Boron Excess Imbalances Root/Shoot Allometry, Photosynthetic and Chlorophyll Fluorescence Parameters and Sugar Metabolism in Apple Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Gas Exchange and Chlorophyll a Fluorescence Analyses
2.3. Boron Concentration, Content and Distribution in Apple Organs
2.4. Chlorophyll and Carotenoid Determinations
2.5. Carbohydrate Determination
2.6. Statistical Analysis
3. Results
3.1. Plant Growth and B Allocation Patterns
3.2. Gas Exchange, Chlorophyll Fluorescence Parameters and Photosynthetic Pigments
3.3. Soluble Sugars
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Warington, K. The effect of boric acid and borax on the broad bean and certain other plants. Ann. Bot. 1923, 37, 629–672. [Google Scholar] [CrossRef]
- Nable, R.O.; Bañuelos, G.S.; Paull, J.G. Boron toxicity. Plant Soil 1997, 193, 181–198. [Google Scholar] [CrossRef]
- Saleem, M.; Khanif, Y.; Fauziah, I.; Samsuri, A.; Hafeez, B. Importance of boron for agriculture productivity: A review. IRJAS 2011, 1, 293–300. [Google Scholar]
- Chatzissavvidis, C.; Therios, I.; Antonopoulou, C. Seasonal variation of nutrient concentration in two olive (Olea europaea L.) cultivars irrigated with high boron water. JHSB 2004, 79, 683–688. [Google Scholar]
- Pennisi, M.; Gonfiantini, R.; Grassi, S.; Squarci, P. The utilization of boron and strontium isotopes for the assessment of boron contamination of the Cecina River alluvial aquifer (central-western Tuscany, Italy). Appl. Geochem. 2006, 21, 643–655. [Google Scholar] [CrossRef]
- Princi, M.P.; Lupini, A.; Araniti, F.; Longo, C.; Mauceri, A.; Sunseri, F.; Abenavoli, M.R. Boron toxicity and tolerance in plants: Recent advances and future perspectives. In Plant Metal Interaction; Elsevier: Amsterdam, The Netherlands, 2016; pp. 115–147. [Google Scholar]
- Kabay, N.; Güler, E.; Bryjak, M. Boron in seawater and methods for its separation—A review. Desalination 2010, 261, 212–217. [Google Scholar] [CrossRef]
- Landi, M.; Benelli, G. Protecting crop species from biotic and abiotic constraints in the era of global change: Are we ready for this challenge? Am. J. Agric. Biol. Sci. 2016, 11, 51–53. [Google Scholar] [CrossRef]
- Ferreyra, R.E.; Aljaro, A.U.; Ruiz, R.S.; Rojas, L.P.; Oster, J. Behavior of 42 crop species grown in saline soils with high boron concentrations. Agric. Water Manag. 1997, 34, 111–124. [Google Scholar] [CrossRef]
- Papadakis, I.; Dimassi, K.; Therios, I. Response of two citrus genotypes to six boron concentrations: Concentration and distribution of nutrients, total absorption and nutrient use efficiency. Aust. J. Agric. Res. 2003, 54, 571–580. [Google Scholar] [CrossRef]
- Papadakis, I.E.; Dimassi, K.N.; Bosabalidis, A.M.; Therios, I.N.; Patakas, A.; Giannakoula, A. Boron toxicity in ‘Clementine’mandarin plants grafted on two rootstocks. Plant Sci. 2004, 166, 539–547. [Google Scholar] [CrossRef]
- Cervilla, L.M.; Blasco, B.; Ríos, J.J.; Romero, L.; Ruiz, J.M. Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann. Bot. 2007, 100, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.; Remorini, D.; Pardossi, A.; Guidi, L. Boron excess affects photosynthesis and antioxidant apparatus of greenhouse Cucurbita pepo and Cucumis sativus. J. Plant Res. 2013, 126, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.; Pardossi, A.; Remorini, D.; Guidi, L. Antioxidant and photosynthetic response of a purple-leaved and a green-leaved cultivar of sweet basil (Ocimum basilicum) to boron excess. Environ. Exp. Bot. 2013, 85, 64–75. [Google Scholar] [CrossRef]
- Pardossi, A.; Romani, M.; Carmassi, G.; Guidi, L.; Landi, M.; Incrocci, L.; Maggini, R.; Puccinelli, M.; Vacca, W.; Ziliani, M. Boron accumulation and tolerance in sweet basil (Ocimum basilicum L.) with green or purple leaves. Plant Soil 2015, 395, 375–389. [Google Scholar] [CrossRef]
- Meriño-Gergichevich, C.; Reyes-Díaz, M.; Guerrero, J.; Ondrasek, G. Physiological and nutritional responses in two highbush blueberry cultivars exposed to deficiency and excess of boron. J. Soil Sci. Plant Nutr. 2017, 17, 307–318. [Google Scholar] [CrossRef]
- Sarafi, E.; Siomos, A.; Tsouvaltzis, P.; Therios, I.; Chatzissavvidis, C. The influence of Boron on pepper plants nutritional status and nutrient efficiency. J. Soil Sci. Plant Nutr. 2018, 18, 653–667. [Google Scholar] [CrossRef]
- Tanaka, M.; Fujiwara, T. Physiological roles and transport mechanisms of boron: Perspectives from plants. Pflüg. Arch. 2008, 456, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Ralston, N.V.; Hunt, C.D. Diadenosine phosphates and S-adenosylmethionine: Novel boron binding biomolecules detected by capillary electrophoresis. BBA Gen. Subj. 2001, 1527, 20–30. [Google Scholar] [CrossRef]
- Brown, P.; Bellaloui, N.; Wimmer, M.; Bassil, E.; Ruiz, J.; Hu, H.; Pfeffer, H.; Dannel, F.; Römheld, V. Boron in plant biology. Plant Biol. 2002, 4, 205–223. [Google Scholar] [CrossRef]
- Brown, P.H.; Shelp, B.J. Boron mobility in plants. Plant Soil 1997, 193, 85–101. [Google Scholar] [CrossRef]
- Camacho-Cristóbal, J.J.; Rexach, J.; González-Fontes, A. Boron in plants: Deficiency and toxicity. J. Integr. Plant Biol. 2008, 50, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Reid, R.J.; Hayes, J.E.; Post, A.; Stangoulis, J.C.R.; Graham, R.D. A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ. 2004, 27, 1405–1414. [Google Scholar] [CrossRef]
- Keren, R.; Bingham, F. Boron in water, soils and plants. In Advances in Soil Science; Springer: Berlin, Germany, 1958; pp. 229–276. [Google Scholar]
- Papadakis, I.E.; Tsiantas, P.I.; Tsaniklidis, G.; Landi, M.; Psychoyou, M.; Fasseas, C. Changes in sugar metabolism associated to stem bark thickening partially assist young tissues of Eriobotrya japonica seedlings under boron stress. J. Plant Physiol. 2018, 231, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Genty, B.; Briantais, J.-M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Schreiber, U.; Schliwa, U.; Bilger, W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 1986, 10, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Kramer, D.M.; Johnson, G.; Kiirats, O.; Edwards, G.E. New fluorescence parameters for the determination of Q A redox state and excitation energy fluxes. Photosynth. Res. 2004, 79, 209. [Google Scholar] [CrossRef] [PubMed]
- Guidi, L.; Remorini, D.; Cotrozzi, L.; Giordani, T.; Lorenzini, G.; Massai, R.; Nali, C.; Natali, L.; Pellegrini, E.; Trivellini, A. The harsh life of an urban tree: The effect of a single pulse of ozone in salt-stressed Quercus ilex saplings. Tree Physiol. 2016, 37, 246–260. [Google Scholar]
- Wolf, B. The determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solutions. Commun. Soil Sci. Plant 1971, 2, 363–374. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4. 3.1–F4. 3.8. [Google Scholar] [CrossRef]
- El-Motaium, R.; Hu, H.; Brown, P.H. The relative tolerance of six Prunus rootstocks to boron and salinity. J. Am. Soc. Hortic. Sci. 1994, 119, 1169–1175. [Google Scholar] [CrossRef]
- Schopfer, P.; Lapierre, C.; Nolte, T. Light-controlled growth of the maize seedling mesocotyl: Mechanical cell-wall changes in the elongation zone and related changes in lignification. Physiol. Plant 2001, 111, 83–92. [Google Scholar] [CrossRef]
- Cervilla, L.; Rosales, M.; Rubio-Wilhelmi, M.; Sánchez-Rodríguez, E.; Blasco, B.; Ríos, J.; Romero, L.; Ruiz, J. Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. Plant Sci. 2009, 176, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Ghanati, F.; Morita, A.; Yokota, H. Deposition of suberin in roots of soybean induced by excess boron. Plant Sci. 2005, 168, 397–405. [Google Scholar] [CrossRef]
- Ghanati, F.; Morita, A.; Yokota, H. Induction of suberin and increase of lignin content by excess boron in tobacco cells. J. Plant Nutr. Soil Sci. 2002, 48, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Hayes, J.E.; Reid, R.J. Boron tolerance in barley is mediated by efflux of boron from the roots. Plant Physiol. 2004, 136, 3376–3382. [Google Scholar] [CrossRef] [PubMed]
- Kalayci, M.; Alkan, A.; Cakmak, I.; Bayramoğlu, O.; Yilmaz, A.; Aydin, M.; Ozbek, V.; Ekiz, H.; Ozberisoy, F. Studies on differential response of wheat cultivars to boron toxicity. Euphytica 1998, 100, 123–129. [Google Scholar] [CrossRef]
- Sheng, O.; Zhou, G.; Wei, Q.; Peng, S.; Deng, X. Effects of excess boron on growth, gas exchange and boron status of four orange scion–rootstock combinations. J. Plant Nutr. Soil Sci. 2010, 173, 469–476. [Google Scholar] [CrossRef]
- Landi, M.; Margaritopoulou, T.; Papadakis, I.E.; Araniti, F. Boron toxicity in higher plants: An update. Planta 2019, 250, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Tang, N.; Jiang, H.-X.; Yang, L.-T.; Li, Y.; Chen, L.-S. CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci. 2009, 176, 143–153. [Google Scholar] [CrossRef]
- Farrant, J.M.; Pammenter, N.; Berjak, P. Seed development in relation to desiccation tolerance: A comparison between desiccation-sensitive (recalcitrant) seeds of Avicennia marina and desiccation-tolerant types. Seed Sci. Res. 1993, 3, 1–13. [Google Scholar] [CrossRef]
- Lemoine, R.; La Camera, S.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.-L.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, M.; Prado, C.; Podazza, G.; Interdonato, R.; González, J.A.; Hilal, M.; Prado, F.E. Soluble sugars: Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signal. Behav. 2009, 4, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.; Degl’Innocenti, E.; Pardossi, A.; Guidi, L. Antioxidant and photosynthetic responses in plants under boron toxicity: A review. Am. J. Agric. Biol. Sci. 2012, 7, 255–270. [Google Scholar] [CrossRef]
- Lewis, D.H. Boron: The essential element for vascular plants that never was. New Phytol. 2019, 221, 1685–1690. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Kaur, N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J. Biosci. 2005, 30, 761–776. [Google Scholar] [CrossRef] [PubMed]
- Sheen, J. Master regulators in plant glucose signaling networks. J. Plant Biol. 2014, 57, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Koch, K. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Biol. 1996, 47, 509–540. [Google Scholar] [CrossRef] [PubMed]
- Pego, J.V.; Kortstee, A.J.; Huijser, C.; Smeekens, S.C. Photosynthesis, sugars and the regulation of gene expression. J. Exp. Bot. 2000, 51, 407–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolland, F.; Moore, B.; Sheen, J. Sugar sensing and signaling in plants. Plant Cell 2002, 14, S185–S205. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Qi, Y.-P.; Yang, L.-T.; Ye, X.; Jiang, H.-X.; Huang, J.-H.; Chen, L.-S. cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity. BMC Plant Biol. 2014, 14, 284. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.; Remorini, D.; Pardossi, A.; Guidi, L. Purple versus green-leafed Ocimum basilicum: Which differences occur with regard to photosynthesis under boron toxicity? J. Plant Nutr. Soil Sci. 2013, 176, 942–951. [Google Scholar] [CrossRef]
- Lovatt, C.J.; Bates, L.M. Early effects of excess boron on photosynthesis and growth of Cucurbita pepo. J. Exp. Bot. 1984, 35, 297–305. [Google Scholar] [CrossRef]
- Macho-Rivero, M.Á.; Camacho-Cristóbal, J.J.; Herrera-Rodríguez, M.B.; Müller, M.; Munné-Bosch, S.; González-Fontes, A. Abscisic acid and transpiration rate are involved in the response to boron toxicity in Arabidopsis plants. Physiol. Plant. 2017, 160, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Macho-Rivero, M.A.; Herrera-Rodríguez, M.B.; Brejcha, R.; Schäffner, A.R.; Tanaka, N.; Fujiwara, T.; González-Fontes, A.; Camacho-Cristóbal, J.J. Boron toxicity reduces water transport from root to shoot in arabidopsis plants. Evidence for a reduced transpiration rate and expression of major PIP aquaporin genes. Plant Cell Physiol. 2018, 59, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Sotiropoulos, T.E.; Therios, I.N.; Dimassi, K.N.; Bosabalidis, A.; Kofidis, G. Nutritional status, growth, CO2 assimilation and leaf anatomical responses in two kiwifruit species under boron toxicity. J. Plant Nutr. 2002, 25, 1249–1261. [Google Scholar] [CrossRef]
- Lobo, A.K.M.; de Oliveira Martins, M.; Neto, M.C.L.; Machado, E.C.; Ribeiro, R.V.; Silveira, J.A.G. Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity. J. Plant Physiol. 2015, 179, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Cao, J. Chlorophyll a fluorescence transient as an indicator of active and inactive photosystem II in thylakoid membranes. BBA Bioenerg. 1990, 1015, 180–188. [Google Scholar] [CrossRef]
- Flexas, J.; Bota, J.; Escalona, J.M.; Sampol, B.; Medrano, H. Effects of drought on photosynthesis in grapevines under field conditions: An evaluation of stomatal and mesophyll limitations. Funct. Plant Biol. 2002, 29, 461–471. [Google Scholar] [CrossRef]
- Klughammer, C.; Schreiber, U. Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl. Notes 2008, 1, 201–247. [Google Scholar]
- Pfündel, E.; Klughammer, C.; Schreiber, U. Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. PAM Appl. Notes 2008, 1, 21–24. [Google Scholar]
Parameter | Plant Part | 25 μM B | 400 μM B | t-test |
---|---|---|---|---|
Dry weight (DW) (g) | Leaves | 25.6 ± 0.48 | 25.68 ± 2.73 | n.s. |
Scion’s stem | 66.12 ± 3.33 | 64.06 ± 6.23 | n.s. | |
Rootstock’s stem | 74.15 ± 7.47 | 79.44 ± 5.29 | n.s. | |
Root | 9.61 ± 0.14 | 7.04 ± 0.71 | * | |
Entire plant | 175.47 ± 8.83 | 176.22 ± 8.04 | n.s. | |
Scion | 154.31 ± 9.02 | 159.12 ± 7.22 | n.s. | |
Rootstock | 83.76 ± 7.4 | 86.49 ± 4.88 | n.s. | |
Aboveground/underground plant part | 19.45 ± 1.27 | 26.13 ± 1.91 | * |
Parameter | Plant Part | 25 μM B | 400 μM B | t-test |
---|---|---|---|---|
Boron concentration (μg g−1 DW) | Top leaves | 88.9 ± 5.42 | 441.24 ± 32.03 | *** |
Middle leaves | 67.12 ± 6.41 | 340.35 ± 35.8 | ** | |
Basal leaves | 47.1 ± 3.21 | 268.95 ± 13.41 | *** | |
Top stem | 59.77 ± 1.97 | 458.33 ± 44.12 | ** | |
Middle stem | 51.76 ± 2.94 | 382.72 ± 27.8 | *** | |
Basal stem | 35.09 ± 2.83 | 254.15 ± 22.76 | ** | |
Rootstock’s stem | 22.35 ± 1.59 | 142.04 ± 16.84 | ** | |
Root | 37.4 ± 2.89 | 222.14 ± 47.76 | * | |
Boron content (μg) | Leaves | 1781.68 ± 120.98 | 9239.48 ± 1686.3 | * |
Scion’s stem | 2527.93 ± 286.64 | 18301.05 ± 2815.04 | * | |
Rootstock’s stem | 1679.91 ± 265.22 | 11455.38 ± 2022.34 | * | |
Root | 359.08 ± 27.69 | 1500.05 ± 214.48 | * | |
Entire plant | 6348.59 ± 391.44 | 40495.96 ± 3024.11 | *** | |
Scion | 4309.61 ± 369.65 | 27540.54 ± 4154.56 | * | |
Rootstock | 2038.98 ± 291.55 | 12955.42 ± 2159.34 | * | |
Aboveground/underground plant part | 2.26 ± 0.35 | 2.39 ± 0.6 | n.s. |
Plant Part | Parameter | 25 μM B | 400 μM B | t-test |
---|---|---|---|---|
Top Leaves | A | 8.3 ± 0.22 | 4.84 ± 0.44 | *** |
gs | 0.07 ± 0 | 0.04 ± 0 | *** | |
Ci | 192.78 ± 8 | 190.59 ± 7.91 | n.s. | |
E | 1.58 ± 0.06 | 0.91 ± 0.09 | *** | |
A/gs | 112.86 ± 5.02 | 118.45 ± 5.05 | n.s. | |
A/Ci | 0.04 ± 0 | 0.03 ± 0 | *** | |
A/E | 5.27 ± 0.24 | 5.36 ± 0.2 | n.s. | |
Middle leaves | A | 10.74 ± 0.74 | 7.03 ± 0.37 | ** |
gs | 0.13 ± 0.02 | 0.06 ± 0.01 | * | |
Ci | 230.69 ± 13.18 | 187.68 ± 17.82 | n.s. | |
E | 2.56 ± 0.29 | 1.36 ± 0.16 | * | |
A/gs | 86.08 ± 8.87 | 117.63 ± 11.66 | n.s. | |
A/Ci | 0.05 ± 0 | 0.04 ± 0 | n.s. | |
A/E | 4.34 ± 0.36 | 5.39 ± 0.47 | n.s. | |
Basal leaves | A | 7.50 ± 0.56 | 7.09 ± 0.61 | n.s. |
gs | 0.08 ± 0.01 | 0.08 ± 0.01 | n.s. | |
Ci | 219.96 ± 16.38 | 230.81 ± 12.02 | n.s. | |
E | 1.73 ± 0.18 | 1.76 ± 0.21 | n.s. | |
A/gs | 96.48 ± 10.32 | 90 ± 7.87 | n.s. | |
A/Ci | 0.03 ± <0.001 | 0.03 ± < 0.001 | n.s. | |
A/E | 4.47 ± 0.44 | 4.13 ± 0.3 | n.s. |
Plant Part | Parameter | 25 μM B | 400 μM B | t-test |
---|---|---|---|---|
Top Leaves | [Chl a] (μg/cm2) | 46.13 ± 1 | 32.22 ± 3.03 | ** |
[Chl b] (μg/cm2) | 16.9 ± 0.66 | 11.79 ± 1.06 | ** | |
[Caroten] (μg/cm2) | 11.1 ± 0.28 | 8.13 ± 0.58 | ** | |
[Chl a] + [Chl b] (μg/cm2) | 63.03 ± 1.63 | 44.01 ± 4.06 | ** | |
[Chl a] (μg/mg dw) | 5.61 ± 0.13 | 3.99 ± 0.34 | ** | |
[Chl b] (μg/mg dw) | 2.05 ± 0.06 | 1.46 ± 0.12 | ** | |
[Caroten] (μg/mg dw) | 1.35 ± 0.03 | 1.01 ± 0.06 | ** | |
[Chl a] + [Chl b] (μg/mg dw) | 7.66 ± 0.19 | 5.45 ± 0.45 | ** | |
[Chl a]/[Chl b] | 2.74 ± 0.06 | 2.73 ± 0.07 | n.s. | |
Middle leaves | [Chl a] (μg/cm2) | 41.82 ± 5.9 | 48.17 ± 2.51 | n.s. |
[Chl b] (μg/cm2) | 21.74 ± 3.07 | 19.76 ± 1.41 | n.s. | |
[Caroten] (μg/cm2) | 11.13 ± 1.28 | 12.54 ± 0.67 | n.s. | |
[Chl a] + [Chl b] (μg/cm2) | 63.56 ± 3.65 | 67.93 ± 3.89 | n.s. | |
[Chl a] (μg/mg dw) | 4.59 ± 0.8 | 5.26 ± 0.23 | n.s. | |
[Chl b] (μg/mg dw) | 2.27 ± 0.22 | 2.15 ± 0.12 | n.s. | |
[Caroten] (μg/mg dw) | 1.21 ± 0.18 | 1.37 ± 0.07 | n.s. | |
[Chl a] + [Chl b] (μg/mg dw) | 6.86 ± 0.7 | 7.41 ± 0.33 | n.s. | |
[Chl a]/[Chl b] | 2.14 ± 0.39 | 2.45 ± 0.06 | n.s. | |
Basal leaves | [Chl a] (μg/cm2) | 43.41 ± 1.97 | 47.51 ± 2.07 | n.s. |
[Chl b] (μg/cm2) | 19.22 ± 0.96 | 20.14 ± 0.94 | n.s. | |
[Caroten] (μg/cm2) | 12.76 ± 0.60 | 13.21 ± 0.81 | n.s. | |
[Chl a] + [Chl b] (μg/cm2) | 62.63 ± 2.91 | 67.65 ± 3.01 | n.s. | |
[Chl a] (μg/mg dw) | 4.98 ± 0.24 | 5.01 ± 0.19 | n.s. | |
[Chl b] (μg/mg dw) | 2,20 ± 0,11 | 2.12 ± 0.08 | n.s. | |
[Caroten] (μg/mg dw) | 1.47 ± 0.08 | 1.39 ± 0.06 | n.s. | |
[Chl a] + [Chl b] (μg/mg dw) | 7.18 ± 0.35 | 7.13 ± 0.27 | n.s. | |
[Chl a]/[Chl b] | 2.26 ± 0.03 | 2.36 ± 0.01 | * |
Plant Part | Parameter | 25 μM B | 400 μM B | t-test |
---|---|---|---|---|
Top leaves | Sucrose | 3.11 ± 0.22 | 2.14 ± 0.09 | * |
Glucose | 0.18 ± 0.02 | 0.31 ± 0.01 | ** | |
Fructose | 0.41 ± 0.06 | 0.71 ± 0.03 | * | |
Sorbitol | 7.42 ± 0.55 | 7.95 ± 0.86 | n.s. | |
Total sugars | 11.13 ± 0.69 | 11.10 ± 0.82 | n.s. | |
Translocating sugars | 10.53 ± 0.75 | 10.08 ± 0.82 | n.s. | |
Non-translocating sugars | 0.60 ± 0.08 | 1.02 ± 0.03 | ** | |
Trans/Total | 0.95 ± 0.01 | 0.91 ± 0.01 | * | |
Non-trans/Total | 0.05 ± 0.01 | 0.09 ± 0.01 | * | |
Trans/Non-trans | 18.44 ± 3.40 | 9.92 ± 0.82 | n.s. | |
Sucr/Fru + Glu | 5.42 ± 0.96 | 2.10 ± 0.04 | * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oikonomou, A.; Ladikou, E.-V.; Chatziperou, G.; Margaritopoulou, T.; Landi, M.; Sotiropoulos, T.; Araniti, F.; Papadakis, I.E. Boron Excess Imbalances Root/Shoot Allometry, Photosynthetic and Chlorophyll Fluorescence Parameters and Sugar Metabolism in Apple Plants. Agronomy 2019, 9, 731. https://doi.org/10.3390/agronomy9110731
Oikonomou A, Ladikou E-V, Chatziperou G, Margaritopoulou T, Landi M, Sotiropoulos T, Araniti F, Papadakis IE. Boron Excess Imbalances Root/Shoot Allometry, Photosynthetic and Chlorophyll Fluorescence Parameters and Sugar Metabolism in Apple Plants. Agronomy. 2019; 9(11):731. https://doi.org/10.3390/agronomy9110731
Chicago/Turabian StyleOikonomou, Alexia, Evangelia-Vasiliki Ladikou, Georgia Chatziperou, Theoni Margaritopoulou, Marco Landi, Thomas Sotiropoulos, Fabrizio Araniti, and Ioannis E. Papadakis. 2019. "Boron Excess Imbalances Root/Shoot Allometry, Photosynthetic and Chlorophyll Fluorescence Parameters and Sugar Metabolism in Apple Plants" Agronomy 9, no. 11: 731. https://doi.org/10.3390/agronomy9110731
APA StyleOikonomou, A., Ladikou, E. -V., Chatziperou, G., Margaritopoulou, T., Landi, M., Sotiropoulos, T., Araniti, F., & Papadakis, I. E. (2019). Boron Excess Imbalances Root/Shoot Allometry, Photosynthetic and Chlorophyll Fluorescence Parameters and Sugar Metabolism in Apple Plants. Agronomy, 9(11), 731. https://doi.org/10.3390/agronomy9110731