Remote Measurement of Apple Orchard Canopy Information Using Unmanned Aerial Vehicle Photogrammetry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composition and Principle of a UAV Photogrammetry System
2.1.1. Step 1: Image Acquisition
2.1.2. Step 2: Point-Cloud Output
2.1.3. Step 3: Calculated Canopy Information
2.2. UAV Canopy Measurement
2.3. Data Generation of the Orchard 3D Point Cloud Model
2.4. Computing and Data Analysis of 3D Orchard Canopy Morphology
2.5. Preprocessing of the Orchard Point-Cloud Model
2.6. Row and Column Detection Method of the Orchard Point-Cloud Model
3. Results and Discussion
3.1. Results of Row and Column Detection
3.2. Results of Apple Tree Canopy Segmentation
3.3. Computing and Error Analysis of 3D Orchard Canopy Morphology
3.3.1. 3D Morphological Characterization Using the Canopy Point-Cloud Data of Apple Trees
3.3.2. Calculation Error Analysis of the 3D Point-Cloud Morphology of the Orchard Canopy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Underwood, J.P.; Hung, C.; Whelan, B.; Sukkarieh, S. Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors. Comput. Electron. Agric. 2016, 130, 83–96. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; de Castro, A.I.; Peña, J.M.; Jiménez-Brenes, F.M.; Arquero, O.; Lovera, M.; López-Granados, F. Mapping the 3D structure of almond trees using UAV acquired photogrammetric point clouds and object-based image analysis. Biosyst. Eng. 2018, 176, 172–184. [Google Scholar] [CrossRef]
- Jiménez-Brenes, F.M.; López-Granados, F.; de Castro, A.I.; Torres-Sánchez, J.; Serrano, N.; Peña, J.M. Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling. Plant Methods 2017, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Pforte, F.; Selbeck, J.; Hensel, O. Comparison of two different measurement techniques for automated determination of plum tree canopy cover. Biosyst. Eng. 2012, 113, 325–333. [Google Scholar] [CrossRef]
- Garcia-Ruiz, F.; Sankaran, S.; Maja, J.M.; Lee, W.S.; Rasmussen, J.; Ehsani, R. Comparison of two aerial imaging platforms for identification of huanglongbing-infected citrus trees. Comput. Electron. Agric. 2013, 91, 106–115. [Google Scholar] [CrossRef]
- Wang, Z.; Underwood, J.; Walsh, K.B. Machine vision assessment of mango orchard flowering. Comput. Electron. Agric. 2018, 151, 501–511. [Google Scholar] [CrossRef]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P. Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correction workflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef]
- Kim, J.Y.; Glenn, D.M. Multi-modal sensor system for plant water stress assessment. Comput. Electron. Agric. 2017, 141, 27–34. [Google Scholar] [CrossRef]
- Polo, J.R.R.; Sanz, R.; Llorens, J.; Arnó, J.; Escolà, A.; Ribes-Dasi, M.; Masip, J.; Camp, F.; Gràcia, F.; Solanelles, F.; et al. A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements. Biosyst. Eng. 2009, 102, 128–134. [Google Scholar] [CrossRef]
- Jichen, C.; Xiu, W.; Jian, S.; Songlin, W.; Shuo, Y.; Chunjiang, Z. Development of real-time laser-scanning system to detect tree canopy characteristics for variable-rate pesticide application. Int. J. Agric. Biol. Eng. 2017, 10, 155–163. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Vandevoorde, K.; Wouters, N.; Kayacan, E.; De Baerdemaeker, J.G.; Saeys, W. Detection of red and bicoloured apples on tree with an RGB-D camera. Biosyst. Eng. 2016, 146, 33–44. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Diaz-Varela, R.; Angileri, V.; Loudjani, P. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinform. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Suárez, L.; Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J.; Sagardoy, R.; Morales, F.; Fereres, E. Detecting water stress effects on fruit quality in orchards with time-series PRI airborne imagery. Remote Sens. Environ. 2010, 114, 286–298. [Google Scholar] [CrossRef]
- Ishida, T.; Kurihara, J.; Viray, F.A.; Namuco, S.B.; Paringit, E.C.; Perez, G.J.; Takahashi, Y.; Marciano, J.J. A novel approach for vegetation classification using UAV-based hyperspectral imaging. Comput. Electron. Agric. 2018, 144, 80–85. [Google Scholar] [CrossRef]
- Gong, Y.; Duan, B.; Fang, S.; Zhu, R.; Wu, X.; Ma, Y.; Peng, Y. Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis. Plant Methods 2018, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Yeom, J.; Jung, J.; Chang, A.; Maeda, M.; Landivar, J. Automated open cotton boll detection for yield estimation using unmanned aircraft vehicle (UAV) data. Remote Sens. 2018, 10, 1895. [Google Scholar] [CrossRef]
- Park, S.; Ryu, D.; Fuentes, S.; Chung, H.; Hernández-Montes, E.; O’Connell, M. Adaptive estimation of crop water stress in nectarine and peach orchards using high-resolution imagery from an unmanned aerial vehicle (UAV). Remote Sens. 2017, 9, 828. [Google Scholar] [CrossRef]
- Comba, L.; Biglia, A.; Aimonino, D.R.; Gay, P. Unsupervised detection of vineyards by 3D point-cloud UAV photogrammetry for precision agriculture. Comput. Electron. Agric. 2018, 155, 84–95. [Google Scholar] [CrossRef]
- Malambo, L.; Popescu, S.C.; Murray, S.C.; Putman, E.; Pugh, N.A.; Horne, D.W.; Richardson, G.; Sheridan, R.; Rooney, W.L.; Avant, R.; et al. Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 31–42. [Google Scholar] [CrossRef]
- Johansen, K.; Raharjo, T.; McCabe, M.F. Using multi-spectral UAV imagery to extract tree crop structural properties and assess pruning effects. Remote Sens. 2018, 10, 854. [Google Scholar] [CrossRef]
- Han, X.; Thomasson, J.A.; Bagnall, G.C.; Pugh, N.A.; Horne, D.W.; Rooney, W.L.; Jung, J.; Chang, A.; Malambo, L.; Popescu, S.C.; et al. Measurement and calibration of plant-height from fixed-wing UAV images. Sensors 2018, 18, 4092. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Jiang, W. Efficient SfM for oblique UAV images: From match pair selection to geometrical verification. Remote Sens. 2018, 10, 1246. [Google Scholar] [CrossRef]
- Graham, R.L. An efficient algorith for determining the convex hull of a finite planar set. Inf. Process. Lett. 1972, 1, 132–133. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Sun, G. Three-Dimensional morphological measurement method for a fruit tree canopy based on Kinect sensor self-calibration. Agronomy 2019, 9, 741. [Google Scholar] [CrossRef]
- Fernández-Sarría, A.; Martínez, L.; Velázquez-Martí, B.; Sajdak, M.; Estornell, J.; Recio, J.A. Different methodologies for calculating crown volumes of Platanus hispanica trees using terrestrial laser scanner and a comparison with classical dendrometric measurements. Comput. Electron. Agric. 2013, 90, 176–185. [Google Scholar] [CrossRef]
Pix4Dmapper | Parameters |
---|---|
Coordinate Systems | Image Coordinate System: WGS 84 (EGM 96 Geoid); Unit: m Output Coordinate System: WGS 84 / UTM zone 51N (EGM 96 Geoid) |
Initial Processing | Keypoint image scale: Full Calibration Method: Standard Internal Parameter Optimization: All External Parameter Optimization: All Rematch: Auto, yes |
Point cloud densification | Image scale-down: 1/2 of original image size Point density: Optimal Minimum Number of Matches: 3 Output format: PLY |
Segmentation Method | Row | Number of Trees | Cr/% | Er/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GSD = 2.13 | GSD = 3.31 | GSD = 4.39 | GSD = 5.43 | GSD = 6.69 | GSD = 2.13 | GSD = 3.31 | GSD = 4.39 | GSD = 5.43 | GSD = 6.69 | |||
RGPC | 1 | 30 | 100.00 | 100.00 | 100.00 | 93.33 | 100.00 | 3.33 | 3.33 | 0.00 | 6.67 | 3.33 |
2 | 31 | 100.00 | 93.55 | 93.55 | 96.77 | 96.77 | 3.23 | 6.45 | 6.45 | 6.45 | 6.45 | |
3 | 32 | 96.88 | 93.75 | 93.75 | 93.75 | 81.25 | 6.25 | 3.12 | 3.12 | 3.12 | 12.50 | |
4 | 33 | 100.00 | 87.88 | 93.94 | 100.00 | 93.94 | 6.06 | 9.09 | 6.06 | 0.00 | 3.03 | |
5 | 34 | 94.11 | 85.29 | 85.29 | 94.12 | 82.35 | 5.88 | 8.82 | 5.88 | 2.94 | 8.82 | |
AVG | 98.20 | 92.09 | 93.31 | 95.59 | 90.86 | 4.95 | 6.16 | 4.30 | 3.84 | 6.83 | ||
NRGPC | 1 | 30 | 96.67 | 100.00 | 86.67 | 86.67 | 86.67 | 10.00 | 3.33 | 16.67 | 20.00 | 16.67 |
2 | 31 | 100.00 | 93.55 | 93.55 | 93.55 | 77.42 | 3.23 | 6.45 | 3.22 | 12.90 | 19.35 | |
3 | 32 | 81.25 | 78.13 | 81.25 | 71.88 | 90.63 | 12.50 | 18.75 | 12.25 | 21.88 | 9.38 | |
4 | 33 | 93.94 | 84.85 | 87.88 | 87.88 | 66.67 | 6.06 | 9.09 | 9.09 | 12.12 | 27.27 | |
5 | 34 | 100.00 | 85.30 | 82.35 | 91.18 | 88.24 | 5.88 | 8.82 | 11.76 | 8.82 | 8.82 | |
AVG | 94.37 | 88.37 | 86.34 | 86.23 | 81.93 | 7.53 | 9.29 | 10.60 | 15.14 | 16.30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, G.; Wang, X.; Ding, Y.; Lu, W.; Sun, Y. Remote Measurement of Apple Orchard Canopy Information Using Unmanned Aerial Vehicle Photogrammetry. Agronomy 2019, 9, 774. https://doi.org/10.3390/agronomy9110774
Sun G, Wang X, Ding Y, Lu W, Sun Y. Remote Measurement of Apple Orchard Canopy Information Using Unmanned Aerial Vehicle Photogrammetry. Agronomy. 2019; 9(11):774. https://doi.org/10.3390/agronomy9110774
Chicago/Turabian StyleSun, Guoxiang, Xiaochan Wang, Yongqian Ding, Wei Lu, and Ye Sun. 2019. "Remote Measurement of Apple Orchard Canopy Information Using Unmanned Aerial Vehicle Photogrammetry" Agronomy 9, no. 11: 774. https://doi.org/10.3390/agronomy9110774
APA StyleSun, G., Wang, X., Ding, Y., Lu, W., & Sun, Y. (2019). Remote Measurement of Apple Orchard Canopy Information Using Unmanned Aerial Vehicle Photogrammetry. Agronomy, 9(11), 774. https://doi.org/10.3390/agronomy9110774