Variability in Water Use Efficiency of Grapevine Tempranillo Clones and Stability over Years at Field Conditions
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Sites and Plant Material
2.2. Gas Exchange Measurements
2.3. Characterization of the Differences in WUEi
2.4. Yield Estimations
2.5. Statistical Analysis
3. Results
3.1. Experimental Fields Comparison and Year Effect
3.2. Genotypic Variability of WUEi and Stability over Years
3.3. Yield Variations between Clones and over Years
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving water use efficiency of vineyards in semi-arid regions. A review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef]
- Zarrouk, O.; Costa, J.; Francisco, R.; Lopes, C.; Chaves, M. Drought and water management in Mediterranean vineyard Grapevine. In A Changing Environment: A Molecular and Ecophysiological Perspective; Delrot, S., Chaves, M., Gerós, H., Medrano, H., Eds.; Wiley-Blackwell: Chichester, UK, 2016; pp. 38–67. [Google Scholar]
- Cifre, J.; Bota, J.; Escalona, J.M.; Medrano, H.; Flexas, J. Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.): An open gate to improve water-use efficiency? Agric. Ecosyst. Environ. 2005, 106, 159–170. [Google Scholar] [CrossRef]
- Flexas, J.; Galmés, J.; Gallé, A.; Gulías, J.; Pou, A.; Ribas-Carbo, M.; Tomas, M.; Medrano, H. Improving water use efficiency in grapevines: Potential physiological targets for biotechnological improvement. Aust. J. Grape Wine Res. 2010, 16, 106–121. [Google Scholar] [CrossRef]
- Costa, J.M.; Escalona, J.M.; Egipto, R.; Lopes, C.; Medrano, H.; Chaves, M.M. Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agric. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Flexas, J.; Hernández, E.; Rosselló, J.; Pou, A.; Escalona, J.M.; Bota, J. From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. Crop J. 2015, 3, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Douthe, C.; Medrano, H.; Tortosa, I.; Escalona, J.M.; Hernández-Montes, E.; Pou, A. Whole-plant water use in field grown grapevine: Seasonal and environmental effects on water and carbon balance. Front. Plant Sci. 2018, 9, 1540. [Google Scholar] [CrossRef]
- Tomás, M.; Medrano, H.; Pou, A.; Escalona, J.M.; Martorell, S.; Ribas-Carbó, M.; Flexas, J. Water-use efficiency in grapevine cultivars grown under controlled conditions: Effects of water stress at the leaf and whole-plant level. Aust. J. Grape Wine Res. 2012, 18, 164–172. [Google Scholar] [CrossRef]
- Medrano, H.; Pou, A.; Tomás, M.; Martorell, S.; Gulias, J.; Flexas, J.; Escalona, J.M. Average daily light interception determines leaf water use efficiency among different canopy locations in grapevine. Agric. Water Manag. 2012, 114, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Poni, S.; Bernizzoni, F.; Civardi, S.; Gatti, M.; Porro, D.; Camin, F. Performance and water-use efficiency (single-leaf vs. whole-canopy) of well-watered and half-stressed split-root Lambrusco grapevines grown in Po Valley (Italy). Agric. Ecosyst. Environ. 2009, 129, 97–106. [Google Scholar] [CrossRef]
- Tarara, J.M.; Peña, J.E.P.; Keller, M.; Schreiner, R.P.; Smithyman, R.P. Net carbon exchange in grapevine canopies responds rapidly to timing and extent of regulated deficit irrigation. Funct. Plant Biol. 2011, 38, 386–400. [Google Scholar] [CrossRef]
- Keller, M.; Romero, P.; Gohil, H.; Smithyman, R.P.; Riley, W.R.; Casassa, L.F.; Harbertson, J.F. Deficit irrigation alters grapevine growth, physiology, and fruit microclimate. Am. J. Enol. Vitic. 2016, 67, 426–435. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef] [PubMed]
- Smart, R.E.; Dick, J.K.; Gravett, I.M.; Fisher, B.M. Canopy management to improve grape yield and wine quality-principles and practices. S. Afr. J. Enol. Vitic. 1990, 11, 3–17. [Google Scholar] [CrossRef]
- Romero, P.; García, J.G.; Fernández-Fernández, J.I.; Muñoz, R.G.; Saavedra, F.A.; Martínez-Cutillas, A. Improving berry and wine quality attributes and vineyard economic efficiency by long-term deficit irrigation practices under semiarid conditions. Sci. Hortic. 2016, 203, 69–85. [Google Scholar] [CrossRef]
- Tomás, M.; Medrano, H.; Escalona, J.M.; Martorell, S.; Pou, A.; Ribas-Carbó, M.; Flexas, J. Variability of water use efficiency in grapevines. Environ. Exp. Bot. 2014, 103, 148–157. [Google Scholar] [CrossRef]
- Bota, J.; Tomás, M.; Flexas, J.; Medrano, H.; Escalona, J.M. Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress. Agric. Water Manag. 2016, 164, 91–99. [Google Scholar] [CrossRef]
- Martorell, S.; Diaz-Espejo, A.; Tomàs, M.; Pou, A.; El Aou-ouad, H.; Escalona, J.M.; Vadell, J.; Ribas-Carbó, M.; Flexas, J.; Medrano, H. Differences in water-use-efficiency between two Vitis vinifera cultivars (Grenache and Tempranillo) explained by the combined response of stomata to hydraulic and chemical signals during water stress. Agric. Water Manag. 2015, 156, 1–9. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Barbarin, I.; Royo, J.B. Application of the measurement of the natural abundance of stable isotopes in viticulture: A review. Aust. J. Grape Wine Res. 2015, 21, 157–167. [Google Scholar] [CrossRef]
- Bchir, A.; Escalona, J.M.; Gallé, A.; Hernández-Montes, E.; Tortosa, I.; Braham, M.; Medrano, H. Carbon isotope discrimination (δ13C) as an indicator of vine water status and water use efficiency (WUE): Looking for the most representative sample and sampling time. Agric. Water Manag. 2016, 167, 11–20. [Google Scholar] [CrossRef]
- Gaudillere, J.P.; Van Leeuwen, C.; Ollat, N. Carbon isotope composition of sugars in grapevine, an integrated indicator of vineyard water status. J. Exp. Bot. 2002, 53, 757–763. [Google Scholar] [CrossRef] [Green Version]
- Tomás, M.; Medrano, H.; Brugnoli, E.; Escalona, J.M.; Martorell, S.; Pou, A.; Ribas-Carbo, M.; Flexas, J. Variability of mesophyll conductance in grapevine cultivars under water stress conditions in relation to leaf anatomy and water use efficiency. Aust. J. Grape Wine Res. 2014, 20, 272–280. [Google Scholar] [CrossRef]
- Ibáñez, J.; Carreño, J.; Yuste, J.; Martínez-Zapater, J.M. Grapevine breeding and clonal selection programmes in Spain. In Grapevine Breeding Programs for the Wine Industry; Woodhead Publishing: Cambridge, UK, 2015; pp. 183–209. [Google Scholar]
- Tortosa, I.; Escalona, J.M.; Bota, J.; Tomas, M.; Hernandez, E.; Escudero, E.G.; Medrano, H. Exploring the genetic variability in water use efficiency: Evaluation of inter and intra cultivar genetic diversity in grapevines. Plant Sci. 2016, 251, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortosa, I.; Escalona, J.M.; Douthe, C.; Pou, A.; Garcia-Escudero, E.; Toro, G.; Medrano, H. The intra-cultivar variability on water use efficiency at different water status as a target selection in grapevine: Influence of ambient and genotype. Agric. Water Manag. 2019, 223, 105648. [Google Scholar] [CrossRef]
- Fracasso, A.; Trindade, L.M.; Amaducci, S. Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biol. 2016, 16, 115. [Google Scholar] [CrossRef] [PubMed]
- Puangbut, D.; Jogloy, S.; Vorasoot, N. Association of photosynthetic traits with water use efficiency and SPAD chlorophyll meter reading of Jerusalem artichoke under drought conditions. Agric. Water Manag. 2017, 188, 29–35. [Google Scholar] [CrossRef]
- Pou, A.; Medrano, H.; Tomàs, M.; Martorell, S.; Ribas-Carbó, M.; Flexas, J. Anisohydric behaviour in grapevines results in better performance under moderate water stress and recovery than isohydric behaviour. Plant Soil 2012, 359, 335–349. [Google Scholar] [CrossRef]
- Negin, B.; Moshelion, M. The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance. Plant Sci. 2016, 251, 82–89. [Google Scholar] [CrossRef]
- Gobierno de la Rioja. Available online: https://www.larioja.org/agricultura/es/informacion-agroclimatica/red-estaciones-agroclimaticas-siar (accessed on 15 October 2019).
- Team, R.C. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- De Mendiburu, F.; Simon, R. Agricolae-Ten Years of an Open Source Statistical Tool for Experiments in Breeding, Agriculture and Biology (No. e1748); PeerJ PrePrints: London, UK, 2015. [Google Scholar]
- Fox, J.; Weisberg, S. Multivariate linear models in R. In An R Companion to Applied Regression; SAGE Publications, Inc.: Los Angeles, CA, USA; Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Lenth, R.; Lenth, M.R. Package ‘lsmeans’. Am. Stat. 2018, 34, 216–221. [Google Scholar]
- Flexas, J.; Medrano, H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef]
- Medrano, H.; Escalona, J.M.; Cifre, J.; Bota, J.; Flexas, J. A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: Effects of water availability from leaf photosynthesis to grape yield and quality. Funct. Plant Biol. 2003, 30, 607–619. [Google Scholar] [CrossRef]
- Schultz, H.R.; Jones, G.V. Climate induced historic and future changes in viticulture. J. Wine Res. 2010, 21, 137–145. [Google Scholar] [CrossRef]
- Medrano, H.; Escalona, J.M.; Bota, J.; Gulías, J.; Flexas, J. Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as a reference parameter. Ann. Bot. 2002, 89, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Flexas, J.; Bota, J.; Escalona, J.M.; Sampol, B.; Medrano, H. Effects of drought on photosynthesis in grapevines under field conditions: An evaluation of stomatal and mesophyll limitations. Funct. Plant Biol. 2002, 29, 461–471. [Google Scholar] [CrossRef]
- Manzoni, S.; Vico, G.; Katul, G.; Fay, P.A.; Polley, W.; Palmroth, S.; Porporato, A. Optimizing stomatal conductance for maximum carbon gain under water stress: A meta-analysis across plant functional types and climates. Funct. Ecol. 2011, 25, 456–467. [Google Scholar] [CrossRef]
- Gago, J.; Douthe, C.; Florez-Sarasa, I.; Escalona, J.M.; Galmes, J.; Fernie, A.R.; Flexas, J.; Medrano, H. Opportunities for improving leaf water use efficiency under climate change conditions. Plant Sci. 2014, 226, 108–119. [Google Scholar] [CrossRef]
- Ren, T.; Weraduwage, S.M.; Sharkey, T.D. Prospects for enhancing leaf photosynthetic capacity by manipulating mesophyll cell morphology. J. Exp. Bot. 2018, 70, 1153–1165. [Google Scholar] [CrossRef]
- Silva-Pérez, V.; De Faveri, J.; Molero, G.; Deery, D.M.; Condon, A.G.; Reynolds, M.P.; Evans, J.R.; Furbank, R.T. Genetic variation for photosynthetic capacity and efficiency in spring wheat. J. Exp. Bot. 2019. [Google Scholar] [CrossRef]
Field | La Grajera | Roda | ||||
---|---|---|---|---|---|---|
Year | GDD (°C day−1) | ET0 (mm) | P (mm) | GDD (°C day−1) | ET0 (mm) | P (mm) |
2015 | 1482.2 | 775.6 | 112.7 | |||
2016 | 1456.9 | 759.2 | 83.2 | 1247 | 719 | 105 |
2017 | 1516.3 | 768.8 | 174.7 | 1291 | 740 | 191 |
2018 | 1469.8 | 699.1 | 267.9 | |||
2019 | 1485.4 | 779.5 | 184.5 | 1232 | 739 | 171 |
La Grajera | Roda | |||
---|---|---|---|---|
Year | gs (mol H2O m−2 s−1) | WUEint (μmol CO2 mol−1 H2O) | gs (mol H2O m−2 s−1) | WUEint (μmol CO2 mol−1 H2O) |
2015 | 0.09 ± 0.015 b | 123.6 ± 6.2 a | ||
2016 | 0.130 ± 0.012 a | 98.1 ± 3.9 c | 0.393 ± 0.014 a | 51.0 ± 1.5 c |
2017 | 0.09 ± 0.004 b | 99.1 ± 1.8 c | 0.132 ± 0.007 c | 86.2 ± 1.8 a |
2018 | 0.082 ± 0.006 b | 103.5 ± 2.9 bc | ||
2019 | 0.084 ± 0.007 b | 115.3 ± 2.7 ab | 0.303 ± 0.014 b | 67.2 ± 2.1 b |
Two-Way ANOVA: Year ***, Field ***, Year × Field *** |
Genotype | 2015 | 2016 | 2017 | 2018 | 2019 | Average |
---|---|---|---|---|---|---|
232 | 123.7 ± 9.4 a | 113.8 ± 8.3 | 106.4 ± 4.9 | 95.5 ± 9.2 b | 116.4 ± 2.8 b | 110.9 ± 3.9 a |
807 | 129.4 ± 13.4 a | 102.1 ± 8.1 | 97.4 ± 2.7 | 122.2 ± 3.9 a | 122.6 ± 3.6 ab | 108.5 ± 2.6 a |
1048 | 143.1 ± 4.5 a | 90.9 ± 7.8 | 101.3 ± 3.1 | 105.9 ± 3.1 ab | 128.4 ± 2.9 a | 107.5 ± 3.4 a |
1052 | 139.6 ± 12.9 a | 94.7 ± 5.7 | 97.7 ± 2.7 | 102.7 ± 1.4 b | 113.2 ± 3.9 b | 103.3 ± 3.6 a |
1084 | 79.6 ± 12.1 b | 81.5 ± 9.2 | 92.1 ± 4.8 | 91.8 ± 9.8 b | 93.1 ± 2.4 c | 87.7 ± 3.6 b |
Two-Way ANOVA: Year ***, Genotype ***, Year × Genotype *** |
Genotype | 2016 | 2017 | 2019 | Average |
---|---|---|---|---|
121 | 49.9 ± 3.0 abc | 98.3 ± 4.2 a | 88.4 ± 2.8 a | 78.1 ± 4.4 a |
6 | 56.7 ± 4.5 ab | 96.6 ± 2.7 a | 83.7 ± 7.1 a | 75.1 ± 4.6 ab |
463 | 55.0 ± 5.0 ab | 95.6 ± 6.0 a | 76.1 ± 3.8 ab | 74.0 ± 4.4 ab |
44 | 58.5 ± 4.7 ab | 90.6 ± 6.6 ab | 71.8 ± 6.9 abc | 70.0 ± 4.2 abc |
78 | 56.8 ± 5.7 ab | 76.2 ± 4.8 bc | 64.6 ± 1.5 bcd | 64.0 ± 3.0 abc |
155 | 61.2 ± 3.1 a | 69.5 ± 3.2 c | 57.3 ± 2.5 cd | 62.0 ± 1.9 abc |
215 | 43.3 ± 1.0 bc | 86.6 ± 2.3 abc | 52.4 ± 3.4 d | 59.3 ± 4.2 bc |
109 | 44.0 ± 4.4 abc | 76.4 ± 4.2 bc | 48.9 ± 1.2 d | 53.5 ± 3.3 c |
260 | 34.0 ± 2.0 c | 81.9 ± 2.6 abc | 50.6 ± 1.9 d | 52.8 ± 4.4 c |
Two-Way ANOVA: Year ***, Genotype ***, Year × Genotype ***. |
Genotype | 2015 | 2016 | 2017 | 2018 | 2019 | Average |
---|---|---|---|---|---|---|
1048 | 2.5% | 1.7% | 0.0% | −0.8% b | 2.2% a | 1.1% ± 2 |
1052 | 1.7% | 0.6% | 1.4% | 0.1% b | −1.8% ab | 0.4% ± 1.7 |
232 | 1.7% | 2.1% | 0.5% | −16.2% c | 6.5% a | 0.3% ± 2.4 |
807 | −4.3% | −3.7% | −1.9% | 17.4% a | 0.5% a | 0.1% ± 2.3 * |
1084 | −2.1% | 2.1% | 0.7% | −3.8% bc | −8.2% b | −0.9% ± 2.1 |
Two-Way ANOVA: Genotype ***, Year × Genotype *** |
Genotype | 2016 | 2017 | 2019 | Average |
---|---|---|---|---|
44 | 13.5% a | 10.7% a | −4.0% bc | 8.6% ± 2.5 a * |
463 | 8.0% abc | 7.2% a | 2.3% bc | 4.6% ± 2.1 ab ~ |
155 | 9.5% ab | 0.3% ab | −0.5% abc | 4.0% ± 1.6 ab ** |
6 | 2.2% abcd | 8.1% a | −1.8% bc | 2.2% ± 1.9 ab |
121 | −2.7% bcd | 0.0% ab | 4.7% ab | 0.3% ± 1.7 bc |
78 | −4.3% bcd | −1.7% ab | 0.7% abc | −1.5% ± 1.7 bc |
109 | −4.8% cd | −10.2% b | 6.5% a | −1.9% ± 2.0 bc *** |
260 | −7.1% d | −4.9% ab | −6.5% c | −6.1% ± 1.6 c ~ |
215 | −9.2% d | −3.1%a b | −6.1% c | −6.2% ± 1.2 c |
Two-Way ANOVA: Genotype ***, Year × Genotype *** |
Genotype | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | Gen. av. |
---|---|---|---|---|---|---|---|---|
6 | 5.0 | 8.0 | 8.3 | 10.7 | 4.7 | 8.7 | 3.7 | 7.0 ± 1.0 ab |
44 | 4.0 | 3.7 | 2.7 | 4.7 | 2.0 | 3.3 | 3.4 ± 0.4 c | |
78 | 7.7 | 8.0 | 9.3 | 10.7 | 8.7 | 7.3 | 9.4 | 8.7 ± 0.5 a |
109 | 7.3 | 7.0 | 8.0 | 13.3 | 8.0 | 7.7 | 10.5 | 8.8 ± 0.9 a |
121 | 5.0 | 4.3 | 4.7 | 5.3 | 3.3 | 4.0 | 4.4 | 4.4 ± 0.3 bc |
155 | 5.7 | 4.0 | 1.3 | 2.0 | 2.7 | 3.3 | 3.8 | 3.3 ± 0.6 c |
215 | 6.7 | 4.3 | 3.3 | 6.7 | 2.0 | 4.7 | 5.5 | 4.7 ± 0.7 bc |
260 | 7.7 | 3.7 | 4.0 | 7.3 | 1.3 | 6.0 | 8.6 | 5.5 ± 1.1 bc |
463 | 7.0 | 11.3 | 10.0 | 9.3 | 10.8 | 9.7 ± 0.8 a | ||
Year av. | 6.3 ± 0.5 | 5.0 ± 0.7 | 5.0 ± 1.0 | 7.7 ± 1.3 | 4.8 ± 1.2 | 5.7 ± 0.8 | 7.6 ± 1.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tortosa, I.; Douthe, C.; Pou, A.; Balda, P.; Hernandez-Montes, E.; Toro, G.; Escalona, J.M.; Medrano, H. Variability in Water Use Efficiency of Grapevine Tempranillo Clones and Stability over Years at Field Conditions. Agronomy 2019, 9, 701. https://doi.org/10.3390/agronomy9110701
Tortosa I, Douthe C, Pou A, Balda P, Hernandez-Montes E, Toro G, Escalona JM, Medrano H. Variability in Water Use Efficiency of Grapevine Tempranillo Clones and Stability over Years at Field Conditions. Agronomy. 2019; 9(11):701. https://doi.org/10.3390/agronomy9110701
Chicago/Turabian StyleTortosa, Ignacio, Cyril Douthe, Alicia Pou, Pedro Balda, Esther Hernandez-Montes, Guillermo Toro, José M. Escalona, and Hipólito Medrano. 2019. "Variability in Water Use Efficiency of Grapevine Tempranillo Clones and Stability over Years at Field Conditions" Agronomy 9, no. 11: 701. https://doi.org/10.3390/agronomy9110701
APA StyleTortosa, I., Douthe, C., Pou, A., Balda, P., Hernandez-Montes, E., Toro, G., Escalona, J. M., & Medrano, H. (2019). Variability in Water Use Efficiency of Grapevine Tempranillo Clones and Stability over Years at Field Conditions. Agronomy, 9(11), 701. https://doi.org/10.3390/agronomy9110701