | K2O | Mg | |
---|---|---|---|---|---|---|
% | mg kg−1 | |||||
x ± SD | ||||||
Biochar | 6.59 ± 0.21 | 74.35 ± 0.24 | 0.93 ± 0.07 | 1382 ± 41 | 5752 ± 63 | 645 ± 22 |
Ash | 12.89 ± 0.32 | 1.22 ± 0.22 | 0.17 ± 0.01 | 6394 ± 52 | 91143 ± 94 | 31406 ± 74 |
Water | Ash | Volatile Substances | |
---|---|---|---|
% | |||
x ± SD | |||
Biochar | 9.11 ± 0.03 | 11.57 ± 0.21 | 66.42 ± 0.18 |
Ash | - | - | 94.42 ± 0.27 |
Al | As | Ca | Cd | Cr | Cu | Mn | |
mg kg−1 | |||||||
x ± SD | |||||||
Biochar | < 0.01 | < 0.01 | 18520 ± 21 | < 0.01 | < 0.01 | 10 ± 0.8 | 240 ± 2.5 |
Ash | < 0.01 | < 0.01 | 131220 ± 35 | < 0.01 | 50 ± 0.9 | 110 ± 0.7 | 1930 ± 9.5 |
Mo | Na | Ni | Pb | S | Sr | Zn | |
mg kg−1 | |||||||
x ± SD | |||||||
Biochar | < 0.01 | < 0.01 | < 0.01 | < 0.01 | 880 ± 12 | < 0.01 | 130 ± 11.5 |
Ash | < 0.01 | < 0.01 | 40 ± 2.5 | < 0.01 | 19710 ± 23 | < 0.01 | 710 ± 8.2 |
Year | Fertilisers Applied | Macro- and Microelements | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
As | Ca | Cd | Cu | Mn | Na | Ni | Pb | S | Zn | ||
mg kg−1 | |||||||||||
x ± SD | |||||||||||
2015 | <0.01 | 2300.00 b ± 18.78 | <0.01 | 20.00 a ± 0.41 | 624.25 d ± 4.65 | 174.75 f ± 1.50 | <0.01 | 12.40 a ± 0.41 | 112.97 a ± 0.87 | 50.03 d ± 2.41 | |
2016 | B1/P1 | <0.01 | 2794.63 e ± 266.27 | <0.01 | 47.43 d ± 2.89 | 495.29 b ± 8.79 | 17.08 a ± 9.42 | <0.01 | 15.05 c ± 0.29 | 161.72 b ± 11.31 | 19.60 a ± 0.05 |
P2 | <0.01 | 2625.47 de ± 48.51 | <0.01 | 53.47 e ± 1.00 | 481.76 b ± 1.91 | 89.75 c ± 36.35 | <0.01 | 13.97 b ± 0.18 | 151.19 b ± 13.66 | 47.19 d ± 0.64 | |
P3 | <0.01 | 2660.68 de ± 124.12 | <0.01 | 57.83 f ± 0.33 | 495.60 b ± 10.04 | 98.11 c ± 41.50 | <0.01 | 14.33 b ± 0.46 | 167.72 b ± 25.44 | 26.74 b ± 0.94 | |
P4 | <0.01 | 2435.24 c ± 86.36 | <0.01 | 47.67 d ± 0.62 | 498.99 b ± 2.12 | 13.98 a ± 4.19 | <0.01 | 15.67 c ± 0.61 | 156.95 b ± 25.53 | 49.31 d ± 1.48 | |
B2/P1 | <0.01 | 2595.98 d ± 195.27 | <0.01 | 31.02 b ± 1.87 | 481.06 b ± 7.33 | 86.43 c ± 15.30 | <0.01 | 14.15 b ± 0.58 | 188.72 c ± 13.63 | 47.07 d ± 3.34 | |
B2/P2 | <0.01 | 2791.68 e ± 243.24 | <0.01 | 55.11 ef ± 0.52 | 495.38 b ± 11.80 | 82.34 c ± 2.30 | <0.01 | 14.76 b ± 0.46 | 203.08 d ± 12.17 | 48.12 d ± 2.51 | |
B2/P3 | <0.01 | 3143.24 f ± 75.75 | <0.01 | 57.85 f ± 0.97 | 512.20 c ± 2.06 | 108.07 d ± 31.87 | <0.01 | 15.00 bc ± 0.37 | 203.91 d ± 1.30 | 51.33 d ± 1.26 | |
B2/P4 | <0.01 | 3427.55 g ± 51.58 | <0.01 | 62.35 g ± 0.26 | 536.15 c ± 1.47 | 162.76 e ± 6.36 | <0.01 | 16.15 c ± 0.50 | 223.59 e ± 4.34 | 56.37 d ± 2.15 | |
2017 | B1/P1 | <0.01 | 2841.94 e ± 199.99 | <0.01 | 45.82 c ± 0.40 | 445.93 a ± 10.30 | 45.97 b ± 3.43 | <0.01 | 13.48 b ± 0.52 | 191.27 c ± 4.86 | 26.69 b ± 0.34 |
P2 | <0.01 | 2538.70 d ± 61.48 | <0.01 | 43.73 c ± 2.15 | 473.94 a ± 8.73 | 89.37 c ± 5.10 | <0.01 | 13.83 b ± 0.18 | 167.01 b ± 3.46 | 28.06 b ± 0.40 | |
P3 | <0.01 | 2165.54 a ± 62.79 | <0.01 | 43.04 c ± 0.60 | 478.94 a ± 8.37 | 41.63 b ± 19.56 | <0.01 | 14.65 b ± 0.17 | 182.08 c ± 1.59 | 27.36 b ± 0.14 | |
P4 | <0.01 | 3042.59 ef ± 276.93 | <0.01 | 61.44 g ± 1.69 | 528.60 c ± 10.19 | 163.20 e ± 5.68 | <0.01 | 16.36 c ± 0.84 | 196.98 cd ± 13.23 | 33.82 bc ± 2.11 | |
B2/P1 | <0.01 | 2252.37 b ± 94.08 | <0.01 | 50.70 e ± 1.62 | 475.83 a ± 6.83 | 87.55 c ± 31.15 | <0.01 | 14.34 b ± 0.21 | 172.23 bc ± 3.78 | 28.44 b ± 0.56 | |
B2/P2 | <0.01 | 2162.06 a ± 21.15 | <0.01 | 44.84 c ± 0.99 | 468.23 a ± 1.73 | 47.90 b ± 8.19 | <0.01 | 14.51 b ± 0.34 | 168.57 b ± 6.32 | 27.22 b ± 0.45 | |
B2/P3 | <0.01 | 5132.77 h ± 131.93 | <0.01 | 43.62 c ± 0.41 | 540.16 c ± 8.48 | 57.19 b ± 40.59 | <0.01 | 14.93 b ± 0.09 | 183.72 c ± 1.27 | 28.85 b ± 1.18 | |
B2/P4 | <0.01 | 3217.95 f ± 32.24 | <0.01 | 60.92 g ± 1.34 | 515.14 c ± 5.74 | 170.08 e ± 2.50 | <0.01 | 16.65 c ± 0.21 | 205.54 d ± 1.67 | 35.73 c ± 0.70 |
Year | Fertilisers Applied | Macroelements | ||||||
---|---|---|---|---|---|---|---|---|
Ca | Fe | K | Mg | Na | P | S | ||
mg kg−1 | ||||||||
x ± SD | ||||||||
2016 | B1/P1 | 5.14 c ± 0.15 | 0.12 a ± 0.04 | 4.26 c ± 0.19 | 0.95 ab ± 0.04 | 0.06 a ± 0.01 | 1.15 a ± 0.07 | 0.87 b ± 0.04 |
P2 | 4.59 b ± 0.09 | 0.34 a ± 0.15 | 3.72 ab ± 0.13 | 0.87 a ± 0.03 | 0.05 a ± 0.01 | 1.06 a ± 0.04 | 0.77 a ± 0.02 | |
P3 | 4.31 a ± 0.10 | 0.08 a ± 0.03 | 3.47 a ± 0.10 | 0.81 a ± 0.07 | 0.05 a ± 0.01 | 1.03 a ± 0.08 | 0.69 a ± 0.10 | |
P4 | 5.10 c ± 0.09 | 0.26 a ± 0.14 | 3.76 ab ± 0.09 | 0.93 ab ± 0.04 | 0.06 a ± 0.01 | 1.11 a ± 0.04 | 0.76 a ± 0.06 | |
B2/P1 | 4.54 b ± 0.06 | 0.07 a ± 0.03 | 3.71 ab ± 0.10 | 0.86 a ± 0.05 | 0.05 a ± 0.00 | 1.11 a ± 0.03 | 0.78 a ± 0.01 | |
B2/P2 | 5.35 c ± 0.12 | 0.08 a ± 0.05 | 4.22 c ± 0.23 | 1.03 b ± 0.04 | 0.06 a ± 0.01 | 1.28 b ± 0.02 | 0.91 b ± 0.09 | |
B2/P3 | 4.77 b ± 0.15 | 0.12 a ± 0.05 | 3.91 b ± 0.09 | 0.91 a ± 0.08 | 0.05 a ± 0.01 | 1.16 a ± 0.05 | 0.81 ab ± 0.06 | |
B2/P4 | 4.18 a ± 0.11 | 0.08 a ± 0.04 | 3.56 a ± 0.12 | 0.85 a ± 0.10 | 0.05 a ± 0.01 | 1.08 a ± 0.10 | 0.75 a ± 0.05 | |
2017 | B1/P1 | 1.06 a ± 0.12 | 0.04 a ± 0.01 | 5.59 c ± 0.12 | 0.31 a ± 0.03 | 0.09 a ± 0.00 | 1.13 c ± 0.09 | 0.38 ab ± 0.01 |
P2 | 1.13 a ± 0.15 | 0.06 a ± 0.02 | 4.90 b ± 0.07 | 0.34 b ± 0.06 | 0.08 a ± 0.00 | 0.97 b ± 0.07 | 0.34 a ± 0.02 | |
P3 | 1.60 c ± 0.06 | 0.06 a ± 0.01 | 5.37 c ± 0.09 | 0.37 b ± 0.04 | 0.09 a ± 0.01 | 1.25 d ± 0.07 | 0.47 c ± 0.02 | |
P4 | 1.26 a ± 0.08 | 0.05 a ± 0.02 | 4.58 a ± 0.12 | 0.36 b ± 0.01 | 0.09 a ± 0.01 | 1.06 c ± 0.04 | 0.37 ab ± 0.02 | |
B2/P1 | 1.17 a ± 0.12 | 0.05 a ± 0.02 | 4.74 b ± 0.10 | 0.28 a ± 0.03 | 0.08 a ± 0.01 | 0.95 b ± 0.01 | 0.32 a ± 0.01 | |
B2/P2 | 1.22 a ± 0.19 | 0.05 a ± 0.03 | 4.34 a ± 0.08 | 0.29 a ± 0.05 | 0.07 a ± 0.01 | 0.81 a ± 0.09 | 0.33 a ± 0.03 | |
B2/P3 | 1.15 a ± 0.03 | 0.04 a ± 0.02 | 4.78 b ± 0.11 | 0.39 b ± 0.10 | 0.07 a ± 0.01 | 0.79 a ± 0.08 | 0.39 ab ± 0.03 | |
B2/P4 | 1.44 b ± 0.07 | 0.05 a ± 0.01 | 4.66 a ± 0.12 | 0.40 b ± 0.05 | 0.09 a ± 0.00 | 1.09 c ± 0.07 | 0.42 b ± 0.02 |
Year | Fertilisers Applied | Microelements | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | As | Cd | Cr | Cu | Mo | Ni | Pb | Mn | Sr | Zn | ||
mg kg−1 | ||||||||||||
x ± SD | ||||||||||||
2016 | B1/P1 | 0.11 b ± 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.06 a ± 0.01 | 0.03 a ± 0.01 | 0.07 a ± 0.02 |
P2 | 0.08 ab ± 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.05 a ± 0.01 | 0.03 a ± 0.01 | 0.07 a ± 0.02 | |
P3 | 0.04 a ± 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.05 a ± 0.01 | 0.03 a ± 0.01 | 0.09 a ± 0.03 | |
P4 | 0.06 a ± 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.06 a ± 0.01 | 0.03 a ± 0.00 | 0.11 a ± 0.04 | |
B2/P1 | 0.04 a ± 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.05 a ± 0.00 | 0.03 a ± 0.00 | 0.05 a ± 0.02 | |
B2/P2 | 0.04 a ± 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.06 a ± 0.01 | 0.04 a ± 0.00 | 0.05 a ± 0.02 | |
B2/P3 | 0.04 a ± 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.05 a ± 0.01 | 0.03 a ± 0.00 | 0.04 a ± 0.01 | |
B2/P4 | 0.04 a ± 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.05 a ± 0.01 | 0.03 a ± 0.01 | 0.04 a ± 0.02 | |
2017 | B1/P1 | 0.01 a ± 0.00 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.07 a ± 0.01 | 0.02 a ± 0.00 | 0.06 a ± 0.00 |
P2 | 0.01 a ± 0.00 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.06 a ± 0.00 | 0.02 a ± 0.00 | 0.06 a ± 0.00 | |
P3 | 0.01 a ± 0.00 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.06 a ± 0.00 | 0.02 a ± 0.00 | 0.06 a ± 0.00 | |
P4 | 0.01 a ± 0.00 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.07 a ± 0.00 | 0.02 a ± 0.00 | 0.07 a ± 0.00 | |
B2/P1 | 0.01 a ± 0.00 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.06 a ± 0.00 | 0.02 a ± 0.00 | 0.07 a ± 0.01 | |
B2/P2 | 0.01 a ± 0.00 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.06 a ± 0.01 | 0.02 a ± 0.00 | 0.06 a ± 0.01 | |
B2/P3 | 0.01 a ± 0.00 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.06 a ± 0.01 | 0.02 a ± 0.00 | 0.06 a ± 0.01 | |
B2/P4 | 0.01 a±0.00 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.06 a ± 0.00 | 0.02 a ± 0.00 | 0.06 a ± 0.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saletnik, B.; Puchalski, C. Suitability of Biochar and Biomass Ash in Basket Willow (Salix Viminalis L.) Cultivation. Agronomy 2019, 9, 577. https://doi.org/10.3390/agronomy9100577
Saletnik B, Puchalski C. Suitability of Biochar and Biomass Ash in Basket Willow (Salix Viminalis L.) Cultivation. Agronomy. 2019; 9(10):577. https://doi.org/10.3390/agronomy9100577
Chicago/Turabian StyleSaletnik, Bogdan, and Czesław Puchalski. 2019. "Suitability of Biochar and Biomass Ash in Basket Willow (Salix Viminalis L.) Cultivation" Agronomy 9, no. 10: 577. https://doi.org/10.3390/agronomy9100577
APA StyleSaletnik, B., & Puchalski, C. (2019). Suitability of Biochar and Biomass Ash in Basket Willow (Salix Viminalis L.) Cultivation. Agronomy, 9(10), 577. https://doi.org/10.3390/agronomy9100577