Mechanisms of Nitrogen Use in Maize
Abstract
:1. Nitrogen Application in Crop Production
2. Nitrogen Use Efficiency in Maize
3. Nitrogen Assimilation and Utilization by Maize
4. Nitrogen Remobilization in Maize
5. Nitrogen Nutrition Index
6. Grain Nitrogen Harvest in Maize
7. Nitrogen Supply
8. Maize Adaptation to Low Nitrogen Supply
9. Strategies to Improve Nitrogen Use Efficiency in Maize
Author Contributions
Funding
Conflicts of Interest
Abbreviations
agronomic efficiency of applied nitrogen | AE |
nitrogen | N |
nitrogen use efficiency | NUE |
physiological efficiency of applied nitrogen | PE |
recovery efficiency of applied nitrogen | RE |
References
- Smil, V. Nitrogen in crop production: An account of global flows. Glob. Biogeochem. Cycles 1999, 13, 647–662. [Google Scholar] [CrossRef]
- UNEP. Reactive Nitrogen in the Environment, Too Much or Too Little of a Good Thing; The Woods Hole Research Center: Falmouth, MA, USA; UNEP DTIE Sustainable Consumption and Production Branch: Paris, France, 2007; Volume 51, ISBN 978 92 807 2783 8. [Google Scholar]
- Spiertz, J.H.J. Nitrogen, sustainable agriculture and food security: A review. In Sustainable Agriculture; Lighthouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Dordrecht, The Netherlands, 2009; Volume 30, pp. 635–651. [Google Scholar]
- Frink, C.R.; Waggoner, P.E.; Ausubel, J.H. Nitrogen fertilizer: Retrospect and prospect. Proc. Natl. Acad. Sci. USA 1999, 96, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Hoang, V.N.; Alauddin, M. Assessing the eco-environmental performance of agricultural production in OECD countries: The use of nitrogen flows and balance. Nutr. Cycl. Agroecosyst. 2010, 87, 353–368. [Google Scholar] [CrossRef]
- Ju, X.; Lu, X.; Gao, Z.; Chen, X.; Su, F.; Kogge, M. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions. Environ. Pollut. 2011, 159, 1007–1016. [Google Scholar] [CrossRef]
- FAO. World Fertilizer Trends and Outlook to 2018; Food and Agriculture Organization of the United Nations-Rome: Rome, Italy, 2015; Available online: http://www.fao.org/3/a-i4324e.pdf (accessed on 20 July 2019).
- Tilman, D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proc. Natl. Acad. Sci. USA 1999, 96, 5995–6000. [Google Scholar] [CrossRef]
- Goulding, K.; Jarvis, S.; Whitmore, A. Optimizing nutrient management for farm systems. Philos. Trans. R. Soc. B 2008, 363, 667–680. [Google Scholar] [CrossRef]
- Zahoor, A.; Otten, A.; Wendisch, V.F. Metabolic engineering of Corynebacterium glutamicum for glycolate production. J. Biotechnol. 2014, 192, 366–375. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Glass, A.D.M. Nitrogen use efficiency of crop plants: Physiological constraints upon nitrogen absorption. Crit. Rev. Plant Sci. 2003, 22, 453–470. [Google Scholar] [CrossRef]
- Hodge, A.; Robinson, D.; Fitter, A. Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci. 2000, 5, 304–308. [Google Scholar] [CrossRef]
- Asghari, H.R.; Cavagnaro, T.R. Arbuscular mycorrhizas enhance plant interception of leached nutrients. Funct. Plant Biol. 2011, 38, 219–226. [Google Scholar] [CrossRef]
- Modolo, L.V.; Da-Silva, C.J.; Brandão, D.S.; Chaves, I.S. A mini review on what we have learned about urease inhibitors of agricultural interest since mid-2000s. J. Adv. Res. 2018, 13, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.K.; Tahir, M.M.; Rahim, N. Effect of N fertilizer source and timing on yield and N use efficiency of rainfed maize (Zea mays L.) in Kashmir-Pakistan. Geoderma 2013, 195, 87–93. [Google Scholar] [CrossRef]
- Conant, R.T.; Berdanier, A.B.; Grace, P.R. Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture. Glob. Biogeochem. Cycles 2013, 27, 558–566. [Google Scholar] [CrossRef]
- Mi, G.; Chen, F.; Zhang, F. Physiological and genetic mechanisms for nitrogen-use efficiency in maize. J. Crop Sci. Biotechnol. 2007, 10, 57–63. [Google Scholar]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Sutton, M.A.; Oenema, O.; Erisman, J.W.; Leip, A.; Van Grinsven, H.; Winiwarter, W. Too much of a good thing. Nature 2011, 472, 159–161. [Google Scholar] [CrossRef]
- Kaur, A.; Bedi, S. Nitrogen use Efficiency and Source-sink Relations in Maize. J. Plant Sci. Res. 2012, 28, 219. [Google Scholar]
- Schröder, J.J.; Neeteson, J.J.; Withagen, J.C.M.; Noij, I.G.A.M. Effects of N application on agronomic and environmental parameters in silage maize production on sandy soils. Field Crop. Res. 1998, 58, 55–67. [Google Scholar] [CrossRef]
- Reganold, J.P.; Papendick, R.I.; Parr, F.F. Sustainable agriculture. Sci. Am. 1990, 262, 112–120. [Google Scholar] [CrossRef]
- Wichern, F.; Mayer, J.; Joergensen, R.G.; Müller, T. Release of C and N from roots of peas and oats and their availability to soil microorganisms. Soil Biol. Biochem. 2007, 39, 2829–2839. [Google Scholar] [CrossRef]
- Fustec, J.; Lesuffleur, F.; Mahieu, S.; Cliquet, J.B. Nitrogen rhizodeposition of legumes. A review. Agron. Sustain. Dev. 2010, 30, 57–66. [Google Scholar] [CrossRef]
- Bundy, L.G.; Kelling, K.A.; Good, L.W. Using Legumes as a Nitrogen Source; University of Wisconsin Extension, Cooperative Extension, Mifflin St.: Madison, WI, USA, 1992; Volume 3517, pp. 1–3. [Google Scholar]
- Coulter, J.A.; Sheaffer, C.C.; Wyse, D.L.; Haar, M.J.; Porter, P.M.; Quiring, S.R.; Klossner, L.D. Agronomic performance of cropping systems with contrasting crop rotations and external inputs. Agron. J. 2011, 103, 182–192. [Google Scholar] [CrossRef]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef]
- Dowswell, C. Maize in the Third World; CRC Press-Taylor and Francis Group: New York, NY, USA; Routledge: Abingdon, UK; New York, NY, USA, 2019; pp. 1–2. [Google Scholar]
- Chen, X.P.; Cui, Z.L.; Vitousek, P.M.; Cassman, K.G.; Matson, P.A.; Bai, J.S. Integrated soil–crop system management for food security. Proc. Natl. Acad. Sci. USA 2011, 108, 6399–6404. [Google Scholar] [CrossRef]
- Grassini, P.; Cassman, K.G. High-yield maize with large net energy yield and small global warming intensity. Proc. Natl. Acad. Sci. USA 2012, 109, 1074–1079. [Google Scholar] [CrossRef]
- OECD-FAO Agricultural Outlook 2018–2027; OECD Publishing: Paris, France; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [CrossRef]
- Worku, M.; Bänziger, M.; Friesen, D.; Horst, W.J. Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop Sci. 2007, 47, 519–528. [Google Scholar] [CrossRef]
- Kiniry, J.R.; McCauley, G.; Xie, Y.; Arnold, J.G. Rice parameters describing crop performance of four USA cultivars. Agron. J. 2001, 93, 1354–1361. [Google Scholar] [CrossRef]
- Peng, Y.; Niu, J.; Peng, Z.; Zhang, F.; Li, C. Shoot growth potential drives N uptake in maize plants and correlates with root growth in the soil. Field Crop. Res. 2010, 115, 85–93. [Google Scholar] [CrossRef]
- Byers, D.L. Evolution in heterogeneous environments and the potential of maintenance of genetic variation in traits of adaptive significance. Genetica 2005, 123, 107. [Google Scholar] [CrossRef] [PubMed]
- Hirel, B.; Le Gouis, J.; Ney, B.; Gallais, A. The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 2007, 58, 2369–2387. [Google Scholar] [CrossRef] [PubMed]
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammad, H.M.; Farhad, W.; Abbas, F.; Fahad, S.; Saeed, S.; Nasim, W.; Bakhat, H.F. Maize plant nitrogen uptake dynamics at limited irrigation water and nitrogen. Environ. Sci. Pollut. Res. 2017, 24, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Duvick, D.N. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 2005, 86, 83–145. [Google Scholar]
- Ciampitti, I.A.; Vyn, T.J. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crop. Res. 2011, 121, 2–18. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Vyn, T.J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crop. Res. 2012, 133, 48–67. [Google Scholar] [CrossRef]
- Echarte, L.; Andrade, F.H. Harvest index stability of Argentinean maize hybrids released between 1965 and 1993. Field Crop. Res. 2003, 82, 1–12. [Google Scholar] [CrossRef]
- Sinclair, T.R. Historical changes in harvest index crop nitrogen accumulation. Crop. Sci. 1998, 38, 638–643. [Google Scholar] [CrossRef]
- Tollenaar, M.; Lee, E.A. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica 2006, 51, 399. [Google Scholar]
- Vega, C.R.C.; Sadras, V.O.; Andrade, F.H.; Uhart, S.A. Reproductive allometry in soybean, maize and sunflower. Ann. Bot. 2000, 85, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Echarte, L.; Luque, S.; Andrade, F.H.; Sadras, V.O.; Cirilo, A.; ME Otegui, M.E.; Vega, C.R.C. Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1995. Field Crop. Res. 2000, 68, 1–8. [Google Scholar] [CrossRef]
- Tollenaar, M.; Dwyer, L.M.; Stewart, D.W.; Ma, B.L. Physiological parameters associated with differences in kernel set among maize hybrids. In Physiology and Modeling Kernel Set in Maize; Westgate, M.A., Boote, K.J., Eds.; CSSA Spec. CSSA/ASA/SSSA: Madison, WI, USA, 2000; Volume 51, pp. 115–130. [Google Scholar]
- Andrade, F.H.; Vega, C.; Uhart, S.; Cirilo, A.; Cantarero, M.; Valentinuz, O. Kernel number determination in maize. Crop Sci. 1999, 39, 453–459. [Google Scholar] [CrossRef]
- Vega, C.R.C.; Andrade, F.H.; Sadras, V.O.; Uhart, S.A.; Valentinuz, O.R. Seed number as a function of growth. A comparative study in soybean, sunflower and maize. Crop Sci. 2001, 41, 748–754. [Google Scholar] [CrossRef] [Green Version]
- Echarte, L.; Andrade, F.H.; Vega, C.R.C.; Tollenaar, M. Kernel number determination in Argentinean maize hybrids released between 1965 and 1993. Crop Sci. 2004, 44, 1654–1661. [Google Scholar] [CrossRef]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Good, A.G.; Shrawat, A.K.; Muench, D.G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci. 2004, 9, 597–605. [Google Scholar] [CrossRef]
- Seyfried, M.S.; Rao, P.S.C. Kinetics of nitrogen mineralization in Costa Rican soils: Model evaluation and pretreatment effects. Plant Soil 1988, 106, 159–169. [Google Scholar] [CrossRef]
- Hirel, B.; Lea, P.J. Ammonium assimilation. In Plant Nitrogen; Springer: Belin/Heidelberg, Germany, 2001; pp. 79–99. [Google Scholar]
- Huggins, D.R.; Pan, W.L. Key indicators for assessing nitrogen use efficiency in cereal-based agro-ecosystems. J. Crop Prod. 2003, 8, 157–185. [Google Scholar] [CrossRef]
- Dobermann, A. Nitrogen use efficiency: State of the art. In IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt; International Fertilizer Industry Association: Paris, France, 2005; pp. 28–30. [Google Scholar]
- Yan, L.; Zhang, Z.D.; Zhang, J.J.; Gao, Q.; Feng, G.Z.; Abelrahman, A.M.; Chen, Y. Effects of improving nitrogen management on nitrogen utilization, nitrogen balance, and reactive nitrogen losses in a Mollisol with maize monoculture in Northeast China. Environ. Sci. Pollut. Res. 2016, 23, 4576–4584. [Google Scholar] [CrossRef]
- Wiesler, F.; Behrens, T.; Horst, W.J. The Role of N Efficient Cultivars in Sustainable Agriculture. Sci. World J. 2001, 1, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Rajput, T.; Kumar, R.; Patel, N. Water and nitrate dynamics in baby corn (Zea mays L.). under different fertigation frequencies and operating pressures in semi-arid region of India. Agric. Water Manag. 2016, 163, 263–274. [Google Scholar] [CrossRef]
- Couto-Va´zquez, A.; Gonza´lez-Prieto, S.J. Fate of 15N-fertilizers in the soil-plant system of a forage rotation under conservation and plough tillage. Soil Tillage Res. 2016, 161, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Trenkel, M.E. Slow and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture; International Fertilizer Association: Paris, France, 2010. [Google Scholar]
- Schmidt, E.L. Nitrification in soil. In Nitrogen in Agricultural Soils; Stevenson, F.J., Ed.; ASA, CSSA, and SSSA: Madison, WI, USA, 1982; Volume 22, pp. 253–288. [Google Scholar]
- Kaboneka, S.; Sabbe, W.E.; Mauromoustakos, A. Carbon decomposition kinetics and nitrogen mineralization from corn, soybean, and wheat. Commun. Soil Sci. Plant Anal. 1997, 28, 1359–1373. [Google Scholar] [CrossRef]
- Kelly, J.T.; Bacon, R.K.; Wells, B.R. Genetic variability in nitrogen utilization at four growth stages in soft red winter wheat. J. Plant Nutr. 1995, 18, 969–982. [Google Scholar] [CrossRef]
- Hirel, B.; Bertin, P.; Quillere, I.; Bourdoncle, W.; Attagnant, C.; Dellay, C.; Gouy, S.; Retailliau, C.; Falque, M.; Gallais, A. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol. 2001, 125, 1258–1270. [Google Scholar] [CrossRef] [Green Version]
- Lea, P.J.; Miflin, B.J. Glutamate synthase and the synthesis of glutamate in plants. Plant Physiol. Biochem. 2003, 41, 555–564. [Google Scholar] [CrossRef]
- Fuentes, S.I.; Allen, D.J.; Ortiz-Lopez, A.; Hernández, G. Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J. Exp. Bot. 2001, 52, 1071–1081. [Google Scholar] [CrossRef]
- Kichey, T.; Heumez, E.; Pocholle, P.; Pageau, K.; Vanacker, H.; Dubois, F.; Le Gouis, J.; Hirel, B. Combined agronomic and physiological aspects of nitrogen management in wheat (Triticum aestivum L). Dynamic and integrated views highlighting the central role for the enzyme glutamine synthetase. New Phytol. 2006, 169, 265–278. [Google Scholar] [CrossRef]
- Forde, B.G.; Lea, P.J. Glutamate in plants: Metabolism, regulation and signaling. J. Exp. Biol. 2007, 58, 2339–2358. [Google Scholar] [CrossRef]
- Cren, M.; Hirel, B. Glutamine synthetase in higher plants: Regulation of gene and protein expression from the organ to the cell. Plant Cell Physiol. 1999, 40, 1187–1193. [Google Scholar] [CrossRef] [Green Version]
- Cirilo, A.G.; Dardanelli, J.; Balzarini, M.; Andrade, F.H.; Cantarero, M.; Luque, S.; Pedrol, H.M. Morpho-physiological traits associated with maize crop adaptations to environments differing in nitrogen availability. Field Crop. Res. 2009, 113, 116–124. [Google Scholar] [CrossRef]
- Borrell, A.; Hammer, G. Nitrogen dynamics and the physiological basis of stay-green in sorghum. Crop Sci. 2000, 40, 1295–1307. [Google Scholar] [CrossRef]
- Maddonni, G.A.; Otegui, M.E.; Cirilo, A.G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crop. Res. 2001, 71, 183–193. [Google Scholar] [CrossRef]
- Gastal, F.; Lemaire, G. Nitrogen uptake and distribution in crops: An agronomical and ecophysiological perspective. J. Exp. Bot. 2002, 53, 789–799. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.L.; Dwyer, L.M. Nitrogen uptake and use in two contrasting maize hybrids differing in leaf senescence. Plant Soil 1998, 199, 283–291. [Google Scholar] [CrossRef]
- Hikosaka, K. Interspecific difference in the photosynthesis–nitrogen relationship: Patterns, physiological causes, and ecological importance. J. Plant Res. 2004, 117, 481–494. [Google Scholar] [CrossRef]
- Andrade, F.H.; Echarte, L.; Rizzalli, R.; Della, M.A.; Casanovas, M. Kernel number prediction in maize under nitrogen or water stress. Crop Sci. 2002, 42, 1173–1179. [Google Scholar] [CrossRef] [Green Version]
- Spano, G.; Di Fonzo, N.; Perrota, C.; Platani, C.; Ronga, G.; Lawlor, Q.W.; Napier, J.A.; Shewry, P.R. Physiological characterization of ‘stay green’ mutants in durum wheat. J. Exp. Bot. 2003, 54, 1415–1420. [Google Scholar] [CrossRef] [Green Version]
- Racjan, I.; Tollenaar, M. Source-sink ratio and leaf senescence in maize I. Dry matter accumulation and partitioning during grain filling. Field Crop. Res. 1999, 60, 245–253. [Google Scholar]
- Racjan, I.; Tollenaar, M. Source-sink ratio and leaf senescence in maize II. Nitrogen metabolism during grain filling. Field Crop. Res. 1999, 60, 255–265. [Google Scholar]
- Coque, M.; Gallais, A. Genetic variation for N-remobilization and post-silking N-uptake in a set of maize recombinant inbred lines I: Evaluation by 15N labeling, heritabilities and correlations among traits for test cross performance. Crop Sci. 2007, 47, 1787–1796. [Google Scholar] [CrossRef]
- Borras, L.; Slafer, G.A.; Otegui, M.E. Seed dry weight response to source-sink manipulations in wheat, maize, and soybean: A quantitative reappraisal. Field Crop. Res. 2004, 86, 131–146. [Google Scholar] [CrossRef]
- Pang, X.P.; Letey, J. Organic farming challenge of timing nitrogen availability to crop nitrogen requirements. Soil Sci. Soc. Am. J. 2000, 64, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Purcino, A.A.C.; Arellano, C.; Athwal, G.S.; Huber, S.C. Nitrate effect on carbon and nitrogen assimilating enzymes of maize hybrids representing seven eras of maize breeding. Maydica 1998, 43, 83–94. [Google Scholar]
- Halvorson, A.D.; Nielsen, D.C.; Reule, C.A. Nitrogen fertilization and rotation effects on no-till dry land wheat production. Agron. J. 2004, 96, 1196–1201. [Google Scholar] [CrossRef] [Green Version]
- Peoples, M.B.; Freney, J.R.; Mosier, A.R. Minimizing gaseous losses of nitrogen. In Nitrogen Fertilization in the Environment; Bacon, P.E., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1995; pp. 565–602. [Google Scholar]
- Rizzi, E.; Balconi, C.; Bosio, D.; Nembrini, L.; Morselli, A.; Motto, M. Accumulation and partitioning of nitrogen among plant parts in the high and low protein strains of maize. Maydica 1996, 41, 325–332. [Google Scholar]
- Subedi, K.D.; Ma, B.L. Nitrogen uptake and partitioning in stay-green and leafy maize hybrids. Crop Sci. 2005, 45, 740–747. [Google Scholar] [CrossRef]
- Sattelmacher, B.; Horst, W.J.; Becker, H.C. Factors that contribute to genetic variation for nutrient efficiency of crop plants. Zeitschrift für Pflanzenernährung und Bodenkunde 1994, 157, 215–224. [Google Scholar] [CrossRef]
- Akintoye, H.A.; Kling, J.; Gand, L.E.O. N-use efficiency of single, double and synthetic maize lines grown at four N levels in three ecological zones of West Africa. Field Crop. Res. 1999, 60, 189–199. [Google Scholar] [CrossRef]
- Gallais, A.; Coque, M.; Quilléré, I.; Le Gouis, J.; Prioul, J.L.; Hirel, B. Estimating proportions of N-remobilization and of post-silking N-uptake allocated to maize kernels by 15N labeling. Crop Sci. 2007, 47, 685–691. [Google Scholar] [CrossRef]
- Tolley-Henry, L.; Raper, C.D., Jr. Soluble carbohydrate allocation to roots, photosynthetic rate of leaves, and nitrate assimilation as affected by nitrogen stress and irradiance. Bot. Gaz. 1991, 152, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Pons, T.L.; van der Werf, A.; Lambers, H. Photosynthetic nitrogen use efficiency of inherently low- and fast-growing species: Possible explanations for observed differences. In A Whole Plant Perspective on Carbon-Nitrogen Interactions; Roy, J., Garnier, E., Eds.; SPB Academic Publishing: The Hague, The Netherlands, 1994; pp. 61–77. [Google Scholar]
- Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989, 78, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Gallais, A.; Coque, M.; Quilléré, I.; Prioul, J.L.; Hirel, B. Modelling post-silking N-fluxes in maize using 15N-labeling-field experiments. New Phytol. 2006, 172, 696–707. [Google Scholar] [CrossRef] [PubMed]
- Paponov, I.A.; Engels, C. Effect of nitrogen supply on leaf traits related to photosynthesis during grain filling in two maize genotypes with different N efficiency. J. Plant Nutr. Soil Sci. 2003, 166, 756–763. [Google Scholar] [CrossRef]
- Pearson, C.J.; Jacobs, B.C. Yield components and nitrogen partitioning of maize in response to nitrogen before and after anthesis. Aust. J. Agric. Res. 1987, 38, 1001–1009. [Google Scholar] [CrossRef]
- McKendry, A.L.; McVetty, P.B.E.; Evans, L.E. Selection criteria for combining high grain yield and high grain protein concentration in bread wheat. Crop Sci. 1995, 35, 1597–1602. [Google Scholar] [CrossRef]
- Mistele, B.; Schmidhalter, U. Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. Eur. J. Agron. 2008, 29, 184–190. [Google Scholar] [CrossRef]
- Grindlay, D.J.C.; Sylvester-Bradley, R.; Scott, R.K. The relationship between canopy green area and nitrogen in the shoot. In Diagnostic Procedures for Crop N Management; Lemaire, G., Burns, I.G., Eds.; INRA Editions: Paris, France, 1995; pp. 53–60. [Google Scholar]
- Lemaire, G.; Gastal, F.; Plenet, D. Dynamics of N uptake and N distribution in plant canopies. Use of crop N status index in crop modeling. In Diagnostic Procedures for Crop N Management; Lemaire, G., Bruns, I.G., Eds.; INRA Editions: Paris, France, 1995; pp. 15–29. [Google Scholar]
- Eichelmann, H.; Oja, V.; Rasulov, B.; Padu, E.; Bichele, I.; Pettai, P.; Mänd, P.; Kull, O.; Laisk, A. Adjustment of leaf photosynthesis to shade in a natural canopy: Reallocation of nitrogen. Plant Cell Environ. 2005, 28, 389–401. [Google Scholar] [CrossRef]
- Schmidhalter, U. Development of a quick on-farm test to determine nitrate levels in soil. J. Plant Nutr. Soil Sci. 2005, 168, 432–438. [Google Scholar] [CrossRef]
- Houlès, V.; Guérif, M.; Mary, B. Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations. Eur. J. Agron. 2007, 27, 1–11. [Google Scholar] [CrossRef]
- Baret, F.; Houlès, V.; Guérif, M. Quantification of plant stress using remote sensing observations and crop models: The case of nitrogen management. J. Exp. Bot. 2007, 58, 869–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Sripada, R.P.; Schmidt, J.P.; Dellinger, A.E.; Beegle, D.B. Evaluating multiple indices from a canopy reflectance sensor to estimate corn N requirements. Agron. J. 2008, 100, 1553–1561. [Google Scholar] [CrossRef]
- Gitelson, A.A. Remote Sensing estimation of crop biophysical characteristics at various scales. In Chapter 15 in Hyperspectral Remote Sensing of Vegetation; Thenkabail, P.S., Lyon, J.G., Huete, A., Eds.; CRC Press-Taylor and Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2011; pp. 329–358. [Google Scholar]
- Walters, D.T. Diagnosis of nitrogen deficiency in maize and the influence of hybrid and plant density. In Proceedings of the North Central Extension-Industry Soil Fertility Conference, Des Moines, IA, USA, 19–20 November 2003; Volume 19. [Google Scholar]
- Zebarth, B.J.; Younie, M.; Paul, J.W.; Bittman, S. Evaluation of leaf chlorophyll index for making fertilizer nitrogen recommendations for silage corn in a high fertility environment. Commun. Soil Sci. Plant Anal. 2002, 33, 665–684. [Google Scholar] [CrossRef]
- Argenta, G.; Ferreira da Silva, P.R.; Sangoi, L. Leaf relative chlorophyll content as an indicator parameter to predict nitrogen fertilization in maize. Ciênc Rural 2004, 34, 1379–1387. [Google Scholar] [CrossRef] [Green Version]
- Rashid, M.T.; Voroney, P.; Parkin, G. Predicting nitrogen fertilizer requirements for corn by chlorophyll meter under different N availability conditions. Can. J. Soil Sci. 2005, 85, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Link, A.; Jasper, J. Site-specific N fertilization based on remote sensing: Is it necessary to take yield variability into account? In Proceedings of the 4th European Conference on Precision Agriculture, Berlin, Germany, 15–19 June 2003; Stafford, J., Werner, A., Eds.; Academic Publishers: Wageningen, The Netherlands, 2003; pp. 353–359. [Google Scholar]
- Soon, Y.K.; Clayton, G.W. Eight years of crop rotation and tillage effects on crop production and N fertilizer use. Can. J. Soil Sci. 2002, 82, 165–172. [Google Scholar] [CrossRef]
- Silla, F.; Escudero, A. Nitrogen-use efficiency: Trade-offs between N productivity and mean residence time at organ, plant and population levels. Funct. Ecol. 2004, 18, 511–521. [Google Scholar] [CrossRef]
- Echarte, L.; Rothstein, S.; Tollenaar, M. The response of leaf photosynthesis and dry matter accumulation to nitrogen supply in an older and a newer maize hybrid. Crop Sci. 2008, 48, 656–665. [Google Scholar] [CrossRef]
- Masclaux, C.; Quilleré, I.; Gallais, A.; Hirel, B. The challenge of remobilization in plant nitrogen economy. A survey of physio-agronomic and molecular approaches. Ann. Appl. Biol. 2001, 138, 69–81. [Google Scholar] [CrossRef]
- Habtegebrial, K.; Singh, B.R.; Haile, M. Impact of tillage and nitrogen fertilization on yield, nitrogen use efficiency of tef (Eragrostis tef (Zucc.) Trotter) and soil properties. Soil Tillage Res. 2007, 94, 55–63. [Google Scholar] [CrossRef]
- Ogola, J.B.O.; Wheeler, T.R.; Harris, P.M. Effects of nitrogen and irrigation on water use of maize crops. Field Crop. Res. 2002, 78, 105–117. [Google Scholar] [CrossRef]
- Anatoliy, G.K.; Thelen, K.D. Effect of winter wheat crop residue on no-till corn growth and development. Agron. J. 2007, 99, 549–555. [Google Scholar]
- Hooda, P.S.; Edwards, A.C.; Anderson, H.A.; Miller, A. A review of water quality concerns in livestock farming areas. Sci. Total Environ. 2000, 250, 143–167. [Google Scholar] [CrossRef]
- Robertson, G.P.; Vitousek, P.M. Nitrogen in agriculture: Balancing the cost of an essential resource. Ann. Rev. Environ. Resour. 2009, 34, 97–125. [Google Scholar] [CrossRef] [Green Version]
- Lucas, F.T.; Borges, B.M.M.N.; Coutinho, E.L.M. Nitrogen fertilizer management for maize production under tropical climate. Agron. J. 2019, 111, 2031–2037. [Google Scholar] [CrossRef] [Green Version]
- Nyamangara, J.; Piha, M.I.; Giller, K.E. Effects of combined cattle manure and mineral nitrogen on maize N uptake and grain yield. Afr. Crop Sci. J. 2003, 11, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Rimski-Korsakov, H.; Rubio, G.; Lavado, R.S. Fate of the nitrogen from fertilizers in field-grown maize. Nutr. Cycl. Agroecosyst. 2012, 93, 253–263. [Google Scholar] [CrossRef]
- Huang, B.; Sun, W.; Zhao, Y.; Zhu, J.; Yang, R.; Zou, Z.; Su, J. Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma 2007, 139, 336–345. [Google Scholar] [CrossRef]
- Khan, Z.; Shah, P.; Arif, M. Management of organic farming: Effectiveness of farm yard manure (FYM) and nitrogen for maize productivity. Sarhad J. Agric. 2000, 16, 461–465. [Google Scholar]
- Gangwar, K.S.; Singh, K.K.; Sharma, S.K.; Tomar, O.K. Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo-Gengetic plains. Soil Tillage Res. 2006, 88, 242–252. [Google Scholar] [CrossRef]
- Ayeni, L.S.; Adetunji, M.T.; Ojeniyi, S.O.; Ewulo, B.S.; Adeyemo, A.J. Comparative and cumulative effect of cocoa pod husk ash and poultry manure on soil and maize nutrient contents and yield. Am.–Euras. J. Sustain. Agric. 2008, 2, 92–97. [Google Scholar]
- Biau, A.; Santiveri, F.; Mijangos, I.; Lloveras, J. The impact of organic and mineral fertilizers on soil quality parameters and the productivity of irrigated maize crops in semiarid regions. Eur. J. Soil Biol. 2012, 53, 56–61. [Google Scholar] [CrossRef]
- Belay, A.; Claassens, A.; Wehner, F.C. Effect of direct nitrogen and potassium and residual phosphorus fertilizers on soil chemical properties, microbial components and maize yield under long-term crop rotation. Biol. Fertil. Soils 2002, 35, 420–427. [Google Scholar]
- Ayeni, L.S.; Adetunji, M.T. Integrated application of poultry manure and mineral fertilizer on soil chemical properties, nutrient uptake, yield and growth components of maize. Nat. Sci. 2010, 8, 60–67. [Google Scholar]
- Ali, K.; Munsif, F.; Zubair, M.; Hussain, Z.; Shahid, M.; Din, I.U.; Khan, N. Management of organic and inorganic nitrogen for different maize varieties. Sarhad J. Agric. 2011, 27, 525–529. [Google Scholar]
- Rafiq, M.A.; Ali, A.; Malik, M.A.; Hussain, M. Effect of fertilizer levels and plant densities on yield and protein contents of autumn planted maize. Pak. J. Agric. Sci. 2010, 47, 201–208. [Google Scholar]
- Asif, M.; Saleem, M.F.; Anjum, S.A.; Wahid, M.A.; Bilal, M.F. Effect of nitrogen and zinc sulphate on growth and yield of maize (Zea mays L.). J. Agric. Res. 2013, 51, 03681157. [Google Scholar]
- Pessarakli, M. (Ed.) Handbook of Plant and Crop Physiology; Eastern Hemisphere Distribution, Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2002; Volume 940. [Google Scholar]
- Potarzycki, J. Effect of magnesium or zinc supplementation at the background of nitrogen rate on nitrogen management by maize canopy cultivated in monoculture. Plant Soil Environ. 2011, 57, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Qu, C.; Liu, C.; Ze, Y.; Gong, X.; Hong, M.; Wang, L.; Hong, F. Inhibition of nitrogen and photosynthetic carbon assimilation of maize seedlings by exposure to a combination of salt stress and potassium-deficient stress. Biol. Trace Elem. Res. 2011, 144, 1159–1174. [Google Scholar] [CrossRef] [PubMed]
- Mulvaney, R.L.; Khan, S.A.; Ellsworth, T.R. Synthetic nitrogen fertilizers deplete soil nitrogen: A global dilemma for sustainable cereal production. J. Environ. Qual. 2009, 38, 2295–2314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.A.; Mulvaney, R.L.; Ellsworth, T.R.; Boast, C.W. The myth of nitrogen fertilization for soil carbon sequestration. J. Environ. Qual. 2007, 36, 1821–1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mapanda, F.; Wuta, M.; Nyamangara, J.; Rees, R.M. Effects of organic and mineral fertilizer nitrogen on greenhouse gas emissions and plant-captured carbon under maize cropping in Zimbabwe. Plant Soil 2011, 343, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.Y.; Huffman, E.C.; Jong, R.D.; Kirkwood, V.; MacDonald, K.B.; Drury, C.F. Residual soil nitrogen in soil landscapes of Canada as affected by land use practices and agricultural policy scenarios. Land Use Policy 2007, 24, 89–99. [Google Scholar] [CrossRef]
- Khan, H.Z.; Malik, M.A.; Saleem, M.F. Effect of rate and source of organic material on the production potential of spring maize (Zea mays L.). Pak. J. Agric. Sci. 2008, 45, 40–43. [Google Scholar]
- Grant, C. Policy aspects related to the use of enhanced-efficiency fertilizers: View point of the scientific community. In IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt; International Fertilizer Industry Association: Paris, France, 2005; pp. 28–30. [Google Scholar]
- Stevens, W.B.; Hoeft, R.G.; Mulvaney, R.L. Fate of Nitrogen15 in a long-term nitrogen rate study: II. Nitrogen uptake efficiency. Agron. J. 2005, 97, 1046–1053. [Google Scholar] [CrossRef]
- Robertson, G.P.; Groffman, P.M. Nitrogen transformations. In Soil Microbiology, Ecology and Biochemistry; Academic Press: New York, NY, USA, 2007; pp. 341–364. [Google Scholar]
- Provin, T.; Hossner, L.R. What Happens to Nitrogen in Soils? In Texas A&M AgriLife Extension; The Texas A&M University Systems: College Station, TX, USA, 2001. [Google Scholar]
- Jackson, L.E.; Burger, M.; Cavagnaro, T.R. Roots, nitrogen transformations, and ecosystem services. Annu. Rev. Plant Biol. 2008, 59, 341–363. [Google Scholar] [CrossRef] [Green Version]
- Griffin, T.S. Nitrogen availability. In Nitrogen in Agricultural Soils; Schepers, J.S., Raun, W.R., Eds.; ASA, CSSA, and SSSA: Madison, WI, USA, 2008; Volume 49, pp. 616–646. [Google Scholar]
- Ma, B.L.; Dwyer, L.M.; Gregorich, E.G. Soil nitrogen amendment effects on seasonal nitrogen mineralization and nitrogen cycling in maize production. Agron. J. 1999, 91, 1003–1009. [Google Scholar] [CrossRef]
- Schröder, J.J.; Neeteson, J.J.; Oenema, O.; Struik, P.C. Does the crop or the soil indicate how to save nitrogen in maize production? Reviewing the state of the art. Field Crop. Res. 2000, 66, 151–164. [Google Scholar] [CrossRef]
- Rusinamhodzi, L.; Corbeels, M.; Zingore, S.; Nyamangara, J.; Giller, K.E. Pushing the envelope? Maize production intensification and the role of cattle manure in recovery of degraded soils in smallholder farming areas of Zimbabwe. Field Crop. Res. 2013, 147, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Dunjana, N.; Nyamugafata, P.; Shumba, A.; Nyamangara, J.; Zingore, S. Effects of cattle manure on selected soil physical properties of smallholder farms on two soils of Murewa, Zimbabwe. Soil Use Manag. 2012, 28, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Negassa, W.; Gebrekidan, H.; Friesen, D.K. Integrated use of farmyard manure and NP fertilizers for maize on farmers’ fields. J. Agric. Rural Dev. Trop. Subtrop. 2005, 106, 131–141. [Google Scholar]
- Bengough, A.G.; Bransby, M.F.; Hans, J.; McKenna, S.J.; Roberts, T.J.; Valentine, T.A. Root response to soil physical conditions: Growth dynamics from field to cell. J. Exp. Bot. 2006, 57, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Mi, G.H.; Chen, F.; Lao, X.; Zhang, F. Genotypic difference of nitrogen recycling between root and shoot of maize seedlings. Acta Phytophysiol. Sin. 2001, 27, 226–230. [Google Scholar]
- Wang, Y.; Mi, G.H.; Chen, F.J.; Zhang, J.H.; Zhang, F.S. Response of root morphology to nitrate supply and its contribution to nitrogen accumulation in maize. J. Plant Nutr. 2004, 27, 2189–2202. [Google Scholar] [CrossRef]
- Marschner, H.; Kirkby, E.A.; Cakmak, I. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J. Exp. Bot. 1996, 47, 1255–1263. [Google Scholar] [CrossRef]
- Chun, L.; Chen, F.; Zhang, F.; Mi, G.H. Root growth, nitrogen uptake and yield formation of hybrid maize with different N efficiency. Plant Nutr. Fert. Sci. 2005, 11, 615–619. [Google Scholar]
- Tian, Q.Y.; Chen, F.J.; Zhang, F.S.; Mi, G.H. Genotypic difference in nitrogen acquisition ability in maize plants is related to the coordination of leaf and root growth. J. Plant Nutr. 2006, 29, 317–330. [Google Scholar] [CrossRef]
- Niu, J.; Chen, F.J.; Mi, G.H.; Li, C.J.; Zhang, F.S. Transpiration, and nitrogen uptake and flow in two maize (Zea mays L.). inbred lines as affected by nitrogen supply. Ann. Bot. 2007, 99, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Mackay, A.D.; Barber, S.A. Effects of nitrogen on root growth of two corn genotypes in the field. Agron. J. 1986, 78, 699–703. [Google Scholar] [CrossRef]
- Mkhabela, M.S.; Mkhabela, M.S.; Pali-Shikhulu, J. Response of maize (Zea mays L.) cultivars to different levels of nitrogen application in Swaziland. In Proceedings of the Seventh Eastern and Southern Africa Regional Maize Conference, Nairobi, Kenya, 5–11 February 2001; Volume 11, pp. 377–381. [Google Scholar]
- Mi, G.H.; Liu, J.A.; Chen, F.J.; Zhang, F.S.; Cui, Z.L.; Liu, X.S. Nitrogen uptake and remobilization in maize hybrids differing in leaf senescence. J. Plant Nutr. 2003, 26, 237–247. [Google Scholar] [CrossRef]
- Horst, W.J.; Behrens, T.; Heuberger, H.; Kamh, M.; Reidenbach, G.; Wiesler, F. Genotypic differences in nitrogen use efficiency in crop plants. In Innovative Soil-Plant Systems for Sustainable Agricultural Production; Lynch, J.M., Schepers, J.S., Unver, I., Eds.; Organisation for Economic Co-operation and Development: Paris, France, 2003; pp. 75–92. [Google Scholar]
- Miflin, B.J.; Habash, D.Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J. Exp. Bot. 2002, 53, 979–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, W.L.; Jackson, W.A.; Moll, R.H. Nitrate uptake and partitioning by corn (Zea mays L.). root systems and associated morphological differences among genotypes and stages of root development. J. Exp. Bot. 1985, 36, 1341–1351. [Google Scholar] [CrossRef]
- Peterson, C.A.; Emanuel, M.E.; Humphreys, G.B. Pathway of movement of apoplastic fluorescent dye tracers through the endodermis at the site of secondary root formation in corn (Zea mays L.) and broad bean (Vicia faba). Can. J. Bot. 1981, 59, 618–625. [Google Scholar] [CrossRef]
- Oaks, A.; Aslam, M.; Boesel, I. Ammonium and amino acids as regulators of nitrate reductase in corn roots. Plant Physiol. 1977, 59, 391–394. [Google Scholar] [CrossRef] [Green Version]
- Lewis, C.E.; Noctor, G.; Causton, D.; Foyer, C. Regulation of assimilate partitioning in leaves. Aust. J. Plant Physiol. 2000, 27, 507–519. [Google Scholar] [CrossRef]
- Ortiz-Monasterio, J.I.; Sayre, K.D.; Rajaram, S.; McMahon, M. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen regimes. Crop Sci. 1997, 37, 898–904. [Google Scholar] [CrossRef]
- Wivstad, M.; Dahlin, A.S.; Grant, C. Perspectives on nutrient management in arable farming systems. Soil Use Manag. 2005, 21, 113–121. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S.; Martin, D.L.; Ferguson, R.B.; Bernards, M.L. Plant nutrient uptake and soil nutrient dynamics under full and limited irrigation and rainfed maize production. Agron. J. 2013, 105, 527–538. [Google Scholar] [CrossRef]
- Qiu, S.J.; He, P.; Zhao, S.C.; Li, W.J.; Xie, J.G.; Hou, Y.P.; Jin, J.Y. Impact of nitrogen rate on maize yield and nitrogen use efficiencies in northeast China. Agron. J. 2015, 107, 305–313. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Vadez, V. Physiological traits for crop yield improvement in low N and P environments. Plant Soil 2002, 245, 1–15. [Google Scholar] [CrossRef]
- Cañas, R.A.; Amiour, N.; Quilleré, I.; Hirel, B. An integrated statistical analysis of the genetic variability of nitrogen metabolism in the ear of three maize inbred lines (Zea mays L.). J. Exp. Bot. 2010, 62, 2309–2318. [Google Scholar] [CrossRef]
- Stark, C.H.; Richards, K.G. The continuing challenge of agricultural nitrogen loss to the environment in the context of global change and advancing research. Dyn. Soil Dyn. Plant 2008, 2, 1–12. [Google Scholar]
- Delgado, J.A.; Shaffer, M.; Hu, C.; Lavado, R.; Cueto-Wong, J.; Joosse, P.; Sotomayer, D.; Colon, W.; Follett, R.; DelGrosso, S.; et al. An index approach to assess nitrogen losses to the environment. Ecol. Eng. 2008, 32, 108–120. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asibi, A.E.; Chai, Q.; A. Coulter, J. Mechanisms of Nitrogen Use in Maize. Agronomy 2019, 9, 775. https://doi.org/10.3390/agronomy9120775
Asibi AE, Chai Q, A. Coulter J. Mechanisms of Nitrogen Use in Maize. Agronomy. 2019; 9(12):775. https://doi.org/10.3390/agronomy9120775
Chicago/Turabian StyleAsibi, Aziiba Emmanuel, Qiang Chai, and Jeffrey A. Coulter. 2019. "Mechanisms of Nitrogen Use in Maize" Agronomy 9, no. 12: 775. https://doi.org/10.3390/agronomy9120775
APA StyleAsibi, A. E., Chai, Q., & A. Coulter, J. (2019). Mechanisms of Nitrogen Use in Maize. Agronomy, 9(12), 775. https://doi.org/10.3390/agronomy9120775