Effects of Nitrogen Management on Biomass Production and Dry Matter Distribution of Processing Tomato Cropped in Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Trial
2.2. Crop Production
2.3. Recorded Parameters
2.4. Economic and Environmental Aspects
2.5. Data Analysis
3. Results
3.1. Effect of Nitrogen Rate on Growth Parameters
3.2. Effect of Nitrogen Supply on Yield Parameters
3.3. Effect of Nitrogen Supply on Physiological Parameters
3.4. Effect of Nitrogen Supply on Economic and Environmental Aspects
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. 2019. Available online: www.fao.org/statistics/databases/en/ (accessed on 18 November 2019).
- World Processing Tomato Council (WPTC). 2019. Available online: https://www.wptc.to (accessed on 12 May 2019).
- Ronga, D.; Caradonia, F.; Setti, L.; Hagassou, D.; Giaretta Azevedo, C.V.; Milc, J.; Pedrazzi, S.; Allesina, G.; Arru, L.; Francia, E. Effects of innovative biofertilizers on yield of processing tomato cultivated in organic cropping systems in Northern Italy. Acta Hortic. 2019, 1233, 129–136. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howarth, R.W. Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae 2008, 8, 14–20. [Google Scholar] [CrossRef]
- Ronga, D.; Zaccardelli, M.; Lovelli, S.; Perrone, D.; Francia, E.; Milc, J.; Ulrici, A.; Pecchioni, N. Biomass production and dry matter partitioning of processing tomato under organic vs. conventional cropping systems in a Mediterranean environment. Sci. Hortic. 2017, 224, 163–170. [Google Scholar] [CrossRef]
- Heuvelink, E. Re-interpretation of an experiment on the role of assimilated transport resistance in partitioning in tomato. Ann. Bot. 1996, 78, 467–470. [Google Scholar] [CrossRef] [Green Version]
- Horst, W.J.; Behrens, T.; Heuberger, H.; Kamh, M.; Reidenbach, G.; Wiesler, F. Genotypic differences in nitrogen use-efficiency in crop plants. Inn. Soil–Plant Sys. Sust. Agric. Prod. 2003, 75–92. [Google Scholar]
- Ronga, D.; Lovelli, S.; Zaccardelli, M.; Perrone, D.; Ulrici, A.; Francia, E.; Milc, J.; Pecchioni, N. Physiological responses of processing tomato in organic and conventional Mediterranean cropping systems. Sci. Hortic. 2015, 190, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Mosisa, W.; Habtamu, Z. Advances in improving harvest index and grain yield of maize in Ethiopia. Afr. J. Sci. 2007, 1, 112–119. [Google Scholar]
- Osorio, S.; Ruan, Y.L.; Fernie, A.R. An update on source-to-sink carbon partitioning in tomato. Front. Plant Sci. 2014, 5, 516. [Google Scholar] [CrossRef] [Green Version]
- Venkateswarlu, B.; Visperas, R.M. Source-sink relationships in crop plants. Intern. Rice Res. Paper Series 1987, 125, 1–19. [Google Scholar]
- Crafts-Brandner, S.J.; Below, F.E.; Harper, J.E.; Hageman, R.H. Differential senescence of maize hybrids following ear removal. I. Whole plant. Plant Physiol. 1984, 74, 360–367. [Google Scholar]
- Feller, U.; Fischer, A. Nitrogen metabolism in senescing leaves. CRC Crit. Rev. Plant Sci. 1994, 13, 241–273. [Google Scholar] [CrossRef]
- Erdal, I.; Ertek, A.; Senyigit, U.; Yilmaz, H.I. Effects of different irrigation programs and nitrogen levels on nitrogen concentration, uptake and utilization in processing tomatoes (Lycopersicum esculentum). Aust. J. Exp. Agric. 2006, 46, 1653–1660. [Google Scholar] [CrossRef]
- Tei, F.; Benincasa, P.; Guiducci, M. Critical nitrogen concentration in processing tomato. Eur. J. Agron. 2002, 18, 45–55. [Google Scholar] [CrossRef]
- Blaesing, D.; Murray, A.; Shultz, M.; Stewart, M. Nutrient management for high soluble solids production in Australia processing tomatoes. Acta Hortic. 2006, 724, 75–83. [Google Scholar] [CrossRef]
- De C. Carmello, Q.A.; Anti, G.R. Accumulation of nutrients and growth of processing tomato. Acta Hortic. 2006, 724, 85–90. [Google Scholar]
- Vazquez, N.; Pardo, A.; Suso, M.L.; Quemada, M. Drainage and leaching under processing tomato growth with drip irrigation and plastic mulch. Agric. Ecosyst. Environ. 2006, 112, 313–323. [Google Scholar] [CrossRef]
- Elia, A.; Conversa, G. Agronomic and physiological responses of a tomato crop to nitrogen input. Eur. J. Agron. 2012, 40, 64–74. [Google Scholar] [CrossRef]
- Scholberg, J.; McNeal, B.L.; Jones, J.W.; Boote, K.J.; Stanley, C.D.; Obreza, T.A. Growth and canopy characteristics of field-grown tomato. Agron. J. 2000, 92, 152–159. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from tem-perature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements FAO Irrigation and Drainage; Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Crop Water Requirement. FAO Irrigation and Drainage; Paper No. 24 (rev.); FAO: Rome, Italy, 1977. [Google Scholar]
- Association of Official Analytical Chemists International (AOAC). Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists Inc.: Arlington, VA, USA, 1990; pp. 1028–1039. [Google Scholar]
- Cosentino, S.L.; Patané, C.; Sanzone, E.; Copani, V.; Foti, S. Effects of soil water content and nitrogen supply on the productivity of Miscanthus x giganteus greef et deu. in a Mediterranean environment. Ind. Crops Prod. 2007, 25, 75–88. [Google Scholar] [CrossRef]
- Ronga, D.; Villecco, D.; Zaccardelli, M. Effects of compost and defatted oilseed meals as sustainable organic fertilisers on cardoon (Cynara cardunculus L.) production in the Mediterranean basin. J. Hortic. Sci. Biotech. 2019, 94, 664–675. [Google Scholar] [CrossRef]
- Padilla-Díaz, C.M.; Rodriguez-Dominguez, C.M.; Hernandez-Santana, V.; Perez-Martin, A.; Fernandes, R.D.M.; Montero, A.; García, J.M.; Fernández, J.E. Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements. Agric. Water Manag. 2018, 202, 241–252. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Guidelines for National Greenhouse Gas Inventories. In Agriculture, Forestry and Other Land Use; Intergovernmental Panel on Climate Change, IGES: Kanagawa, Japan, 2006; Volume 4, pp. 1.1–1.21. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/0_Overview/V0_1_Overview.pdf (accessed on 18 November 2019).
- Pehnt, M. Dynamic life cycle assessment (LCA) of renewable energy technologies. Ren. Energy 2006, 31, 55–71. [Google Scholar] [CrossRef]
- Furuholt, E. Life cycle assessment of gasoline and diesel. Resour. Conserv. Recycl. 1995, 14, 251–263. [Google Scholar] [CrossRef]
- Cuevas, P. Comparative Life Cycle Assessment of Biolubricants and Mineral Based Lubricants. Master’s Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2005. [Google Scholar]
- Hesq, Y.; Fossum, J.P. Calculation of carbon footprint of fertilizer production. Des. Pilot Plant Recover. Ammon. Salts WWTP Residual Water 2014, 76. [Google Scholar]
- Aguilera, E.; Lassaletta, L.; Sanz-Cobena, A.; Garnier, J.; Vallejo, A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agric. Ecosys. Env. 2013, 164, 32–52. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Revised IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; Intergovernmental Panel on Climate Change (IPCC): London, UK, 1996; Available online: https://www.ipcc-nggip.iges.or.jp/meeting/pdfiles/2006GLs_scoping_meeting_report_final.pdf (accessed on 18 November 2019).
- Meisterling, K.; Samaras, C.; Schweizer, V. Decision to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. J. Clean. Prod. 2009, 17, 222–230. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- GENSTAT COMMITTEE, GENSTAT 7 Release 1 Reference Manual; Clarendon Press: Oxford, UK, 2004.
- Ronga, D.; Gallingani, T.; Zaccardelli, M.; Perrone, D.; Francia, E.; Milc, J.; Pecchioni, N. Carbon footprint and energetic analysis of tomato production in the organic vs. the conventional cropping systems in Southern Italy. J. Clean. Prod. 2019, 220, 836–845. [Google Scholar] [CrossRef] [Green Version]
- Higashide, T.; Heuvelink, E. Physiological and morphological changes over the past 50 years in yield components in tomato. J. Am. Soc. Hortic. Sci. 2009, 134, 460–465. [Google Scholar] [CrossRef] [Green Version]
- Di Cesare, L.F.; Migliori, C.; Ferrari, V.; Parisi, M.; Campanelli, G.; Candido, V.; Perrone, D. Effects of irrigation-fertilization and irrigation-mycorrhization on the alimentary and nutraceutical properties of tomatoes (Chapter 11). In Irrigation Systems and Practices in Challenging Environments; Lee, T.S., Ed.; InTechOpen Science: London, UK, 2012; pp. 207–232. [Google Scholar] [CrossRef]
- Marschner, H. Mineral. Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995; p. 889, eBook ISBN 9780080571874. [Google Scholar]
- Alam, M.M.; Billah, K.M.; Prince, M.H.; Hasan, K.M. Effect of Nitrogen and Phosphorous Fertilizer Application on the Growth and Yield of Tomato: A Mini-Review. Int. J. Adv. Agric. Sci. 2018. [Google Scholar]
- Di Cesare, L.F.; Migliori, C.; Viscardi, D.; Parisi, M. Quality of tomato fertilized with nitrogen and phosphorous. Ital. J. Food Sci. 2010, 22, 186–191. [Google Scholar]
- Parisi, M.; Giordano, I.; Pentangelo, A.; D’Onofrio, B.; Villari, G. Effects of different levels of nitrogen fertilization on yield and fruit quality in processing tomato. Acta Hortic. 2006, 700, 129–132. [Google Scholar] [CrossRef]
- Dorais, M.; Ehret, D.L.; Papadopoulos, A.P. Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytochem. Rev. 2008, 7, 231–250. [Google Scholar] [CrossRef]
- Hagassou, D.; Francia, E.; Ronga, D.; Buti, M. Blossom end-rot in tomato (Solanum lycopersicum L.): A multi-disciplinary overview of inducing factors and control strategies. Sci. Hortic. 2019, 249, 49–58. [Google Scholar] [CrossRef]
- Basso, B.; Ritchie, J.T.; Cammarano, D.; Sartori, L. A strategic and tactical management approach to select optimal N fertilizer rates for wheat in a spatially variable field. Eur. J. Agron. 2011, 35, 215–222. [Google Scholar] [CrossRef]
- De Santis, G.; Ronga, D.; Caradonia, F.; Ambrosio, T.D.; Troisi, J.; Rascio, A.; Fragassom, M.; Pecchioni, N.; Rinaldi, M. Evaluation of two groups of quinoa (Chenopodium quinoa Willd.) accessions with different seed colours for adaptation to the Mediterranean environment. Crop. Pasture Sci. 2019, 69, 1264–1275. [Google Scholar] [CrossRef]
- Farneselli, M.; Benincasa, P.; Tosti, G.; Pace, R.; Tei, F.; Guiducci, M. Nine-year results on maize and processing tomato cultivation in an organic and in a conventional low input cropping system. Ital. J. Agron. 2013, 8e2, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Tedone, L.; Verdini, L.; Grassano, N.; Tarraf, W.; De Mastro, G. Optimising nitrogen in order to improve the efficiency, eco-physiology, yield and quality on one cultivar of durum wheat. Ital. J. Agron. 2014, 9, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Conversa, G.; Lazzizera, C.; Bonasia, A.; Elia, A. Growth, N uptake and N critical dilution curve in broccoli cultivars grown under Mediterranean conditions. Sci. Hortic. 2019, 244, 109–121. [Google Scholar] [CrossRef]
- Poorter, H.; Sack, L. Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Front. Plant Sci. 2012, 3, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermans, C.; Hammond, J.P.; White, P.J.; Verbruggen, N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 2006, 11, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Tollenaar, M. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop. Sci. 1989, 29, 1365–1371. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Muñoz, P.; Assumpció, A.; Rieradevall, J. Assessment of tomato Mediterranean production in open-field and standard multi-tunnel greenhouse, with compost or mineral fertilizers, from an agricultural and environmental standpoint. J. Clean. Prod. 2011, 19, 985–997. [Google Scholar] [CrossRef]
- Abenavoli, M.R.; Longo, C.; Lupini, A.; Miller, A.J.; Araniti, F.; Mercati, F.; Sunseri, F. Phenotyping two tomato genotypes with different nitrogen use efficiency. Plant Phys. Biochem. 2006, 107, 21–32. [Google Scholar] [CrossRef]
- Good, A.G.; Shrawat, A.K.; Muench, D.G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci. 2004, 9, 597–605. [Google Scholar] [CrossRef]
- Xu, G.; Fan, X.; Miller, A.J. Plant nitrogen assimilation and use efficiency. Ann. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef] [Green Version]
- Sebilo, M.; Mayer, B.; Nicolardot, B.; Pinay, G.; Mariotti, A. Long-term fate of nitrate fertilizer in agricultural soils. Proc. Natl. Acad. Sci. USA 2013, 110, 18185–18189. [Google Scholar] [CrossRef] [Green Version]
- Cammarano, D.; Ceccarelli, S.; Grando, S.; Romagosa, I.; Benbelkacem, A.; Akar, T.; Ronga, D. The impact of climate change on barley yield in the Mediterranean basin. Eur. J. Agron. 2019, 106, 1–11. [Google Scholar] [CrossRef]
- Cammarano, D.; Hawes, C.; Squire, G.; Holland, J.; Rivington, M.; Murgia, T.; Ronga, D. Rainfall and temperature impacts on barley (Hordeum vulgare L.) yield and malting quality in Scotland. Field Crop. Res. 2019, 241, 107559. [Google Scholar] [CrossRef]
- Mastalerczuk, G.; Borawska-Jarmułowicz, B.; Kalaji, H.M.; Dąbrowski, P.; Paderewski, J. Gas-exchange parameters and morphological features of festulolium (Festulolium braunii K. Richert A. Camus) in response to nitrogen dosage. Photosynthetica 2017, 55, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Ntinas, G.K.; Neumair, M.; Tsadilas, C.D.; Meyer, J. Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions. J. Clean. Prod. 2017, 42, 3617–3626. [Google Scholar] [CrossRef]
Treatments | Unmarketable Fruit | Marketable Yield | Total Yield | Fruit Quality |
---|---|---|---|---|
t ha−1 | brix t ha−1 | |||
N-0 | 11.0 d | 44.1 e | 55.1 d | 2.15 d |
N-50 | 12.3 d | 62.8 d | 75.1 c | 3.05 c |
N-100 | 14.2 c | 75.7 c | 89.9 b | 3.63 b |
N-150 | 15.6 bc | 79.2 bc | 94.8 b | 3.79 b |
N-200 | 17.3 ab | 90.3 a | 107.6 a | 4.19 a |
N-250 | 18.0 a | 84.6 ab | 102.6 a | 4.03 a |
Significance | * | ** | ** | ** |
Treatments | Unmarketable Fruit | Marketable Yield | Total Yield | Fruit Quality |
---|---|---|---|---|
t ha−1 | brix t ha−1 | |||
N 0 | 11.0 e | 31.9 e | 42.9 e | 1.55 e |
N 50 | 15.0 d | 47.6 d | 62.6 d | 2.31 d |
N 100 | 19.6 c | 60.3 c | 79.9 c | 2.92 c |
N 150 | 23.9 b | 66.9 b | 90.8 b | 3.29 b |
N 200 | 25.9 b | 76.1 a | 102.0 a | 3.66 a |
N 250 | 30.2 a | 82.0 a | 112.2 a | 3.91 a |
Significance | ** | ** | ** | ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ronga, D.; Parisi, M.; Pentangelo, A.; Mori, M.; Di Mola, I. Effects of Nitrogen Management on Biomass Production and Dry Matter Distribution of Processing Tomato Cropped in Southern Italy. Agronomy 2019, 9, 855. https://doi.org/10.3390/agronomy9120855
Ronga D, Parisi M, Pentangelo A, Mori M, Di Mola I. Effects of Nitrogen Management on Biomass Production and Dry Matter Distribution of Processing Tomato Cropped in Southern Italy. Agronomy. 2019; 9(12):855. https://doi.org/10.3390/agronomy9120855
Chicago/Turabian StyleRonga, Domenico, Mario Parisi, Alfonso Pentangelo, Mauro Mori, and Ida Di Mola. 2019. "Effects of Nitrogen Management on Biomass Production and Dry Matter Distribution of Processing Tomato Cropped in Southern Italy" Agronomy 9, no. 12: 855. https://doi.org/10.3390/agronomy9120855
APA StyleRonga, D., Parisi, M., Pentangelo, A., Mori, M., & Di Mola, I. (2019). Effects of Nitrogen Management on Biomass Production and Dry Matter Distribution of Processing Tomato Cropped in Southern Italy. Agronomy, 9(12), 855. https://doi.org/10.3390/agronomy9120855