Biochar Effects on Soil Properties and Wheat Biomass vary with Fertility Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Plant and Soil Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- White, E.M. Woody Biomass for Bioenergy and Biofuels in the United States—A Briefing Paper; General Technical Report PNW-GTR-825; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2010; p. 45.
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009. [Google Scholar]
- Bruun, E.W.; Hauggaardd-Nielsen, H.; Ibradhim, N.; Egsgaard, H.; Ambus, P.; Jensen, A.P.; Dam-Johansen, K. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenergy 2011, 35, 1182–1189. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Paneque, M.; Miller, A.Z.; Knicker, H. Relating physical and chemical properties of four different biochars and their application rate of biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Sci. Total Environ. 2014, 499, 175–189. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of a Southeastern coastal plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef]
- Brown, T.T.; Huggins, D.R. Soil carbon sequestration in the dryland cropping region of the Pacific Northwest. J. Soil Water Conserv. 2012, 67, 406–415. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, R.; Machado, S.; Bista, P. Soil pH, soil organic matter, and crop yields in winter wheat-summer fallow systems. Agron. J. 2017, 109, 706–717. [Google Scholar] [CrossRef]
- Keith, A.; Singh, B.; Singh, B.P. Interactive priming of biochar and labile organic matter mineraliztion in smecitie- rich soil. Environ. Sci. Technol. 2011, 45, 9611–9618. [Google Scholar] [CrossRef] [PubMed]
- West, T.O.; McBride, A.C. The contribution of agricultural lime to carbon dioxide emissions in the United State: Dissolution, transport and net emissions. Agric. Ecosyst. Environ. 2005, 108, 145–154. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Brown, S.; Carpenter, A.; Beecher, N. A calculator tool for determining greenhouse gas emissions for processing and end use. Environ. Sci. Technol. 2010, 44, 9509–9515. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Gundale, M.J.; DeLuca, T.H. Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem. Biol. Fertil. Soils 2007, 43, 303–311. [Google Scholar] [CrossRef]
- Unger, R.; Killorn, R.; Brewer, C. Effects of soil application of different biochars on selected soil chemical properties. Commun. Soil Sci. Plant 2011, 19, 2310–2321. [Google Scholar] [CrossRef]
- Haefele, S.M.; Konboon, Y.; Wongboon, W.; Amarante, S.; Maarifat, A.A.; Pfeiffer, E.M.; Knoblauch, C. Effects and fate of biochar from rice residues in rice-based systems. Field Crops Res. 2011, 121, 430–440. [Google Scholar] [CrossRef]
- Lone, A.H.; Najar, G.R.; Ganie, M.A.; Sofi, J.A.; Ali, T. Biochar for Sustainable Soil Health: A Review of Prospects and Concerns. Pedosphere 2015, 25, 639–653. [Google Scholar] [CrossRef]
- Albuquerque, J.A.; Salazar, P.; Barron, V.; Torrent, J.; del Campillo, M.D.; Gallardo, A.; Villar, R. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron. Sustain. Dev. 2013, 33, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.Y.; van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; de Macedo, J.L.V.; Blum, W.E.H.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Soil Survey Staff. Web Soil Survey. Natural Resources Conserv, Serv., USDA, 2016. Available online: http://websoilsurvery.sc.gov.usda.gov (accessed on 5 December 2016).
- ASTM International. ASTM D1762-84. 2013. Standard Test Method for Chemical Analysis of Wood Charcoal; ASTM International: West Conshohocken, PA, USA, 2013.
- Ghimire, R.; Norton, J.B.; Pendall, E. Alfalfa-grass biomass, soil organic carbon, and total nitrogen under different management approaches in an irrigate agroecosystem. Plant Soil 2014, 374, 173–184. [Google Scholar] [CrossRef]
- Lehmann, J.; Kuzyakov, Y.; Pan, G.; Ok, Y.S. Biochar and the plant-soil interface. Plant Soil 2015, 395, 1–5. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Julson, J.L. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 2013, 60, 393–404. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar applications to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Lehmann, J.; da Silva, J.P.; Seiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological anthrosol and a Ferralsol of the central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Noack, A.G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 2000, 14, 777–793. [Google Scholar] [CrossRef]
- Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 2007, 85, 91–118. [Google Scholar] [CrossRef]
- Baronti, S.; Alberti, G.; Vedove, G.D.; Gennaro, F.D.; Fellet, G.; Genesio, L.; Migletta, F.; Peressotti, A.; Vaccari, F.P. The biochar option to improve plant yields: First results from some field and pot experiments in Italy. Ital. J. Agron. 2010, 5, 3–12. [Google Scholar] [CrossRef]
Characteristics | Biochar | Soil |
---|---|---|
C | 900 g kg−1 | 6.4 g kg−1 |
N | 1.8 g kg−1 | 0.6 g kg−1 |
C:N | 500:1 | 11:1 |
pH | 10.6 | 4.8 |
Volatile matter | 51 g kg−1 | - |
Ash content | 188 g kg−1 | - |
Moisture | 48 g kg−1 | - |
EC | - | 2.8 dS m−1 |
CEC | - | 3.5 cmol kg−1 |
NO3-N | - | 271 mg kg−1 |
NH4-N | - | 28.0 mg kg−1 |
P | - | 40.3 mg kg−1 |
K | - | 1105 mg kg−1 |
S | - | 30.5 mg kg−1 |
pH | EC * | SOM | P | K | S | NO3-N | NH4-N | Shoot | Root | |
---|---|---|---|---|---|---|---|---|---|---|
Biochar (B) | <0.0001 | 0.6073 | 0.0453 | <0.0001 | <0.0001 | <0.0001 | 0.0009 | 0.0792 | 0.0204 | 0.0032 |
Fertilizer (F) | 0.0004 | 0.0009 | 0.0689 | 0.0010 | 0.3876 | 0.0002 | 0.0145 | 0.0037 | 0.0067 | 0.96 |
B × F | 0.0020 | 0.0889 | 0.0637 | <0.0001 | 0.0006 | 0.0011 | 0.0326 | 0.0333 | 0.0566 | 0.26 |
EC | OM | P | K | S | NO3-N | NH4-N | |
---|---|---|---|---|---|---|---|
With Fertilizer application | |||||||
pH | −0.38 | 0.62 | 0.94 *** | 0.93 *** | 0.98 *** | −0.61 * | −0.51 * |
EC | 0.12 | −0.32 | −0.42 | −0.38 | 0.06 | −0.21 | |
OM | 0.62 ** | 0.54 * | 0.62 ** | −0.61 ** | −0.70 ** | ||
P | 0.96 *** | 0.88 *** | −0.45 | −0.53 * | |||
K | 0.86 *** | −0.40 | −0.38 | ||||
S | −0.64 ** | −0.48 | |||||
NO3-N | 0.56 * | ||||||
Without fertilizer application | |||||||
pH | −0.21 | −0.02 | 0.96 *** | 0.99 *** | 0.99 *** | 0.49 * | 0.66 ** |
EC | −0.21 | −0.24 | −0.22 | −0.20 | 0.13 | 0.28 | |
OM | 0.05 | −0.01 | −0.06 | −0.37 | −0.47 | ||
P | 0.96 *** | 0.94 *** | 0.41 | 0.60 ** | |||
K | 0.99 *** | 0.56 * | 0.61 ** | ||||
S | 0.59 ** | 0.63 ** | |||||
NO3-N | 0.40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bista, P.; Ghimire, R.; Machado, S.; Pritchett, L. Biochar Effects on Soil Properties and Wheat Biomass vary with Fertility Management. Agronomy 2019, 9, 623. https://doi.org/10.3390/agronomy9100623
Bista P, Ghimire R, Machado S, Pritchett L. Biochar Effects on Soil Properties and Wheat Biomass vary with Fertility Management. Agronomy. 2019; 9(10):623. https://doi.org/10.3390/agronomy9100623
Chicago/Turabian StyleBista, Prakriti, Rajan Ghimire, Stephen Machado, and Larry Pritchett. 2019. "Biochar Effects on Soil Properties and Wheat Biomass vary with Fertility Management" Agronomy 9, no. 10: 623. https://doi.org/10.3390/agronomy9100623
APA StyleBista, P., Ghimire, R., Machado, S., & Pritchett, L. (2019). Biochar Effects on Soil Properties and Wheat Biomass vary with Fertility Management. Agronomy, 9(10), 623. https://doi.org/10.3390/agronomy9100623