Prediction Models for Bioavailability of Mn, Cu, Zn, Ni and Pb in Soils of Republic of Serbia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Preparation
2.2. Soil Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of the Test Soil
3.2. Prediction Models
3.2.1. Manganese
3.2.2. Nickel
3.2.3. Lead
3.2.4. Zinc
3.2.5. Copper
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kabata-Pendias, A. Soil—plant transfer of trace elements—An environmental issue. Geoderma 2004, 122, 143–149. [Google Scholar] [CrossRef]
- Podlesáková, E.; Nemecek, J.; Vácha, R. Mobility and Bioavailability of Trace Elements in Soils. In Trace Elements in Soil: Bioavailability, Flux, and Transfer; Iskandar, I.K., Kirkham, M.B., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2001; pp. 21–42. ISBN 1-56670-507-X. [Google Scholar] [CrossRef]
- Carrillo-Gonzalez, R.; Simunek, J.; Sebastien, S.; Adriano, D. Mechanisms and pathways of trace element mobility in soils. Adv. Agron. 2006, 91, 111–179. [Google Scholar] [CrossRef]
- Hough, R.L. Copper and Lead. In Trace Elements in Soils; Hooda, P.S., Ed.; Wiley-Blackwell Publishing: West Sussex, UK, 2010; pp. 441–461. ISBN 978-1-405-16037-7. [Google Scholar]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer-Verlag: Berlin/Heidelberg, Germany, 2007; E-Book; ISBN 978-3-540-32714-1. [Google Scholar] [CrossRef]
- Bogdanović, D.; Ubavić, M.; Hadžić, V. Heavy metals in soil. In Heavy Metals in Environment; Kastori, R., Ed.; Institute of Field and Vegetable Crops: Novi Sad, Serbia, 1997; pp. 97–193. ISBN 86-80735-38-8. [Google Scholar]
- Adriano, D.C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, 2nd ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2001; ISBN 978-0-387-21510-5. [Google Scholar] [CrossRef]
- Dąbkowska-Naskręt, H.; Jaworska, H. Manganese mobility in soils under the impact of alkaline dust emission. J. Elem. 2013, 18, 371–379. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Szteke, B. Trace Elements in Abiotic and Biotic Environments; CRC Press: Boca Raton, FL, USA, 2015; ISBN 9781482212792. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Kidd, P.S.; Puschenreiter, M.; Rosenkranz, T. Nickel Biogeochemistry at the Soil–Plant Interface. In Nickel in Soils and Plants; Tsadilas, C., Rinklebe, J., Selim, M., Eds.; CRC Press: Boca Raton, FL, UAS, 2018; pp. 21–50. ISBN 9781498774604. [Google Scholar]
- Dalton, D.A. Essentiality of Nickel for Plants. In Nickel in Soils and Plants; Tsadilas, C., Rinklebe, J., Selim, M., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–20. ISBN 9781498774604. [Google Scholar]
- Schulin, R.; Johnson, A.; Frossard, E. Trace Element-Deficient Soils. In Trace Elements in Soils; Hooda, P.S., Ed.; Wiley-Blackwell Publishing: West Sussex, UK, 2010; pp. 175–194. ISBN 978-1-405-16037-7. [Google Scholar]
- Rutkowska, B.; Szulc, W.; Bomze, K.; Gozdowski, D.; Spychaj-Fabisiak, E. Soil factors affecting solubility and mobility of zinc in contaminated soils. Int. J. Environ. Sci. Technol. 2015, 12, 1687–1694. [Google Scholar] [CrossRef] [Green Version]
- Somasundaram, J.; Krishnasamy, R.; Mahimairaja, S.; Savithri, P. Dynamics of Lead (Pb) in Different Soil Conditions. J. Environ. Sci. Eng. 2006, 47, 123–128. [Google Scholar]
- Zan, N.R.; Datta, S.P.; Rattan, R.K.; Dwivedi, B.S.; Meena, M.C. Prediction of the solubility of zinc, copper, nickel, cadmium, and lead in metal-contaminated soils. Environ. Monit. Assess. 2013, 185, 10015–10025. [Google Scholar] [CrossRef] [PubMed]
- MvV. Circular on Target Values and Intervention Values for Soil Remediation. Dutch Target and Intervention Values, 2000 (the New Dutch List). Annexes. Ministerie van Volkshulsvesting, Ruimtelijke Ordeningen Milieubeheer; Ministry of Housing, Spatial Planning and the Environment: Barendrecht, The Netherlands; Available online: http://esdat.net/Environmental%20Standards/Dutch/annexS_I2000Dutch%20Environmental%20Standards.pdf (accessed on 19 September 2019).
- Martens, D.C.; Lindsay, W.L. Testing soils for copper, iron, manganese, and zinc. In Soil Testing and Plant Analysis, 3rd ed.; Westerman, R.L., Ed.; Soil Science Society of America, Inc.: Madison, WI, USA, 1990; pp. 229–264. ISBN 0-89118-793-6. [Google Scholar]
- Kashem, A.; Singh, B.R. Solid-Phase Speciation of Cd, Ni, and Zn in Contaminated and Noncontaminated Tropical Soils. In Trace Elements in Soil: Bioavailability, Flux, and Transfer; Iskandar, I.K., Kirkham, M.B., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2001; pp. 213–228. ISBN 9780429137907. [Google Scholar] [CrossRef]
- Ivezić, V. Trace metal availability in soils under different land uses of the Danube basin in Croatia. Ph.D. Thesis, Department of Plant and Environmental Sciences Norwegian University of Life Sciences, As, Norway, October 2011. [Google Scholar]
- Versluijs, C.W.; Otte, P.F. Accumulation of Metals in Plants. A Contribution to the Technical Evaluation of the Intervention Values and Site-Specific Risk Assessment of Contaminated Sites; RIVM report 711701024; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2001. [Google Scholar]
- Otte, P.F.; Lijzen, J.P.A.; Otte, J.G.; Swartjes, F.A.; Versluijs, C.W. Evaluation and Revision of the C Soil Parameter Set; RIVM report 711701021; National Institute of Public Health and the Environment: Bilthoven, The Netherlands, 2001. [Google Scholar]
- Krauss, M.; Wilcke, W.; Kobza, J.; Zech, W. Predicting heavy metal transfer from soil to plant: Potential use of Freundlich-type function. J. Plant. Nutr. Soil Sci. 2002, 165, 3–8. [Google Scholar] [CrossRef]
- Liang, Z.; Ding, Q.; Wei, D.; Li, J.; Chen, S.; Maa, Y. Major controlling factors and predictions for cadmium transfer from the soil into spinach plants. Ecotoxicol. Environ. Saf. 2013, 93, 180–185. [Google Scholar] [CrossRef]
- de Souza Braz, A.M.; Fernandes, A.R.; Ferreira, J.R.; Alleoni, L.R.F. Distribution coefficients of potentially toxic elements in soils from the eastern Amazon. Environ. Sci. Pollut. Res. 2013, 20, 7231–7242. [Google Scholar] [CrossRef]
- Buchter, B.; Davidoff, B.; Amacher, M.C.; Hinz, C.; Iskandar, I.K.; Selim, H.M. Correlation of Freundlich Kd and n retention parameters with soils and elements. Soil Sci. 1989, 148, 370–379. [Google Scholar] [CrossRef]
- Sauvé, S.; Hendershot, W.; Allen, H.E. Solid-Solution Partitioning of Metals in Contaminated Soils: Dependence on pH, Total Metal Burden, and Organic Matter. Environ. Sci. Technol. 2000, 34, 1125–1131. [Google Scholar] [CrossRef]
- Sauvé, S.; Manna, S.; Turmel, M.C.; Roy, A.G.; Courchesne, F. Solid−Solution Partitioning of Cd, Cu, Ni, Pb, and Zn in the Organic Horizons of a Forest Soil. Environ. Sci. Technol. 2003, 37, 5191–5196. [Google Scholar] [CrossRef] [PubMed]
- Gavriloaiei, T. The Influence of Electrolyte Solutions on Soil pH Measurements. Rev. Chim. 2012, 63, 396–400. [Google Scholar]
- Thomas, G.W. Soil pH and Soil Acidity. In Methods of Soil Analysis Part 3: Chemical Methods; SSSA Book Series 5; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 475–490. ISBN 978-0-89118-866-7. [Google Scholar]
- SRPS ISO 11464:2004 Soil Quality—Pretreatment of Samples for Physico-Chemical Analyses; SRPS, Institute for Standardisation of Republic of Serbia: Belgrade, Serbia, 2004.
- SRPS ISO 10390:2007 Soil Quality—Determination of pH; SRPS, Institute for Standardisation of Republic of Serbia: Belgrade, Serbia, 2007.
- SRPS ISO 10694:2005 Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis); SRPS, Institute for Standardisation of Republic of Serbia: Belgrade, Serbia, 2005.
- Hadžić, V.; Belić, M.; Nešić, L. Determination of the mechanical composition (texturally gravimetric) of the soil. In Methods of Research and Determination of Physical Properties of the Soil; Bošnjak, Đ., Ed.; JDPZ: Novi Sad, Serbia, 1997; pp. 17–32. (In Serbian) [Google Scholar]
- SRPS ISO 14870:2005 Soil Quality—Extraction of Trace Elements by Buffered DTPA Solution; SRPS, Institute for Standardisation of Republic of Serbia: Belgrade, Serbia, 2005.
- ISO 22036:2008 Soil quality—Determination of trace elements in extracts of soil by inductively coupled plasma—atomic emission spectrometry (ICP—AES); International Organization for Standardization ISO Central Secretariat: Geneva, Switzerland, 2008.
- SRPS ISO 11466:2004 Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia; SRPS: Institute for Standardisation of Republic of Serbia: Belgrade, Serbia, 2004.
- Official Gazette of Republic of Serbia. Rule Book of Allowed Concentrations of Dangerous and Hazardous Materials in Soil and in Water for Irrigation and Methods for Analysis, Official Gazette of Republic of Serbia 23; Official Gazette of Republic of Serbia: Belgrade, Serbia, 1994. (In Serbian)
- Barrett, W.; Jones, N.; Chu, P.; Pohlman, K.; Coleman, G.; Poole, H.; Goff, D.; Spiva, C.; Griffith, L.; Zwiep, J.; et al. Micronutrients. In Agronomy Handbook, Soil and Plant Analysis Resource Handbook; Ankerman, D., Large, R., Eds.; Midwest laboratories, INC.: Omaha, NE, USA, 2017; pp. 65–76. [Google Scholar]
- Hazelton, P.; Murphy, B. Interpreting Soil Test Results: What do all the Numbers Mean? 3rd ed.; CSIRO Publishing: Clayton, VIC, Australia, 2016; ISBN 9781486303960. [Google Scholar]
- Mrvić, V.; Zdravković, M.; Sikirić, B.; Čakmak, D.; Kostić-Kravljanac, L. Harmful and dangerous elements in soil. In Fertility and Content of Dangerous and Harmful Substances in Soils of Central Serbia; Mrvić, V., Antonović, G., Martinović, L., Eds.; Institute of soil science: Belgrade, Serbia, 2009; pp. 75–134. ISBN 978-86-911273-1-2. [Google Scholar]
- Moreira, C.S.; Alleoni, L.R.F. Adsorption of Cd, Cu, Ni and Zn in tropical soils under competitive and non-competitive systems. Sci. Agric. 2010, 67, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Gandois, L.; Probst, A.; Dumat, C. Modelling trace metal extractability and solubility in French forest soils by using soil properties. Eur. J. Soil Sci. 2010, 61, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, J.; Wei, D.; Li, B.; Ma, Y. Predicting Soluble Nickel in Soils Using Soil Properties and Total Nickel. PLoS ONE 2015, 10, e0133920. [Google Scholar] [CrossRef] [Green Version]
- Sungur, A.; Soylak, M.; Ozcan, H. Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: Relationship between soil properties and heavy metals availability. Chem. Speciat. Bioavailab. 2014, 26, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudabadi, E.; Sarmadian, F.; Nazary Moghaddam, R. Spatial distribution of soil heavy metals in different land uses of an industrial area of Tehran (Iran). Int. J. Environ. Sci. Technol. 2015, 12, 3283–3298. [Google Scholar] [CrossRef] [Green Version]
- Rékási, M.; Filep, T. Factors determining Cd, Co, Cr, Cu, Ni, Mn, Pb and Zn mobility in uncontaminated arable and forest surface soils in Hungary. Environ. Earth Sci. 2015, 74, 6805–6817. [Google Scholar] [CrossRef]
- Behera, S.K.; Shukla, A.K. Total and Extractable Manganese and Iron in Some Cultivated Acid Soils of India: Status, Distribution and Relationship with Some Soil Properties. Pedosphere 2014, 24, 196–208. [Google Scholar] [CrossRef]
- Hseu, Z.Y.; Chen, Z.S. Nickel in Serpentine Soils. In Nickel in Soils and Plants; Tsadilas, C., Rinklebe, J., Selim, M., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2018; pp. 181–198. ISBN 978-1498774604. [Google Scholar] [CrossRef]
- Nikoli, T.; Matsi, T. Methods of Ni Determination in Soils and Plants. In Nickel in Soils and Plants; Tsadilas, C., Rinklebe, J., Selim, M., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2018; pp. 199–216. ISBN 9781498774604. [Google Scholar] [CrossRef]
- Jahiruddin, M.; Harada, H.; Hatanaka, T.; Islam, M.R. Status of trace elements in agricultural soils of Bangladesh and relationship with soil properties. Soil Sci. Plant. Nutr. 2000, 46, 963–968. [Google Scholar] [CrossRef]
- Ivezić, V.; Almas, A.R.; Singh, B.R. Predicting the solubility of Cd, Cu, Pb and Zn in uncontaminated Croatian soils under different land uses by applying established regression models. Geoderma 2012, 170, 89–95. [Google Scholar] [CrossRef]
- de Vries, W.; Curlik, J.; Muranyi, A.; Alloway, B.; Groenenberg, B.J. Assessment of relationships between total and reactive concentrations of cadmium, copper, lead and zinc in Hungarian and Slovakian soils. Ekol. -Bratisl. 2005, 24, 152–169. [Google Scholar]
- Jopony, M.; Young, S.D. The solid solution equilibria of lead and cadmium in polluted soils. Eur. J. Soil Sci. 1994, 45, 59–70. [Google Scholar] [CrossRef]
- McBride, M.; Sauve, S.; Hendershot, W. Solubility control of Cu, Zn, Cd and Pb in contaminated soils. Eur. J. Soil Sci. 1997, 48, 337–346. [Google Scholar] [CrossRef]
- Dragović, S.; Mihailović, N.; Gajić, B. Heavy metals in soils: Distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere 2008, 72, 491–495. [Google Scholar] [CrossRef]
- Mondaca, P.; Neaman, A.; Sauvé, S.; Salgado, E.; Bravo, M. Solubility, partitioning, and activity of copper-contaminated soils in a semiarid region. J. Plant. Nutr. Soil Sci. 2015, 178, 452–459. [Google Scholar] [CrossRef]
- Blume, H.P.; Brümmer, G.W.; Fleige, H.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.M. Threats to the Soil Functions. In Scheffer/Schachtschabel Soil Science; Springer: Berlin/Heidelberg, Germany, 2016; pp. 485–559. ISBN1 978-3-642-30942-7. ISBN2 978-3-642-30941-0. (eBook). [Google Scholar] [CrossRef]
- Tan, K.H. Principles of Soil Chemistry, 4th ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010; ISBN 9781439894606. [Google Scholar] [CrossRef]
- Bloom, P.R.; Skyllberg, U. Soil pH and pH Buffering. In Handbook of Soil Sciences: Properties and Processes, 2nd ed.; Huang, P.M., Li, Y., Sumner, M.E., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 19:1–19:14. ISBN 9781439803059. [Google Scholar] [CrossRef]
- Kim, R.Y.; Yoon, J.K.; Kim, T.S.; Yang, J.E.; Owens, G.; Kim, K.R. Bioavailability of heavy metals in soils: Definitions and practical implementation—A critical review. Environ. Geochem. Health 2015, 37, 1041–1061. [Google Scholar] [CrossRef]
- Brümmer, G.W. Heavy Metal Species, Mobility and Availability in Soils. In The Importance of Chemical “Speciation” in Environmental Processes; Bernhard, M., Brinckman, F.E., Sadler, P.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; Volume 33, pp. 169–192. ISBN 978-3-642-70443-7. [Google Scholar] [CrossRef]
- Mleczek, M.; Gąsecka, M.; Kaniuczak, J.; Goliński, P.; Szostek, M.; Magdziak, Z.; Rutkowski, P.; Budzyńska, S. Dendroremediation: The Role of Trees in Phytoextraction of Trace Elements. In Phytoremediation; Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R., Newman, L., Eds.; Springer: Cham, Switzerland, 2018; pp. 269–295. ISBN 978-3-319-99650-9. [Google Scholar] [CrossRef]
- Brümmer, G.; Herms, U. Influence of Soil Reaction and Organic Matter on the Solubility of Heavy Metals in Soils. In Effects of Accumulation of Air Pollutants in Forest Ecosystems, Proceedings of a Workshop held at Göttingen, West Germany, 16–18 May 1983; Ulrich, B., Pankrath, J., Eds.; Springer: Heidelberg, Germany, 1983; pp. 233–243. [Google Scholar] [CrossRef]
- Murray, K.S.; Rogers, D.T.; Kaufman, M.M. Heavy metals in an urban watershed in Southeastern Michigan. J. Environ. Qual. 2004, 33, 163–172. [Google Scholar] [CrossRef]
- Abd-Elfattah, A.; Wada, K. Adsorption of lead, copper, zinc, cobalt, and cadmium by soils that differ in cation-exchange materials. J. Soil Sci. 1981, 32, 271–283. [Google Scholar] [CrossRef]
- Tiller, K.G.; Gerth, J.; Brümmer, G. The relative affinities of Cd, Ni and Zn for different soil clay fractions and goethite. Geoderma 1984, 34, 17–35. [Google Scholar] [CrossRef]
- Helios Rybicka, E.; Calmano, W.; Breeger, A. Heavy metals sorption/desorption on competing clay minerals; an experimental study. Appl. Clay Sci. 1995, 9, 369–381. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010; ISBN 9781420093681. [Google Scholar] [CrossRef]
- Belanović, S.; Čakmak, D.; Kadović, R.; Beloica, J.; Perović, V.; Alnaass, N.; Saljnikov, E. Availability of some trace elements (Pb, Cd, Cu and Zn) in relation to the properties of pasture soils in Stara Planina Mountain. Bull. Fac. For. 2012, 106, 41–56. [Google Scholar] [CrossRef]
- Lončarić, Z.; Popović, B.; Karalić, K.; Rékási, M.; Kovačević, V. Regression model for prediction availability of essential heavy metals in soils. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; Gilkes, R.J., Prakongkep, N., Eds.; IUSS (International Union of Soil Sciences): Brisbane, Australia, 2010; pp. 92–95, ISBN 978-0-646-53783-2. [Google Scholar]
Parameters | Minimum | Maximum | Mean | Median | N | MPL 1/ High Values 2 |
---|---|---|---|---|---|---|
pH in 1M KCl | 3.60 | 7.55 | 5.26 | 4.90 | 240 | |
SOM % | 1.11 | 8.74 | 3.16 | 2.88 | 240 | |
Clay % | 5.60 | 56.4 | 27.7 | 28.2 | 240 | |
Aqua regia—Extractable TE (mg kg−1) | ||||||
Mn | 201 | 1670 | 612 | 587 | 240 | / |
Ni | 14.0 | 194 | 40.4 | 31.5 | 240 | 50 |
Pb | 4.35 | 128 | 23.2 | 14.7 | 240 | 100 |
Zn | 17.7 | 160 | 61.2 | 53.5 | 240 | 300 |
Cu | 5.52 | 120 | 22.6 | 18.4 | 240 | 100 |
DTPA—Extractable TE (mg kg−1) | ||||||
Mn | 1.12 | 21.9 | 30.6 | 28.0 | 240 | 13 |
Ni | 0.39 | 17.6 | 2.03 | 1.82 | 240 | / |
Pb | 1.44 | 45.5 | 2.44 | 1.75 | 240 | / |
Zn | 0.40 | 60.2 | 1.71 | 0.88 | 240 | 3 |
Cu | 2.92 | 38.5 | 3.19 | 2.37 | 240 | 1.3 |
Parameters | Minimum | Maximum | Mean | Median | N | MPL 1/ High Values 2 |
---|---|---|---|---|---|---|
pH in H2O | 4.50 | 8.30 | 6.15 | 5.80 | 204 | |
pH in 1M KCl | 3.60 | 7.55 | 5.15 | 4.80 | 204 | |
SOM % | 1.38 | 8.34 | 3.06 | 2.81 | 204 | |
Clay % | 6.20 | 56.4 | 29.0 | 29.5 | 204 | |
Aqua regia-Extractable TE (mg kg−1) | ||||||
Mn | 201 | 1670 | 604 | 580 | 204 | / |
Ni | 14.0 | 102 | 36.6 | 30.9 | 204 | 50 |
Pb | 4.35 | 92.6 | 17.7 | 13.6 | 204 | 100 |
Zn | 17.7 | 136 | 56.8 | 50.7 | 204 | 300 |
Cu | 5.52 | 100 | 21.2 | 16.6 | 204 | 100 |
DTPA-Extractable TE (mg kg−1) | ||||||
Mn | 5.60 | 232 | 29.7 | 27.6 | 204 | 13 |
Ni | 0.11 | 6.34 | 1.89 | 1.81 | 204 | / |
Pb | 0.33 | 11.0 | 2.13 | 1.68 | 204 | / |
Zn | 0.24 | 10.6 | 1.11 | 0.80 | 204 | 3 |
Cu | 0.43 | 30.2 | 3.14 | 2.28 | 204 | 1.3 |
Estimated Regression Model for TEDTPA | R2 | N |
---|---|---|
log(TEDTPA Mn) = −1.38 − 0.09log(pH) + 0.10log(SOM) − 0.27log(Clay) + 1.30log(TEAR Mn) | 0.50 | 240 |
log(TEDTPA Ni) = −0.73 − 0.11log(pH) + 0.09log(SOM) + 0.21log(Clay) + 0.75log(TEAR Ni) | 0.25 | 240 |
log(TEDTPA Pb) = −0.66 − 0.03log(pH) + 0.05log(SOM) + 0.09log(Clay) + 0.76log(TEAR Pb) | 0.60 | 240 |
log(TEDTPA Zn) = −1.77 + 0.02log(pH) + 0.29log(SOM) − 0.70log(Clay) + 1.42log(TEAR Zn) | 0.47 | 240 |
log(TEDTPA Cu) = −0.67 − 0.05log(pH) − 0.24log(SOM) − 0.03log(Clay) + 1.16log(TEAR Cu) | 0.76 | 240 |
Estimated Regression Model for TEDTPA | R2 | N |
---|---|---|
log(TEDTPA Mn) = −1.42 − 0.09log(pH) − 0.09log(SOM) − 0.06log(Clay) + 1.23log(TEAR Mn) | 0.54 | 204 |
log(TEDTPA Ni) = −1.23 − 0.07log(pH) − 0.28log(SOM) + 0.89log(Clay) + 0.41log(TEAR Ni) | 0.38 | 204 |
log(TEDTPA Pb) = −0.85 − 0.03log(pH) + 0.17log(SOM) − 0.043og(Clay) + 1.02log(TEAR Pb) | 0.83 | 204 |
log(TEDTPA Zn) = −1.80 + 0.01og(pH) + 0.12log(SOM) − 0.88log(Clay) + 1.66log(TEAR Zn) | 0.41 | 204 |
log(TEDTPA Cu) = −0.78 − 0.04log(pH) − 0.32log(SOM) − 0.04log(Clay) + 1.26log(TEAR Cu) | 0.85 | 204 |
Estimated Regression Model for TEDTPA | R2 | N |
---|---|---|
log(TEDTPA Mn) = −1.35 − 0.10log(pH) − 0.13log(SOM) − 0.03log(Clay) + 1.24log(TEAR Mn) | 0.54 | 204 |
log(TEDTPA Ni) = −1.16 − 0.08log(pH) − 0.31log(SOM) + 0.91log(Clay) + 0.43log(TEAR Ni) | 0.38 | 204 |
log(TEDTPA Pb) = −0.83 − 0.03log(pH) + 0.15log(SOM) − 0.03log(Clay) + 1.03log(TEAR Pb) | 0.83 | 204 |
log(TEDTPA Zn) = −1.80 + 0.012og(pH) + 0.13log(SOM) − 0.89log(Clay) + 1.66log(TEAR Zn) | 0.41 | 204 |
log(TEDTPA Cu) = −0.74 − 0.05log(pH) − 0.34log(SOM) − 0.02log(Clay) + 1.26log(TEAR Cu) | 0.85 | 204 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinić, Z.; Maksimović, J.; Stanojković-Sebić, A.; Pivić, R. Prediction Models for Bioavailability of Mn, Cu, Zn, Ni and Pb in Soils of Republic of Serbia. Agronomy 2019, 9, 856. https://doi.org/10.3390/agronomy9120856
Dinić Z, Maksimović J, Stanojković-Sebić A, Pivić R. Prediction Models for Bioavailability of Mn, Cu, Zn, Ni and Pb in Soils of Republic of Serbia. Agronomy. 2019; 9(12):856. https://doi.org/10.3390/agronomy9120856
Chicago/Turabian StyleDinić, Zoran, Jelena Maksimović, Aleksandra Stanojković-Sebić, and Radmila Pivić. 2019. "Prediction Models for Bioavailability of Mn, Cu, Zn, Ni and Pb in Soils of Republic of Serbia" Agronomy 9, no. 12: 856. https://doi.org/10.3390/agronomy9120856
APA StyleDinić, Z., Maksimović, J., Stanojković-Sebić, A., & Pivić, R. (2019). Prediction Models for Bioavailability of Mn, Cu, Zn, Ni and Pb in Soils of Republic of Serbia. Agronomy, 9(12), 856. https://doi.org/10.3390/agronomy9120856