Characterization of Biochars Produced from Dairy Manure at High Pyrolysis Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermochemical Analysis of Oven-Dried DM
2.3. Pyrolysis Experiments
2.4. Characterization of DMC
3. Results and Discussion
3.1. Thermochemical Characterization of Dairy Manure (DM)
3.2. Yield and Pore Properties of DMC Products
3.3. Chemical Characterization of DMC Products
4. Conclusions
- According to the data on the thermogravimetric analysis (TGA) of DM, it is better to produce highly porous DMC at temperature above 500 °C because of the intense devolatilization of its lignocellulosic compositions and the increase in the aromaticity.
- The optimal DMC product produced at 900 °C showed its BET surface area of 361 m2/g and total pore volume of 0.24 cm3/g.
- From the N2 adsorption–desorption isotherms with the hysteresis loops (H4 type), the DMC products are complex carbon materials, which contained both micropores (Type I) and mesopores (Type IV).
- The carbon contents of the biochar products (i.e., DMC) significantly increased to above 50% during the carbonization process.
- The cation exchange capacity (CEC) of the optimal DMC product showed a high value of 57.5 ± 16.1 cmol/kg.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). 2006-IPCC Guidelines for National Greenhouse Gases Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tracking Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization: Rome, Italy, 2013. [Google Scholar]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, K.B.; Ducey, T.; Ro, K.S.; Hunt, P.G. Livestock waste-to-bioenergy generation opportunities. Bioresour. Technol. 2008, 99, 7941–7953. [Google Scholar] [CrossRef] [PubMed]
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction, 2nd ed.; Academic Press: San Diego, CA, USA, 2013. [Google Scholar]
- Tsai, W.T.; Chang, J.H.; Hsien, K.J.; Chang, Y.M. Production of pyrolytic liquids from industrial sewage sludges in an induction-heating reactor. Bioresour. Technol. 2009, 100, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.T.; Lee, M.K.; Chang, J.H.; Su, T.Y.; Chang, Y.M. Characterization of bio-oil from induction-heating pyrolysis of food-processing sewage using in an induction-heating reactor. Bioresour. Technol. 2009, 100, 2650–2654. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Tsai, W.T.; Tsai, Y.L.; Lin, S.H. Pyrolysis of napier grass in an induction-heating reactor. J. Anal. Appl. Pyrolysis 2010, 88, 110–116. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: New York, NY, USA, 2015; pp. 1–13. [Google Scholar]
- Cao, X.; Ma, L.; Gao, B.; Harris, W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 2009, 43, 3285–3291. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Harris, W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 2010, 101, 5222–5228. [Google Scholar] [CrossRef] [PubMed]
- Uchimiya, M.; Cantrell, K.B.; Hunt, P.G.; Novak, J.M.; Chang, S. Retention of heavy metals in a Typic Kandiudult amended with different manure-based biochars. J. Environ. Qual. 2012, 41, 1138–1149. [Google Scholar] [CrossRef]
- Qian, L.B.; Chen, B.L. Duel role of biochars as adsorbents for aluminum: The effects of oxygen-containing organic components and the scattering of silicate particles. Environ. Sci. Technol. 2013, 47, 8759–8768. [Google Scholar]
- Xu, X.Y.; Cao, X.D.; Zhao, L.; Wang, H.L.; Yu, H.R.; Gao, B. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ. Sci. Pollut. Res. 2013, 20, 358–368. [Google Scholar] [CrossRef]
- Zhu, Y.; Yi, B.J.; Yuan, Q.X.; Wang, M.; Yan, S.P. Removal of methylene blue from aqueous solution by cattle manure-derived low temperature biochar. RSC Adv. 2018, 8, 19917–19929. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.L.; Zhang, J.Q.; Huang, L.; Yuan, Z.H.; Li, Z.J.; Liu, M.C. Removal of Cd and Pb with biochar made from dairy manure at low temperature. J. Integr. Agric. 2019, 18, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Xu, H.; Ma, F.; Zhang, T.; Nan, X. Effects of dairy manure biochar on adsorption of sulfate onto light sierozem and its mechanisms. RSC Adv. 2019, 9, 5218–5223. [Google Scholar] [CrossRef] [Green Version]
- Jindo, K.; Sonoki, T. Comparative assessment of biochar stability using multiple indicators. Agronomy 2019, 9, 254. [Google Scholar] [CrossRef]
- Fu, P.; Hu, S.; Xiang, J.; Sun, L.; Su, S.; Wang, J. Evaluation of the porous structure development of chars from pyrolysis of rice straw: Effects of pyrolysis temperature and heating rate. J. Anal. Appl. Pyrolysis 2012, 98, 177–183. [Google Scholar] [CrossRef]
- Park, J.H.; Wang, J.J.; Meng, Y.L.; Wei, Z.; DeLaune, R.D.; Seo, D.C. Adsorption/desorption behavior of cationic and anionic dyes by biochars prepared at normal and high pyrolysis temperatures. Colloids Surf. A 2019, 572, 274–282. [Google Scholar] [CrossRef]
- Liu, S.C.; Tsai, W.T. Thermochemical characteristics of dairy manure and its derived biochars from a fixed-bed pyrolysis. Int. J. Green Energy 2016, 13, 963–968. [Google Scholar] [CrossRef]
- Tsai, W.T.; Liu, S.C. Thermochemical characterization of cattle manure relevant to its energy conversion and environmental implications. Biomass Convers. Biorefin. 2016, 6, 71–77. [Google Scholar] [CrossRef]
- Tsai, T.W.; Hsu, C.H.; Lin, Y.Q. Highly porous and nutrients-rich biochar derived from dairy cattle manure and its potential for removal of cationic compound from water. Agriculture 2019, 9, 114. [Google Scholar] [CrossRef]
- Steiner, C. Considerations in biochar characterization. In Agricultural and Environmental Applications of Biochar: Advances and Barriers; Guo, M., He, Z., Uchimiya, S.M., Eds.; Soil Science Society of America: Madison, WI, USA, 2016; pp. 87–100. [Google Scholar]
- Hung, C.Y.; Tsai, W.T.; Chen, J.W.; Lin, Y.Q.; Chang, Y.M. Characterization of biochar prepared from biogas digestate. Waste Manag. 2017, 66, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.T.; Huang, P.C. Characterization of acid-leaching cocoa pod husk (CPH) and its resulting activated carbon. Biomass Convers. Biorefin. 2018, 8, 521–528. [Google Scholar] [CrossRef]
- Fan, L.T.; Chen, L.C.; Mehta, C.D.; Chen, Y.R. Energy and available energy contents of cattle manure and digester sludge. Agric. Wastes 1985, 13, 239–249. [Google Scholar] [CrossRef]
- Wang, L.; Shahbazi, A.; Hanna, M.A. Characterization of corn stover, distiller grains and cattle manure for thermochemical conversion. Biomass Bioenergy 2011, 35, 171–178. [Google Scholar] [CrossRef]
- Wu, H.; Hanna, M.A.; Jones, D.D. Thermogravimetric characterization of dairy manure as pyrolysis and combustion feedstocks. Waste Manag. Res. 2012, 30, 1066–1071. [Google Scholar] [CrossRef] [PubMed]
- Baernthaler, G.; Zischka, M.; Haraldsson, C.; Obernberger, I. Determination of major and minor ash-forming elements in solid biofuels. Biomass Bioenergy 2006, 30, 983–997. [Google Scholar] [CrossRef]
- Hsu, J.H.; Lo, S.L. Effect of composting on characterization of copper, manganese, and zinc from swine manure compost. Environ. Pollut. 2001, 114, 119–127. [Google Scholar] [CrossRef]
- Smith, J.M. Chemical Engineering Kinetics, 3rd ed.; McGraw-Hill: New York, NY, USA, 1981. [Google Scholar]
- Suzuki, M. Adsorption Engineering; Elsevier: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Lian, F.; Xing, B. Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk. Environ. Sci. Technol. 2017, 51, 13517–13532. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Mukome, F.N.D.; Parikh, S.J. Chemical, physical, and surface characterization of biochar. In Biochar: Production, Characterization, and Applications; Ok, Y.K., Uchimiya, S.M., Chang, S.X., Bolan, N., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 67–96. [Google Scholar]
- Liang, B.; Lemann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizao, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef]
- Huff, M.D.; Lee, J.W. Biochar-surface oxygenation with hydrogen peroxide. J. Environ. Manag. 2016, 165, 17–21. [Google Scholar] [CrossRef]
- Huff, M.D.; Marshall, S.; Saeed, H.A.; Lee, J.W. Surface oxygenation of biochar through ozonization for dramatically enhancing cation exchange capacity. Bioresour. Bioprocess. 2018, 5, 18. [Google Scholar] [CrossRef]
Property | Value a |
---|---|
Proximate analysis (wt%) a | |
Volatile matter | 79.55 ± 0.19 |
Ash content | 10.94 ± 0.27 |
Fixed carbon b | 9.51 |
Ultimate analysis (wt%) a | |
Carbon (C) | 42.63 ± 0.01 |
Hydrogen (H) | 6.43 ± 0.08 |
Oxygen (O) | 39.70 ± 0.03 |
Nitrogen (N) | 2.01 ± 0.13 |
Sulfur (S) | 0.42 ± 0.02 |
Calorific value (MJ/kg) a | 18.40 ± 0.08 |
Inorganic Element | Value a | Method Detection Limit (ppm) |
---|---|---|
Ca (wt%) | 2.140 | 8.4 |
Si (wt%) | 1.130 | 11.3 |
P (wt%) | 0.822 | 91.8 |
Mg (wt%) | 0.642 | 5.4 |
K (wt%) | 0.426 | 51.6 |
Na (wt%) | 0.202 | 11.4 |
Al (wt%) | 0.107 | 17.4 |
Fe (wt%) | 0.081 | 6.6 |
Mn (wt%) | 0.034 | 6.0 |
Zn (wt%) | 0.017 | 4.2 |
Sr (wt%) | 0.007 | 0.3 |
Ti (wt%) | 0.006 | 1.2 |
Ba (wt%) | 0.002 | 0.3 |
As (wt%) | ND b | 0.5 |
Cd (wt%) | ND | 2.4 |
Cr (wt%) | ND | 7.8 |
Co (wt%) | ND | 20.4 |
Cu (wt%) | ND | 7.2 |
Ni (wt%) | ND | 19.2 |
Pb (wt%) | ND | 17.4 |
Biochar Product | SBET a (m2/g) | Smicro b (m2/g) | Vt c (cm3/g) | Vmicro d (cm3/g) | Dave e (Å) | ρs f (g/cm3) | ρp g (g/cm3) | εp h (-) |
---|---|---|---|---|---|---|---|---|
DMC-500 | 6.5 | 3.3 | 0.008 | 0.002 | 51.2 | 1.6838 | 1.6603 | 0.014 |
DMC-600 | 42.9 | 36.3 | 0.030 | 0.020 | 28.2 | 1.8741 | 1.7737 | 0.054 |
DMC-700 | 139.1 | 114.3 | 0.088 | 0.063 | 25.2 | 2.0108 | 1.7094 | 0.150 |
DMC-800 | 267.6 | 198.5 | 0.167 | 0.109 | 24.9 | 2.1245 | 1.5694 | 0.275 |
DMC-900 | 360.6 | 256.7 | 0.240 | 0.141 | 26.6 | 2.2824 | 1.4746 | 0.354 |
Biochar Product | Proximate Analysis (wt%) a | Ultimate Analysis (wt%) a | Calorific Value a | ||
---|---|---|---|---|---|
Ash | Combustible b | Carbon | Nitrogen | (MJ/kg) | |
DMC-500 | 25.26 ± 0.03 | 74.74 | 50.69 ± 0.75 | 1.99 ± 0.02 | 19.38 ± 0.11 |
DMC-600 | 27.56 ± 0.31 | 72.44 | 52.52 ± 0.71 | 1.62 ± 0.02 | 19.92 ± 0.10 |
DMC-700 | 29.48 ± 0.32 | 70.52 | 53.33 ± 0.71 | 1.43 ± 0.04 | 20.38 ± 1.04 |
DMC-800 | 32.65 ± 0.42 | 67.35 | 53.61 ± 0.06 | 1.25 ± 0.07 | 19.67 ± 0.03 |
DMC-900 | 42.21 ± 0.06 | 57.79 | 50.51 ± 0.09 | 0.78 ± 0.02 | 19.72 ± 0.32 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, W.-T.; Huang, P.-C.; Lin, Y.-Q. Characterization of Biochars Produced from Dairy Manure at High Pyrolysis Temperatures. Agronomy 2019, 9, 634. https://doi.org/10.3390/agronomy9100634
Tsai W-T, Huang P-C, Lin Y-Q. Characterization of Biochars Produced from Dairy Manure at High Pyrolysis Temperatures. Agronomy. 2019; 9(10):634. https://doi.org/10.3390/agronomy9100634
Chicago/Turabian StyleTsai, Wen-Tien, Po-Cheng Huang, and Yu-Quan Lin. 2019. "Characterization of Biochars Produced from Dairy Manure at High Pyrolysis Temperatures" Agronomy 9, no. 10: 634. https://doi.org/10.3390/agronomy9100634
APA StyleTsai, W. -T., Huang, P. -C., & Lin, Y. -Q. (2019). Characterization of Biochars Produced from Dairy Manure at High Pyrolysis Temperatures. Agronomy, 9(10), 634. https://doi.org/10.3390/agronomy9100634