Deficit Irrigation as a Sustainable Practice in Improving Irrigation Water Use Efficiency in Cauliflower under Mediterranean Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Conditions
2.2. Crop Management and Plant Material
2.3. Deficit Irrigation Strategies and Growth Stages
2.4. Volumetric Soil Water Content
2.5. Irrigation Scheduling and System
2.6. Relative Water Content and the Membrane Stress Index
2.7. Plant Growth and the Harvest Index (HI)
2.8. Curd Yields, Irrigation Water Use Efficiency (IWUE), and Yield Response Factor (Ky)
2.9. Physical Properties and Color Indices of the Curds
2.10. Profitability
2.11. Experimental Layout and Statistical Analysis
3. Results
3.1. Growth Stages and Irrigation Water Applied
3.2. Volumetric Soil Water Content
3.3. Relative Water Content (RWC) and the Membrane Stability Index
3.4. Plant Growth and Harvest Index (HI)
3.5. Curd Yields, Irrigation Water Use Efficiency (IWUE), and Yield Response Factor (Ky)
- CDI: MY = 2.4080 + 0.0126 IWA (r = 0.90; p ≤ 0.01)
- Juvenility: MY = 2.5289 + 0.0119 IWA (r = 0.88; p ≤ 0.01)
- Curd induction: MY = 2.4596 + 0.0115 IWA (r = 0.84; p ≤ 0.01)
- Curd growth: MY = 2.4463 + 0.0116 IWA (r = 0.69; p ≤ 0.01).
- CDI: IWUE = 55.7151 − 0.1606 IWA (r = −0.91; p ≤ 0.01)
- Juvenility: IWUE = 49.5329 − 0.1234 IWA (r = −0.88; p ≤ 0.01)
- Curd induction: IWUE = 46.2573 − 0.1092 IWA (r = −0.89; p ≤ 0.01)
- Curd growth: IWUE = 46.6245 − 0.1109 IWA (r = −0.91; p ≤ 0.01).
3.6. Physical and Color Indices of the Curds
3.7. Profitability
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maroto, J.V. Horticultura Herbácea Especial, 5th ed.; Mundi-Prensa: Madrid, Spain, 2002; ISBN 9788484760429. [Google Scholar]
- Dixon, G.R. Vegetable Brassicas and Related Crucifers; CABI: Wallingford, UK, 2007; Volume 14, ISBN 0851993958. [Google Scholar]
- Food and Agriculture Organization. Faostat, Food and Agriculture Data. 2018. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 29 June 2019).
- Food and Agriculture Organization Aquastat. AQUASTAT-FAO’s Global Information System on Water and Agriculture; Food and Agriculture Organization: Rome, Italy, 2018; Available online: http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en (accessed on 10 June 2019).
- Nadeem, M.; Li, J.; Yahya, M.; Sher, A.; Ma, C.; Wang, X.; Qiu, L. Research progress and perspective on drought stress in legumes: A review. Int. J. Mol. Sci. 2019, 20, 2541. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.L.; Waskom, R.M.; Niu, Y.; Siddique, K.H.M. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2016, 36, 1–21. [Google Scholar] [CrossRef]
- Ghazouani, H.; Rallo, G.; Mguidiche, A.; Latrech, B.; Douh, B.; Boujelben, A.; Provenzano, G. Assessing hydrus-2D model to investigate the effects of different on-farm irrigation strategies on potato crop under subsurface drip irrigation. Water 2019, 11, 540. [Google Scholar] [CrossRef]
- Lee, J.L.; Huang, W.C. Impact of climate change on the irrigation water requirement in Northern Taiwan. Water 2014, 6, 3339–3361. [Google Scholar] [CrossRef]
- Guiot, J.; Cramer, W. Climate change, the Paris Agreement thresholds and Mediterranean ecosystems. Sci. Am. Assoc. Adv. Sci. 2016, 354, 465–468. [Google Scholar]
- WWAP (World Water Assessment Programme). The United Nations World Water Development Report 2016: Water and Jobs; UNESCO: Paris, France, 2016. [Google Scholar]
- Costa, J.M.; Ortuño, M.F.; Chaves, M.M. Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. J. Integr. Plant Biol. 2007, 49, 1421–1434. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Iniesta, F.; Testi, L.; Orgaz, F.; Villalobos, F.J. The effects of regulated and continuous deficit irrigation on the water use, growth and yield of olive trees. Eur. J. Agron. 2009, 30, 258–265. [Google Scholar] [CrossRef]
- Galindo, A.; Collado-González, J.; Griñán, I.; Corell, M.; Centeno, A.; Martín-Palomo, M.J.; Girón, I.F.; Rodríguez, P.; Cruz, Z.N.; Memmi, H.; et al. Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agric. Water Manag. 2018, 202, 311–324. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Du, T.; Kang, S.; Zhang, J.; Davies, W.J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 2015, 66, 2253–2269. [Google Scholar] [CrossRef] [PubMed]
- Kochler, M.; Kage, H.; Stützel, H. Modelling the effects of soil water limitations on transpiration and stomatal regulation of cauliflower. Eur. J. Agron. 2007, 26, 375–383. [Google Scholar] [CrossRef]
- Sarkar, S.; Nanda, M.K.; Biswas, M.; Mukherjee, A.; Kundu, M. Different indices to characterize water use pattern of irrigated cauliflower (Brassica oleracea L. var. botrytis) in a hot sub-humid climate of India. Agric. Water Manag. 2009, 96, 1475–1482. [Google Scholar] [CrossRef]
- Sarkar, S.; Biswas, M.; Goswami, S.B.; Bandyopadhyay, P.K. Yield and water use efficiency of cauliflower under varying irrigation frequencies and water application methods in Lower Gangetic Plain of India. Agric. Water Manag. 2010, 97, 1655–1662. [Google Scholar] [CrossRef]
- Pereira, M.E.M.; de Lima Junior, J.A.; de Souza, R.O.R.M.; de Gusmão, S.A.L.; Lima, V.M. Irrigation management influence and fertilizer doses with boron on productive performance of cauliflower. Eng. Agrícola 2016, 36, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Bozkurt, S.; Uygur, V.; Agca, N.; Yalcin, M. Yield responses of cauliflower (Brassica oleracea L. var. Botrytis) to different water and nitrogen levels in a mediterranean coastal area. Acta Agric. Scand. Sect. B Soil Plant Sci. 2011, 61, 183–194. [Google Scholar]
- Souza, A.P.; da Silva, A.C.; Tanaka, A.A.; de Souza, M.E.; Pizzatto, M.; Felipe, R.T.A.; Martim, C.C.; Ferneda, B.G.; da Silva, S.G. Yield and water use efficiency of cauliflower under irrigation different levels in tropical climate. Afr. J. Agric. Res. 2018, 13, 1621–1632. [Google Scholar]
- Latif, M.; Akram, N.A.; Ashraf, M. Regulation of some biochemical attributes in drought-stressed cauliflower (Brassica oleracea L.) by seed pre-treatment with ascorbic acid. J. Hortic. Sci. Biotechnol. 2016, 91, 129–137. [Google Scholar] [CrossRef]
- Seciu, A.-M.; Oancea, A.; Gaspar, A.; Moldovan, L.; Craciunescu, O.; Stefan, L.; Petrus, V.; Georgescu, F. Water use efficiency on cabbage and cauliflower treated with a new biostimulant composition. Agric. Agric. Sci. Procedia 2016, 10, 475–484. [Google Scholar] [CrossRef]
- Thompson, T.L.; Doerge, T.A.; Godin, R.E. Nitrogen and water interactions in subsurface drip-irrigated Cauliflower: I. Plant response. Soil Sci. Soc. Am. J. 2000, 64, 406–411. [Google Scholar] [CrossRef]
- Soil Survey Staff Keys to Soil Taxonomy, 12th ed.; USDA-NRCS: Washington, DC, USA, 2014; ISBN 0926487221.
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements, FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization (FAO): Rome, Italy, 1998. [Google Scholar]
- Verheye, W. Agro-climate-based land evaluation systems. In Land Use, Land Cover and Soil Sciences-Volume II: Land Evaluation; Verheye, W., Ed.; Encyclopedia of Life Support Systems (EOLSS): Paris, France, 2009; Volume II, pp. 130–159. [Google Scholar]
- Fundación Cajamar. Memorias De Actividades, Resultados De Ensayos Hortícolas; Cajamar: Valencia, Spain, 2016; Volume 2017, p. 2018. [Google Scholar]
- Pomares, F.; Baixauli, C.; Bartual, R.; Ribó, M. El riego y la fertirrigación de la coliflor y el bróculi. In El Cultivo De La Coliflor Y El Bróculi; Maroto, J.V., Pomares, F., Baixauli, C., Eds.; Fundación Ruralcaja Valencia: Valencia, Spain, 2007; pp. 157–198. [Google Scholar]
- Wurr, D.C.E.; Fellows, J.R. Leaf production and curd initiation of winter cauliflower in response to temperature. J. Hortic. Sci. Biotechnol. 1998, 73, 691–697. [Google Scholar] [CrossRef]
- Stamm, G.G. Problems and procedures in determining water supply requirements for irrigation projects. In Irrigation of Agricultural Lands, Agronomy Monograph 11; Hagan, R.M., Haise, H.R., Edminster, T.W., Eds.; American Society of Agronomy: Madison, WI, USA, 1967; pp. 771–785. [Google Scholar]
- Pascual-Seva, N.; San Bautista, A.; López-Galarza, S.; Maroto, J.V.; Pascual, B. Response of drip-irrigated chufa (Cyperus esculentus L. var. sativus Boeck.) to different planting configurations: Yield and irrigation water-use efficiency. Agric. Water Manag. 2016, 170, 140–147. [Google Scholar] [CrossRef]
- IVIA (Instituto Valenciano de Investigaciones Agrarias). Cálculo De Necesidades De Riego. Available online: http://riegos.ivia.es/calculo-de-necesidades-de-riego (accessed on 15 June 2019).
- Barrs, H.D. Determinaion of water deficits in plant tissues. In Water Deficits and Plant Growth; Kozlowski, T.T., Ed.; Academic Press: New York, NY, USA, 1968; pp. 235–368. [Google Scholar]
- Hayat, S.; Ali, B.; Hasan, S.A.; Ahmad, A. Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ. Exp. Bot. 2007, 60, 33–41. [Google Scholar] [CrossRef]
- Rady, M.M. Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci. Hortic. 2011, 129, 232–237. [Google Scholar] [CrossRef]
- Seidel, S.J.; Werisch, S.; Schütze, N.; Laber, H. Impact of irrigation on plant growth and development of white cabbage. Agric. Water Manag. 2017, 187, 99–111. [Google Scholar] [CrossRef]
- UNECE (United Nations Economic Commission for Europe). UNECE Standard FFV-11 Concerning the Marketing and Commercial Quality Control of Cauliflowers; UNECE: Geneva, Switzerland, 2017. [Google Scholar]
- Cabello, M.J.; Castellanos, M.T.; Romojaro, F.; Martínez-Madrid, C.; Ribas, F. Yield and quality of melon grown under different irrigation and nitrogen rates. Agric. Water Manag. 2009, 96, 866–874. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water, FAO Irrigation and Drainage Paper No. 33; Food and Agriculture Organization (FAO): Rome, Italy, 1979. [Google Scholar]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- MAPA (Ministerio de Agricultura, Pesca y Alimentación). Anuario De Estadística Agraria 2016. Ministerio De Agricultura Y Pesca, Alimentación Y Medio Ambiente Madrid, Spain. Available online: https://www.mapa.gob.es (accessed on 29 June 2019).
- Statpoint Tecnologies, Inc. Statgraphics Centurion XVI; Statpoint Tecnologies: Rockville, MD, USA, 2014. [Google Scholar]
- Decagon Devices Inc. EC-20, EC-10, EC-5 Soil Moisture Sensors. User’s Manual; Decagon Devices Inc.: Pullman, WA, USA, 2010. [Google Scholar]
- Kałużewicz, A.; Jolanta, L.; Monika, G.; Krzesiński, W.; Spiżewski, T.; Zaworska, A.; Frąszczak, B. The effects of plant density and irrigation on phenolic content in cauliflower. Hortic. Sci. 2017, 44, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Zhong, Y.; Shangguan, Z. A meta-analysis of leaf gas exchange and water status responses to drought. Sci. Rep. 2016, 6, 20917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Wu, X.; Li, Z.; Duan, L.; Zhang, M. Physiological evaluation of drought stress tolerance and recovery in cauliflower (Brassica oleracea L.) seedlings treated with methyl jasmonate and coronatine. J. Plant Growth Regul. 2012, 31, 113–123. [Google Scholar] [CrossRef]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S.P. Response of plants to water stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, L.; González-Vilar, M. Determination of relative water content. In Handbook of Plant Ecophysiology Techniques; Reigosa Roger, M.J., Ed.; Springer: Dordrecht, The Netherlands, 2001; pp. 207–212. [Google Scholar]
- Tolk, J.A.; Howell, T.A. Water use efficiencies of grain sorghum grown in three USA southern Great Plains soils. Agric. Water Manag. 2003, 59, 97–111. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop Yield Response to Water, FAO Irrigation and Drainage Paper No. 66; Food and Agriculture Organization (FAO): Rome, Italy, 2012; ISBN 9789251072745. [Google Scholar]
- Wang, J.; Zhao, Z.; Sheng, X.; Yu, H.; Gu, H. Influence of leaf-cover on visual quality and health-promoting phytochemicals in loose-curd cauliflower florets. LWT-Food Sci. Technol. 2015, 61, 177–183. [Google Scholar] [CrossRef]
- Gu, H.; Wang, J.; Zhao, Z.; Sheng, X.; Yu, H.; Huang, W. Characterization of the appearance, health-promoting compounds, and antioxidant capacity of the florets of the loose-curd cauliflower. Int. J. Food Prop. 2015, 18, 392–402. [Google Scholar] [CrossRef]
- Ruiz-Sanchez, M.C.; Domingo, R.; Castel, J.R. Review. Deficit irrigation in fruit trees and vines in Spain. Span. J. Agric. Res. 2010, 8, 5. [Google Scholar] [CrossRef]
Stages | Days | Irrigation Water Applied (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | |||
2017 | Juvenility | 50 | 106 | 81 | 54 | 81 | 106 | 106 | 54 | 106 | 106 |
Curd induction | 48 | 60 | 45 | 30 | 60 | 45 | 60 | 60 | 30 | 60 | |
Curd growth | 29 | 58 | 44 | 29 | 58 | 58 | 44 | 58 | 58 | 29 | |
Total | 127 | 224 | 170 | 113 | 199 | 209 | 209 | 172 | 194 | 195 | |
2018 | Juvenility | 50 | 51 | 38 | 25 | 38 | 51 | 51 | 25 | 51 | 51 |
Curd induction | 38 | 28 | 21 | 14 | 29 | 21 | 29 | 29 | 14 | 29 | |
Curd growth | 35 | 33 | 26 | 18 | 34 | 34 | 26 | 34 | 34 | 18 | |
Total | 123 | 113 | 85 | 57 | 101 | 107 | 105 | 88 | 99 | 98 |
Height (cm) | Diameter (cm) | Leaf no. Plant−1 | SFW (kg m−2) | HI (-) | |
---|---|---|---|---|---|
Growing season (GS) | |||||
2017 | 83.04 a | 103.0 a | 14.47 | 7.775 a | 0.30 b |
2018 | 73.25 b | 94.08 b | 14.42 | 4.905 b | 0.35 a |
LSD | 1.21 | 1.41 | 0.21 | 0.490 | 0.01 |
Irrigation strategy (IS) | |||||
T1 | 80.71 a | 102.29 a | 15.25 a | 6.856 | 0.35 |
T2 | 76.63 c | 97.85 bcd | 13.98 de | 6.216 | 0.32 |
T3 | 72.96 d | 94.35 e | 13.69 e | 5.633 | 0.31 |
T4 | 78.71 abc | 99.50 abcd | 14.40 cd | 6.492 | 0.31 |
T5 | 79.04 abc | 99.0 bcd | 14.69 bc | 6.248 | 0.33 |
T6 | 79.81 ab | 99.79 abc | 15.03 ab | 6.660 | 0.32 |
T7 | 77.42 bc | 96.92 de | 14.27 cd | 6.220 | 0.34 |
T8 | 78.06 bc | 96.75 cde | 14.27 cd | 6.215 | 0.31 |
T9 | 79.96 ab | 100.42 ab | 15.04 ab | 6.524 | 0.33 |
−LSD | 2.57 | 2.99 | 0.44 | 1.040 | 0.03 |
ANOVA (df) | Percentage of sum of squares | ||||
GS (1) | 49.9 ** | 38.3 ** | 0.1 ns | 57.7 ** | 29.7 ** |
IS (8) | 10.1 ** | 9.5 ** | 27.4 ** | 3.0 ns | 8.0 ns |
GS × IS (8) | 1.3 ns | 3.3 ns | 3.0 ns | 0.8 ns | 4.9 ns |
Residuals (198) | 38.8 | 48.9 | 69.5 | 38.1 | 57.5 |
SD | 4.5 | 5.3 | 0.8 | 1.3 | 0.04 |
Yield (kg m−2) | MY (kg m−2) | ACW (kg curd−1) | IWUE (kg m−3) | |
---|---|---|---|---|
Growing season (GS) | ||||
2017 | 5.12 a | 4.74 a | 1.77 a | 25.93 b |
2018 | 3.75 b | 3.54 b | 1.32 b | 38.28 a |
LSD | 0.23 | 0.25 | 0.08 | 2.23 |
Irrigation strategy (IS) | ||||
T1 | 4.56 | 4.44 a | 1.60 a | 28.30 c |
T2 | 4.23 | 4.07 a | 1.50 ab | 34.06 b |
T3 | 3.96 | 3.47 b | 1.41 b | 43.58 a |
T4 | 4.64 | 4.32 a | 1.66 a | 30.80 bc |
T5 | 4.64 | 4.35 a | 1.65 a | 29.50 bc |
T6 | 4.62 | 4.33 a | 1.57 ab | 29.46 bc |
T7 | 4.40 | 4.18 a | 1.56 ab | 34.17 b |
T8 | 4.48 | 4.06 a | 1.51 ab | 29.33 c |
T9 | 4.42 | 4.06 a | 1.52 ab | 29.75 bc |
LSD | 0.50 | 0.52 | 0.16 | 4.72 |
ANOVA (df) | Percentage of sum of squares | |||
GS (1) | 73.1 ** | 63.1 ** | 71.9 ** | 54.6 ** |
IS (8) | 7.1 ns | 13.2 * | 8.1 * | 29.1 ** |
GS × IS (8) | 0.3 ns | 0.2 ns | 1.7 ns | 0.8 ns |
Residuals (36) | 19.5 | 23.5 | 18.3 | 15.5 |
Standard deviation | 0.4 | 0.4 | 0.1 | 4.0 |
Height (cm) | Width (cm) | Perimeter (cm) | DM (%) | Firmness (N) | H° | C * | L | |
---|---|---|---|---|---|---|---|---|
Growing season (GS) | ||||||||
2017 | 11.99 a | 16.38 a | 50.28 a | 8.12 a | 5.81 b | 97.75 b | 16.91 b | 82.66 a |
2018 | 11.16 b | 15.70 b | 47.95 b | 7.58 b | 8.78 a | 98.81 a | 17.75 a | 79.31 b |
LSD | 0.19 | 0.29 | 0.80 | 0.46 | 0.37 | 0.50 | 0.68 | 1.80 |
Irrigation strategies (IS) | ||||||||
T1 | 11.85 a | 16.42 a | 50.50 a | 7.30 | 7.06 | 98.07 | 17.46 | 80.40 |
T2 | 11.47 abc | 15.96 ab | 48.83 ab | 7.89 | 7.09 | 97.81 | 17.61 | 80.01 |
T3 | 11.14 c | 14.79 c | 46.67 c | 7.84 | 6.93 | 98.05 | 17.32 | 80.31 |
T4 | 11.75 ab | 16.50 a | 49.33 ab | 7.62 | 7.16 | 99.11 | 17.51 | 79.14 |
T5 | 11.78 ab | 16.46 a | 49.46 ab | 7.62 | 7.56 | 98.49 | 17.06 | 81.42 |
T6 | 11.69 ab | 16.36 a | 50.08 ab | 7.97 | 7.90 | 98.28 | 18.12 | 82.77 |
T7 | 11.57 ab | 16.18 ab | 49.50 ab | 8.11 | 7.17 | 98.37 | 17.01 | 81.51 |
T8 | 11.52 abc | 15.88 ab | 48.58 ab | 7.81 | 7.03 | 98.70 | 16.44 | 82.20 |
T9 | 11.46 abc | 16.14 ab | 49.08 ab | 8.47 | 7.78 | 97.65 | 17.43 | 81.12 |
LSD | 0.41 | 0.62 | 1.69 | 0.98 | 0.79 | 1.06 | 1.44 | 3.82 |
ANOVA (df) | Percentage of sum of squares | |||||||
GS (1) | 29.2 ** | 9.3 ** | 21.3 ** | 10.3 * | 83.1 * | 23.2 ** | 12.2 * | 20.3 * |
IS (8) | 7.4 * | 21.9 ** | 16.7 ** | 13.6 ns | 4.2 ns | 15.0 ns | 13.2 ns | 8.3 ns |
GS × IS (8) | 4.4 ns | 4.6 ns | 4.7 ns | 10.1 ns | 1.3 ns | 16.7 ns | 5.6 ns | 20.1 ns |
Residuals (144) | 59.0 | 64.3 | 57.3 | 65.9 | 11.4 | 45.1 | 69.0 | 51.3 |
SD | 0.6 | 0.9 | 2.1 | 0.8 | 0.7 | 0.9 | 1.2 | 3.3 |
Gross Revenue (€ ha−1) | Water Economic Value (€ m−3) | |
---|---|---|
Growing season (GS) | ||
2017 | 18004 a | 9.85 b |
2018 | 13460 b | 14.54 a |
LSD | 938 | 0.84 |
Irrigation strategy (IS) | ||
T1 | 16859 a | 10.76 c |
T2 | 15465 a | 12.94 b |
T3 | 13161 b | 16.56 a |
T4 | 16427 a | 11.70 ab |
T5 | 16506 a | 11.21 ab |
T6 | 16441 a | 11.20 ab |
T7 | 15885 a | 12.98 b |
T8 | 15414 a | 11.14 c |
T9 | 15433 a | 11.31 ab |
LSD | 1991 | 1.79 |
ANOVA (df) | Percentage of sum of squares | |
GS (1) | 63.1 ** | 54.6 ** |
IS (8) | 13.2 * | 29.1 ** |
GS × IS (8) | 0.2 ns | 0.8 ns |
Residuals (36) | 23.5 | 15.5 |
Standard deviation | 1700.4 | 1.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelkhalik, A.; Pascual, B.; Nájera, I.; Baixauli, C.; Pascual-Seva, N. Deficit Irrigation as a Sustainable Practice in Improving Irrigation Water Use Efficiency in Cauliflower under Mediterranean Conditions. Agronomy 2019, 9, 732. https://doi.org/10.3390/agronomy9110732
Abdelkhalik A, Pascual B, Nájera I, Baixauli C, Pascual-Seva N. Deficit Irrigation as a Sustainable Practice in Improving Irrigation Water Use Efficiency in Cauliflower under Mediterranean Conditions. Agronomy. 2019; 9(11):732. https://doi.org/10.3390/agronomy9110732
Chicago/Turabian StyleAbdelkhalik, Abdelsattar, Bernardo Pascual, Inmaculada Nájera, Carlos Baixauli, and Nuria Pascual-Seva. 2019. "Deficit Irrigation as a Sustainable Practice in Improving Irrigation Water Use Efficiency in Cauliflower under Mediterranean Conditions" Agronomy 9, no. 11: 732. https://doi.org/10.3390/agronomy9110732
APA StyleAbdelkhalik, A., Pascual, B., Nájera, I., Baixauli, C., & Pascual-Seva, N. (2019). Deficit Irrigation as a Sustainable Practice in Improving Irrigation Water Use Efficiency in Cauliflower under Mediterranean Conditions. Agronomy, 9(11), 732. https://doi.org/10.3390/agronomy9110732