Evaluating Remotely-Sensed Grapevine (Vitis vinifera L.) Water Stress Responses Across a Viticultural Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Data
2.2. Environmental Conditions
2.3. Airborne Campaign
2.4. Determination of Proximal and Remote Thermal Water Stress Indices
2.5. Conventional Measures of Vine Water Status
2.6. Statistical Data Analysis
3. Results
3.1. Cultivar and Phenology Specific Responses to Vine Water Status
3.2. Comparison of Vine Water Status Between Cultivars Within the Same Vineyard
3.3. Comparison of Vine Water Status Between Vine Age
3.4. Correlations Between Remotely-Sensed Thermal Water Stress Indices and Conventional (Ground-Based) Measures of Vine Water Status
4. Discussion
4.1. Comparison of Remotely-Sensed Thermal Water Status Indices
4.2. Cultivar Differences in Vine Water Status
4.3. Aerial Thermal Imaging as a Spatial Investigative Tool
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Araus, J.L. The problems of sustainable water use in the Mediterranean and research requirements for agriculture. Ann. Appl. Biol. 2004, 144, 259–272. [Google Scholar]
- Chapman, D.M.; Roby, G.; Ebeler, S.E.; Guinard, J.X.; Matthews, M.A. Sensory attributes of Cabernet Sauvignon wines made from vines with different water status. Aust. J. Grape Wine Res. 2005, 11, 339–347. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [PubMed]
- Dry, P.R.; Loveys, B.R. Factors influencing grapevine vigour and the potential for control with partial rootzone drying. Aust. J. Grape Wine Res. 1998, 4, 140–148. [Google Scholar] [CrossRef]
- McCarthy, M.G. The effect of transient water deficit on berry development of cv. Shiraz (Vitis vinifera L.). Aust. J. Grape Wine Res. 1997, 3, 102–108. [Google Scholar]
- Ojeda, H.; Andary, C.; Kraeva, E.; Carbonneau, A.; Deloire, A. Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv Shiraz. Am. J. Enol. Vitic. 2002, 53, 261–267. [Google Scholar]
- Van Leeuwen, C.; Trégoat, O.; Choné, X.; Bois, B.; Pernet, D.; Gaudillère, J.P. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? J. Int. Sci. Vigne Vin 2009, 43, 121–134. [Google Scholar] [CrossRef]
- Vandeleur, R.K.; Mayo, G.; Shelden, M.C.; Gilliham, M.; Kaiser, B.N.; Tyerman, S.D. The role of plasma membrane intrinsic protein aquaporins in water transport through roots: Diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol. 2009, 149, 445–460. [Google Scholar] [CrossRef]
- Schultz, H.R. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L cultivars during drought. Plant Cell Environ. 2003, 26, 1393–1405. [Google Scholar] [CrossRef]
- Berger-Landefeldt, U. Der Wasserhaushalt der Alpenpflanzen; Schweizerbart: Stuttgart, Germany, 1936. [Google Scholar]
- Costa, J.M.; Ortuño, M.F.; Lopes, C.M.; Chaves, M.M. Grapevine varieties exhibiting differences in stomatal response to water deficit. Funct. Plant Biol. 2012, 39, 179–189. [Google Scholar] [CrossRef]
- Jones, H.G. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J., Jr. Canopy temperature as a crop water-stress indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Raschke, K. Heat Transfer between the Plant and the Environment. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1960, 11, 111–126. [Google Scholar] [CrossRef]
- Jones, H.G.; Stoll, M.; Santos, T.; Sousa, C.D.; Chaves, M.M.; Grant, O.M. Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine. J. Exp. Bot. 2002, 53, 2249–2260. [Google Scholar] [CrossRef] [PubMed]
- Idso, S.B.; Jackson, R.D.; Pinter, P.J., Jr.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Jones, H.G. Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ. 1999, 22, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Bellvert, J.; Zarco-Tejada, P.J.; Girona, J.; Fereres, E.J.P.A. Mapping crop water stress index in a ‘Pinot-noir’ vineyard: Comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precis. Agric. 2014, 15, 361–376. [Google Scholar] [CrossRef]
- Möller, M.; Alchanatis, V.; Cohen, Y.; Meron, M.; Tsipris, J.; Naor, A.; Ostrovsky, V.; Sprintsin, M.; Cohen, S. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. J. Exp. Bot. 2007, 58, 827–838. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Hamilton, R.P. Understanding variability in winegrape production systems 1 within vineyard variation in yield over several vintages. Aust. J. Grape Wine Res. 2004, 10, 32–45. [Google Scholar] [CrossRef]
- Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig. Sci. 2012, 30, 511–522. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.; Berni, J.A.; Suárez, L.; Goldhamer, D.; Fereres, E. Almond tree canopy temperature reveals intra-crown variability that is water stress-dependent. Agric. For. Meteorol. 2012, 154–155, 156–165. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Gonzalez-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Williams, L.E.; Suárez, L.; Berni, J.A.; Goldhamer, D.; Fereres, E. A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sens. Environ. 2013, 138, 38–50. [Google Scholar] [CrossRef]
- Romero, M.; Luo, Y.; Su, B.; Fuentes, S. Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management. Comput. Electron. Agric. 2018, 147, 109–117. [Google Scholar] [CrossRef]
- Di Gennaro, S.F.; Matese, A.; Gioli, B.; Toscano, P.; Zaldei, A.; Palliotti, A.; Genesio, L. Multisensor approach to assess vineyard thermal dynamics combining high resolution unmanned aerial vehicle (UAV) remote sensing and wireless sensor network (WSN) proximal sensing. Sci. Hortic. 2017, 221, 83–87. [Google Scholar] [CrossRef]
- Matese, A.; Baraldi, R.; Berton, A.; Cesaraccio, C.; Di Gennaro, S.; Duce, P.; Facini, O.; Mameli, M.G.; Piga, A.; Zaldei, A. Estimation of water stress in grapevines using proximal and remote sensing methods. Remote Sens. 2018, 10, 114. [Google Scholar] [CrossRef]
- Hall, A.; Lamb, D.W.; Holzapfel, B.; Louis, J. Optical remote sensing applications in viticulture—A review. Aust. J. Grape Wine Res. 2002, 8, 36–47. [Google Scholar] [CrossRef]
- Taylor, J.A.; Coulouma, G.; Lagacherie, P.; Tisseyre, B. Mapping soil units within a vineyard using statistics associated with high-resolution apparent soil electrical conductivity data and factorial discriminant analysis. Geoderma 2009, 153, 278–284. [Google Scholar] [CrossRef]
- Trought, M.C.T.; Bramley, R.G.V. Vineyard variability in Marlborough, New Zealand: Characterising spatial and temporal changes in fruit composition and juice quality in the vineyard. Aust. J. Grape Wine Res. 2011, 17, 72–82. [Google Scholar] [CrossRef]
- Hall, A.; Jones, G.V. Spatial analysis of climate in winegrape-growing regions in Australia. Aust. J. Grape Wine Res. 2010, 16, 389–404. [Google Scholar] [CrossRef]
- Longbottom, M.L.; Maschmedt, D.; Pichler, M. Unearthing Viticulture in the Limestone Coast; Limestone Coast Grape and Wine Industry Council: Coonawarra, SA, Australia, 2011. [Google Scholar]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualisation of a Correlation Matrix; (Version 0.84); GitHub, Inc.: San Francisco, CA, USA, 2011. [Google Scholar]
- Heymann, H.; Noble, A.C. Comparison of Canonical variate and principle component analyses of wine descriptive analysis data. J. Food Sci. 1989, 54, 1355–1358. [Google Scholar] [CrossRef]
- Hardin, P.J.; Lulla, V.; Jensen, R.R.; Jensen, J.R. Small Unmanned Aerial Systems (sUAS) for environmental remote sensing: Challenges and opportunities revisited. GISci. Remote Sens. 2019, 56, 309–322. [Google Scholar] [CrossRef]
- Matese, A.; di Gennaro, S.F. Technology in precision viticulture: A state of the art review. Int. J. Wine Res. 2015, 7, 69–81. [Google Scholar] [CrossRef]
- Jarvis, P.G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. Lond. B 1976, 273, 593–610. [Google Scholar] [CrossRef]
- Bellvert, J.; Marsal, J.; Girona, J.; Zarco-Tejada, P.J. Seasonal evolution of crop water stress index in grapevine varieties determined with high-resolution remote sensing thermal imagery. Irrig. Sci. 2015, 33, 81–93. [Google Scholar] [CrossRef]
- Prueger, J.H.; Parry, C.K.; Kustas, W.P.; Alfieri, J.G.; Alsina, M.M.; Nieto, H.; Wilson, T.G.; Hipps, L.E.; Anderson, M.C.; Hatfield, J.L.; et al. Crop Water Stress Index of an irrigated vineyard in the Central Valley of California. Irrig. Sci. 2019, 37, 297–313. [Google Scholar] [CrossRef]
- Chone, X.; Van Leeuwen, C.; Dubourdieu, D.; Gaudillère, J.P. Stem water potential is a sensitive indicator of grapevine water status. Ann. Bot. 2001, 87, 477–483. [Google Scholar] [CrossRef]
- Shackel, K.A. Water relations of woody perennial plant species. J. Int. Sci. Vigne Vin 2007, 41, 121–129. [Google Scholar] [CrossRef]
- Williams, L.E.; Araujo, F.J. Correlations among predawn leaf, midday leaf, and midday stem water potential and their correlations with other measures of soil and plant water status in Vitis vinifera. J. Am. Soc. Hortic. Sci. 2002, 127, 448–454. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Royo, J.B. Suitability of pre-dawn and stem water potential as indicators of vineyard water status in cv Tempranillo. Aust. J. Grape Wine Res. 2011, 17, 43–51. [Google Scholar] [CrossRef]
- McCutchan, H.; Shackel, K.A. Stem water potential as a sensitive indicator of water-stress in prune trees (Prunus domestica L cv French). J. Am. Soc. Hortic. Sci. 1992, 117, 607–611. [Google Scholar] [CrossRef]
- Naor, A. Relations between leaf and stem water potentials and stomatal conductance in three field-grown woody species. J. Hortic. Sci. Biotechnol. 1998, 73, 431–436. [Google Scholar] [CrossRef]
- Naor, A.; Gal, Y.; Bravdo, B. Crop load affects assimilation rate, stomatal conductance, stem water potential and water relations of field-grown Sauvignon Blanc grapevines. J. Exp. Bot. 1997, 48, 1675–1680. [Google Scholar] [CrossRef]
- Shackel, K. A plant-based approach to deficit irrigation in trees and vines. HortScience 2011, 46, 173–177. [Google Scholar] [CrossRef]
- Spinelli, G.M.; Shackel, K.A.; Gilbert, M.E. A model exploring whether the coupled effects of plant water supply and demand affect the interpretation of water potentials and irrigation management. Agric. Water Manag. 2017, 192, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.; Loveys, B.R. Optimising Irrigation for Different Cultivars; Final report to the Australian Grape and Wine Research and Development Corporation; Project No. CSP 05/02; Australian Grape and Wine Research and Development Corporation: Adelaide, SA, Australia, 2010; 188p. [Google Scholar]
- Rogiers, S.Y.; Greer, D.H.; Hutton, R.J.; Landsberg, J.J. Does night-time transpiration contribute to anisohydric behaviour in a Vitis vinifera cultivar? J. Exp. Bot. 2009, 60, 3751–3763. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, S.; Diago, M.P.; Fernández-Novales, J.; Tardaguila, J. Vineyard water status assessment using on-the-go thermal imaging and machine learning. PLoS ONE 2018, 13, e0192037. [Google Scholar] [CrossRef] [PubMed]
- Harrington, N.M.; Harrington, G.A. Best Management Practices for Irrigation Water Quality Issues in the Limestone Coast Region of South Australia; A report prepared for the Limestone Coast Grape and Wine Council and the South East Natural Resources Management Board by Innovative Groundwater Solutions; Innovative Groundwater Solutions: Victor Harbor, SA, Australia, 2017. [Google Scholar]
- Pagay, V.; Kidman, C.; Jenkins, A. Proximal and remote sensing tools for regional-scale characterisation of grapevine water and nitrogen status in Coonawarra. Wine Vitic. J. 2016, 31, 42–47. [Google Scholar]
Season 1 (S1) | Season 2 (S2) | |||
---|---|---|---|---|
Veraison (F1) | Pre-Harvest (F2) | Veraison (F1) | Pre-Harvest (F2) | |
Environmental Parameter | 4 February 2016 | 2 March 2016 | 21 February 2017 | 25 March 2017 |
GDD * from October 1 (base 10 °C) | 1131 | 1393 | 966 | 1316 |
Daily maximum VPD (kPa) | 2.05 | 3.34 | 2.94 | 2.00 |
Daily maximum temperature (°C) | 25.2 | 30.4 | 27.3 | 28.3 |
Daily minimum temperature (°C) | 14.2 | 12.1 | 2.2 | 15.9 |
Minimum relative humidity (%) | 36 | 23 | 19 | 48 |
Daily total solar radiation (MJ m−2) | 30 | 23.5 | 25.6 | 17.9 |
Daily reference evapotranspiration, ET0 (mm) | 6.7 | 6.1 | 5.4 | 4.2 |
Seasonal ET0, October 1–March 31 (mm) | 967 | 860 | ||
Seasonal precipitation October 1–March 31 (mm) | 127.6 | 291.2 |
Variable | Cultivar | Timepoint | CxT | Cultivar | Timepoint | CxT | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
CAS | SHI | F1 | F2 | CAS | SHI | F1 | F2 | ||||
2016 (S1) | 2017 (S2) | ||||||||||
Ψpd (MPa) | n/c | n/c | n/c | n/c | − | −0.43 | −0.32 | −0.40 | −0.35 | ** | |
Significance | − | − | *** | ** | |||||||
Ψs (MPa) | −1.02 | −1.15 | −1.03 | −1.09 | nsd | −0.94 | −0.82 | −1.11 | −0.65 | nsd | |
Significance | ** | nsd | *** | *** | |||||||
gs (mmol m−2 s−1) | 199 | 184 | 236 | 149 | nsd | 249 | 303 | 172 | 381 | * | |
Significance | nsd | *** | *** | *** | |||||||
CWSI | 0.49 | 0.58 | 0.55 | 0.48 | ** | 0.50 | 0.64 | 0.60 | 0.54 | nsd | |
Significance | * | nsd | *** | nsd | |||||||
Ig | 3.58 | 3.82 | 3.37 | 3.98 | nsd | 4.79 | 1.23 | 2.98 | 3.10 | nsd | |
Significance | nsd | nsd | *** | nsd | |||||||
(Tc-Ta) (°C) | 4.81 | 4.61 | 5.37 | 3.89 | *** | −2.62 | −2.67 | −2.05 | −3.25 | nsd | |
Significance | nsd | *** | nsd | *** |
Variable | Young Vines | Old Vines | Significance (P<0.05) |
---|---|---|---|
Ψpd (MPa) | −0.43 | −0.43 | nsd |
Ψs (MPa) | −0.67 | −0.69 | nsd |
gs (mmol m−2 s−1) | 266 | 324 | nsd |
CWSI | 0.54 | 0.56 | nsd |
Ig | 0.86 | 0.80 | nsd |
(Tc-Ta) (°C) | −3.23 | −3.32 | nsd |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagay, V.; Kidman, C.M. Evaluating Remotely-Sensed Grapevine (Vitis vinifera L.) Water Stress Responses Across a Viticultural Region. Agronomy 2019, 9, 682. https://doi.org/10.3390/agronomy9110682
Pagay V, Kidman CM. Evaluating Remotely-Sensed Grapevine (Vitis vinifera L.) Water Stress Responses Across a Viticultural Region. Agronomy. 2019; 9(11):682. https://doi.org/10.3390/agronomy9110682
Chicago/Turabian StylePagay, Vinay, and Catherine M. Kidman. 2019. "Evaluating Remotely-Sensed Grapevine (Vitis vinifera L.) Water Stress Responses Across a Viticultural Region" Agronomy 9, no. 11: 682. https://doi.org/10.3390/agronomy9110682
APA StylePagay, V., & Kidman, C. M. (2019). Evaluating Remotely-Sensed Grapevine (Vitis vinifera L.) Water Stress Responses Across a Viticultural Region. Agronomy, 9(11), 682. https://doi.org/10.3390/agronomy9110682