Comparison of the Effect of Perennial Energy Crops and Arable Crops on Earthworm Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Earthworm Collection
2.3. Statistical Analyses
3. Results
3.1. Species Richness and Abundance
3.2. The Relationships between Agricultural Systems and Species Composition
4. Discussion
4.1. Species Richness and Abundance of Earthworms
4.2. The Effect of Crop Rotation and Catch Crops
4.3. The Influence of Different Farming Systems
4.4. The Influence of Perennial Energy Crops
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Variables | Axis I | Axis II | Axis III | Axis IV |
---|---|---|---|---|
ORG 1 | 0.4171 | 0.7252 | −0.0595 | 0.0732 |
INT | −0.2282 | −0.1979 | −0.6013 | 0.0376 |
CON | −0.0664 | 0.3486 | −0.2498 | −0.5203 |
MON | −0.6226 | −0.0908 | −0.1363 | 0.4262 |
MIS | −0.3108 | −0.1575 | 0.6736 | −0.5513 |
VIR | 0.1573 | 0.0399 | 0.5006 | 0.6283 |
WIL | 0.6536 | −0.6674 | −0.1273 | −0.0937 |
References
- Kooch, Y.; Jalilvand, H. Earthworms as ecosystem engineers and the most important detritivors in forest soils. Pak. J. Biol. Sci. 2008, 11, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussaard, L.; Butt, K.R.; Dai, J.; Dendooven, L.; Peres, G.; Tondoh, J.E.; et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 2013, 64, 161–182. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Lubbers, I.M.; Vos, H.M.J.; Brown, G.G.; De Deyn, G.B.; van Groenigen, K.J. Earthworms increase plant production: A meta-analysis. Sci. Rep. 2014, 4, 6365. [Google Scholar] [CrossRef] [PubMed]
- Kuntz, M.; Berner, A.; Gattinger, A.; Mäder, P.; Pfiffner, L. Influence of reduced tillage on earthworm and microbial communities under organic arable farming. Pedobiologia 2013, 56, 251–260. [Google Scholar] [CrossRef]
- Pfiffner, L. Earthworms—Architects of fertile soils. Their significance and recommendations for their promotion in agriculture. In Technical Guide on Earthworms; International edition; Research Institute of Organic Agriculture: Frick, Switzerland, 2014; Available online: https://shop.fibl.org/chde/mwdownloads/download/link/id/624/ (accessed on 21 March 2019).
- Lee, K.E. Earthworms and sustainable land use. In Earthworm Ecology and Biogeography in North America; Hendrix, P.F., Ed.; CRS Press: Boca Raton, FL, USA, 1995; pp. 215–234. [Google Scholar]
- Sinha, R.K.; Valani, D.; Chauhan, K.; Agarwal, S. Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: Reviving the dreams of Sir Charles Darwin. J. Agric. Biotechnol. Sust. Dev. 2010, 2, 113–128. [Google Scholar]
- Jordan, D.; Miles, R.J.; Hubbard, V.C.; Lorenz, T. Effect of management practices and cropping systems on earthworm abundance and microbial activity in Sanborn Field: A 115-year-old agricultural field. Pedobiologia 2004, 48, 99–110. [Google Scholar] [CrossRef]
- Moos, J.H.; Schrader, S.; Paulsen, H.M.; Rahmann, G. Occasional reduced tillage in organic farming can promote earthworm performance and resource efficiency. App. Soil Ecol. 2016, 103, 22–30. [Google Scholar] [CrossRef]
- Stalenga, J.; Brzezińska, K.; Stańska, M.; Błaszkowska, B.; Czekała, W.; Feledyn-Szewczyk, B.; Gutkowska, A.; Hajdamowicz, I.; Kaliszewski, G.; Kazuń, A.; et al. Code of Good Agricultural Practices Supporting Biodiversity; Monograph. II revised ed.; IUNG-PIB: Puławy, Poland, 2016; p. 250. [Google Scholar]
- Fründ, H.C.; Graefe, U.; Tischer, S. Earthworms as bioindicators of soil quality. In Biology of Earthworms; Karaca, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 261–278. [Google Scholar]
- Irmler, U. Changes in earthworm populations during conversion from conventional to organic farming. Agric. Ecosyst. Environ. 2010, 135, 194–198. [Google Scholar] [CrossRef]
- Flohre, A.; Rudnick, M.; Traser, G.; Tscharntke, T.; Eggers, T. Does soil biota benefit from organic farming in complex vs. simple landscape? Agric. Ecosyst. Environ. 2011, 141, 210–214. [Google Scholar] [CrossRef]
- Henneron, L.; Bernard, L.; Hedde, M.; Pelosi, C.; Villenave, C.; Chenu, C.; Bertrand, M.; Girardin, C.; Blanchart, E. Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agron. Sust. Dev. 2014, 35, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Pedroli, B.; Elbersen, B.; Frederiksen, P.; Grandin, U.; Heikkila, R.; Krogh, P.H.; Izakovicova’, Z.; Johansen, A.; Meiresonne, L.; Spijker, J. Is energy cropping in Europe compatible with biodiversity? Opportunities and threats to biodiversity from land-based production of biomass for bioenergy purposes. Biomass Bioenergy 2013, 55, 73–86. [Google Scholar] [CrossRef]
- Felten, D.; Emmerling, C. Effects of bioenergy crop cultivation on earthworm communities—A comparative study of perennial (Miscanthus) and annual crops with consideration of graded land-use intensity. Appl. Soil Ecol. 2011, 49, 167–177. [Google Scholar] [CrossRef]
- Sage, R.B. Short rotation coppice for energy: Towards ecological guidelines. Biomass Bioenergy 1998, 15, 39–47. [Google Scholar] [CrossRef]
- Börjesson, P. Environmental effects of energy crop cultivation in Sweden—I: Identification and quantification. Biomass Bioenergy 1999, 16, 137–154. [Google Scholar] [CrossRef]
- Cunningham, M.D.; Bishop, J.D.; McKay, H.V.; Sage, R.B. ARBRE Monitoring—Ecology of Short Rotation Coppice; URN 04/961, DTI; Game Conservancy Trust: Fording Bridge, UK, 2004; 157p. [Google Scholar]
- European Environmental Agency. How much Bioenergy can Europe Produce without Harming the Environment; EEA Report 7/2006; European Environmental Agency: København, Denmark, 2006; 67p.
- Verdade, L.M.; Piña, C.I.; Rosalino, L.M. Biofuels and biodiversity: Challenges and opportunities. Environ. Dev. 2015, 15, 64–78. [Google Scholar] [CrossRef]
- Kovacs-Lang, E.; Simpson, I.C. Biodiversity Measurements and Indicators for Long-Term Integrated Monitoring; No LIMITS, Report No 6; Institute of Ecology and Botany of the Hungarian Academy of Sciences, Vácrátót & Centre for Ecology and Hydrology: Grange-over-Sands, UK, 2000; 24p. [Google Scholar]
- Britt, C. Methodologies for Ecological Monitoring in Bioenergy Crops. A Review and Recommendations; Defra Project NF0408; ADAS Contract Report for the Department for Environment, Food and Rural Affairs: London, UK, 2003; 63p.
- IUSS Working Group WRB. World Reference Base for Soil Resources, 2nd ed.; World Soil Resources Reports, No. 103; FAO: Rome, Italy, 2006; 132p. [Google Scholar]
- Zhang, S.; Chao, Y.; Zhang, C.; Cheng, J.; Li, J.; Ma, N. Earthworms enhanced winter oilseed rape (Brassica napus L.) growth and nitrogen uptake. Agric. Ecosyst. Environ. 2010, 139, 463–468. [Google Scholar] [CrossRef]
- Kasprzak, K. Soil Oligochaetes, III. Family: Earthworms (Lumbricidae); Keys for marking the invertebrates of Poland; PAN, Institute of Zoology: Warsaw, Poland, 1986; Volume 6, 186p. (In Polish) [Google Scholar]
- Leigh, R.A.; Johnston, A.E. (Eds.) Long-Term Experiments in Agricultural and Ecological Sciences; CAB Int.: Wallingford, UK, 1994; 448p. [Google Scholar]
- Machado, S.; Petrie, S.E. Symposium—Analysis of unreplicated experiments: Introduction. Crop Sci. 2006, 46, 2474–2475. [Google Scholar] [CrossRef]
- Kovach, W.L. MVSP Version 3; Kovach Computing Services: Anglesey, Wales, 2011; 112p. [Google Scholar]
- Magurran, A.E. Ecological Diversity and its Measurement; Princeton University Press: Princeton, NJ, USA, 1988; 179p. [Google Scholar]
- Lepš, J.; Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO; Cambridge University Press: Cambridge, UK, 2003; 269p. [Google Scholar]
- Ter Braak, C.J.F.; Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s guide: Software for Canonical Community Ordination (version 4.5); Microcomputer Power: Ithaca, NY, USA, 2002; 55p. [Google Scholar]
- Van der Maarel, E. Multivariate analysis in plant ecology. In Numerical Methods in Studying the Structure and Functioning of Vegetation; Kaźmierczak, E., Ed.; V School and XLVI Geobotanical Seminar of the Polish Botanical Society; University Nicholas Copernicus in Torun: Torun, Poland, 1998; pp. 65–108. [Google Scholar]
- Neirynck, J.S.; Mirtcheva, G.; Lust, N. Impact of Tilia patyphllos Scop., Fraxinus excelsior L., Acer pseudoplatanus L., Quercus robur L. and Fagus sylvatica L. on earthworm biomass and physico-chemical properties of loamy topsoil. Forest Ecol. Man. 2000, 133, 275–286. [Google Scholar] [CrossRef]
- Lavelle, P. The structure of earthworm communities. In Earthworm Ecology; Satchell, J.E., Ed.; Springer: Dordrecht, The Netherlands, 1983; pp. 449–466. [Google Scholar] [CrossRef]
- Valckx, J.; Hermy, M.; Muys, B. Indirect gradient analysis at different spatial scales of prorated and non-prorated earthworm abundance and biomass data in temperate agro-ecosystems. Eur. J. Soil Biol. 2006, 42, 341–347. [Google Scholar] [CrossRef]
- Schmidt, O.; Curry, J.P.; Hackett, R.A.; Purvis, G.; Clements, R.O. Earthworm communities in conventional wheat monocropping and low-input wheat clover intercropping systems. Ann. Appl. Biol. 2001, 138, 377–388. [Google Scholar] [CrossRef]
- Schmidt, O.; Curry, J.P. Population dynamics of earthworms (Lumbricidae) and their role in nitrogen turnover in wheat and wheat clover cropping systems. Pedobiologia 2001, 45, 174–187. [Google Scholar] [CrossRef]
- Poier, K.R.; Richter, J. Spatial distribution of earthworms and soil properties in an arable loess soil. Soil Biol. Biochem. 1992, 24, 1601–1608. [Google Scholar] [CrossRef]
- Paluszek, J. Criteria for Assessing the Physical Quality of Poland’s Arable Soils. In Acta Agrophysica; Institute of Agrophysics Polish Academy of Sciences: Lublin, Poland, 2011; 138p. (In Polish) [Google Scholar]
- McLaughlin, A.; Mineau, P. The impact of agricultural practices on biodiversity. Agric. Ecosyst. Environ. 1995, 55, 201–212. [Google Scholar] [CrossRef]
- Doran, J.W.; Werner, M.R. Management and soil biology. In Sustainable Agriculture in Temperate Zones; Francis, C.A., Flora, C.B., King, L.D., Eds.; Wiley: New York, NY, USA, 1990; pp. 205–230. [Google Scholar]
- Pfiffner, L.; Mäder, P. Effects of biodynamic, organic and conventional systems on earthworm populations. Biol. Agric. Hort. 1997, 15, 3–10. [Google Scholar] [CrossRef]
- Hurisso, T.T.; Davies, J.G.; Brummer, J.E.; Stromberger, M.E.; Stonaker, F.H.; Kondratieff, B.C.; Booher, M.R.; Goldhamer, D.A. Earthworm abundance and species composition in organic forage production systems of northern Colorado receiving different soil amendments. Appl. Soil Ecol. 2011, 48, 219–226. [Google Scholar] [CrossRef]
- Pfiffner, L.; Luka, H. Earthworm populations in two low-input cereal farming systems. Appl. Soil Ecol. 2007, 37, 184–191. [Google Scholar] [CrossRef]
- Perttu, K.L. Ecological, biological balances and conservation. Biomass Bioenergy 1995, 9, 107–116. [Google Scholar] [CrossRef]
- Hedde, M.; van Oort, F.; Boudon, E.; Abonnel, F.; Lamy, I. Responses of soil macroinvertebrate communities to Miscanthus cropping in different trace metal contaminated soils. Biomass Bioenergy 2013, 55, 122–129. [Google Scholar] [CrossRef]
- McCalmont, J.P.; Hastings, A.; McNarama, N.P.; Richter, G.M.; Robson, P.; Donnison, I.S.; Clifton-Brown, J. Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. GCB Bioenergy 2015. [Google Scholar] [CrossRef]
- Heaton, E.A.; Dohleman, F.G.; Long, S.P. Seasonal nitrogen dynamics of Miscanthus x giganteus and Panicum virgatum. GCB Bioenergy 2009, 1, 297–307. [Google Scholar] [CrossRef]
- Abbott, I.; Parker, C. Interactions between earthworms and their soil environment. Soil Biol. Biochem. 1981, 13, 191–197. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.C.; Scurlock, J.M.O.; Huisman, W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 2000, 19, 209–227. [Google Scholar] [CrossRef]
- Fry, D.A.; Slater, F.M.; Reboud, X. The effect on plant communities and associated taxa of planting short rotation willow coppice in Wales. Asp. Appl. Biol. 2008, 90, 287–293. [Google Scholar]
- Hedde, M.; van Oort, F.; Renouf, E.; Thénard, J.; Lamy, I. Dynamics of soil fauna after plantation of perennial energy crops on polluted soils. Appl. Soil Ecol. 2013, 66, 29–39. [Google Scholar] [CrossRef]
- Gabrielle, B.; Bamière, L.; Caldes, N.; De Cara, S.; Decocq, G.; Ferchaud, F.; Loyce, C.; Pelzer, E.; Perez, Y.; Wohlfahrt, J.; et al. Paving the way for sustainable bioenergy in Europe: Technological options and research avenues for large-scale biomass feedstock supply. Renew. Sust. Energ. Rev. 2014, 33, 11–25. [Google Scholar] [CrossRef] [Green Version]
Items | Crop Production Systems on Arable Land | Energy Crops | |||
---|---|---|---|---|---|
Organic (ORG) | Integrated (INT) | Conventional (CON) | Monoculture (MON) | ||
Crops | potato spring wheat + undersown crop clovers and grasses (1st year) clovers and grasses (2nd year) winter wheat + catch crop (mustard) | potato spring wheat + catch crop faba bean winter wheat + catch crop (mustard) | winter rape winter wheat spring wheat | winter wheat | miscanthus (MIS), Virginia mallow (VIR), willow (WIL) |
Soil tillage | mouldboard ploughing | 0 | |||
Organic fertilization | compost (30 t·ha−1) under potato + catch crop | compost (30 t·ha−1) under potato + 2 × catch crop | rape straw, winter wheat straw | wheat straw (every 2 years) | 0 |
Mineral fertilization (kg ha−1): | natural P and K fertilizers: | ||||
N | 0 | 85 | 140 | 80 | |
P2O5 | 42 | 55 | 60 | 60 | |
K2O | 75 | 75 | 80 | 80 | |
Retardants | 0 | 1–2 x | 2 x | 0 | |
Fungicides | 0 | 2 x | 2–3 x | 0 | |
Weed control | weeder harrow 2–3 x | weeder harrow 1 x herbicides 1–2 x | herbicides 2–3 x | 0 |
Cropping System | pHKCl | Corg (g kg−1 of Soil) | PEgner | KEgner | Mg |
---|---|---|---|---|---|
(mg kg−1 of Soil) | |||||
ORG 1 | 5.65 | 9.9 | 40.3 | 64.0 | 69.3 |
CON | 5.90 | 8.1 | 84.8 | 164.0 | 50.1 |
INT | 5.75 | 8.1 | 85.4 | 134.1 | 41.9 |
MON | 5.08 | 7.7 | 52.3 | 111.7 | 46.5 |
MIS | 4.00 | 5.7 | 97.2 | 57.5 | 30.3 |
VIR | 4.60 | 5.8 | 82.4 | 136.1 | 51.0 |
WIL | 4.20 | 6.6 | 77.2 | 104.3 | 62.0 |
No | Species | Crop Production Systems on Arable Land | Perennial Energy Crops | |||||
---|---|---|---|---|---|---|---|---|
ORG 1 | INT | CON | MON | MIS | VIR | WIL | ||
1. | Aporrectodea caliginosa | 13.9 | 21.9 | 16.5 | 21.3 | 9.6 | 10.1 | 9.1 |
2. | Allolobophora chlorotica | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 |
3. | Aporrectodea georgii | 0 | 3.2 | 1.1 | 0 | 0 | 0 | 0.5 |
4. | Aporrectodea longa | 1.6 | 0 | 0 | 0.5 | 2.7 | 0.5 | 1.1 |
5. | Aporrectodea rosea | 5.3 | 4.8 | 2.7 | 2.1 | 8.5 | 3.7 | 9.6 |
6. | Proctodrilus antipai | 0 | 0 | 0 | 0 | 1.6 | 5.9 | 4.8 |
7. | Lumbricus rubellus | 1.1 | 0.5 | 0 | 0 | 0 | 2.7 | 1.1 |
8. | Lumbricus terrestris | 15.5 | 2.1 | 7.5 | 1.6 | 2.7 | 13.3 | 10.7 |
9. | Lumbricidae sp. | 24.0 | 15.5 | 15.5 | 3.2 | 6.9 | 16.5 | 33.6 |
10. | Octolasion cyaneum | 4.3 | 2.1 | 10.7 | 1.1 | 3.2 | 1.6 | 0.5 |
11. | Octolasion lacteum | 22.9 | 5.9 | 10.7 | 4.8 | 7.5 | 9.1 | 3.2 |
Total species number | 8 | 9 | 7 | 7 | 8 | 9 | 10 | |
Abundance (indv. m−2) (mean ± SE) | 88.6 ± 10 b 2 | 56.5 ± 9 ab | 64.7 ± 10 ab | 34.6 ± 6 a | 42.7 ± 7 a | 63.4 ± 9 ab | 74.2 ± 18 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feledyn-Szewczyk, B.; Radzikowski, P.; Stalenga, J.; Matyka, M. Comparison of the Effect of Perennial Energy Crops and Arable Crops on Earthworm Populations. Agronomy 2019, 9, 675. https://doi.org/10.3390/agronomy9110675
Feledyn-Szewczyk B, Radzikowski P, Stalenga J, Matyka M. Comparison of the Effect of Perennial Energy Crops and Arable Crops on Earthworm Populations. Agronomy. 2019; 9(11):675. https://doi.org/10.3390/agronomy9110675
Chicago/Turabian StyleFeledyn-Szewczyk, Beata, Paweł Radzikowski, Jarosław Stalenga, and Mariusz Matyka. 2019. "Comparison of the Effect of Perennial Energy Crops and Arable Crops on Earthworm Populations" Agronomy 9, no. 11: 675. https://doi.org/10.3390/agronomy9110675
APA StyleFeledyn-Szewczyk, B., Radzikowski, P., Stalenga, J., & Matyka, M. (2019). Comparison of the Effect of Perennial Energy Crops and Arable Crops on Earthworm Populations. Agronomy, 9(11), 675. https://doi.org/10.3390/agronomy9110675