Growth, Seed Yield, Mineral Nutrients and Soil Properties of Sesame (Sesamum indicum L.) as Influenced by Biochar Addition on Upland Field Converted from Paddy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Soil and Biochar Properties
2.3. Experimental Design and Treatments
2.4. Sampling and Analyses
2.4.1. Plant Sampling
2.4.2. Soil Sampling
2.5. Data Analyses
3. Results
3.1. Effect of Rice Husk Biochar on the Growth and Yield Components of Sesame
3.2. Effect of Rice Husk Biochar on the Leaf Tissue and Sesame Seed Nutrient Concentration
3.3. Effect of Biochar on Soil Physico-Chemical Properties in First and Second Cropping Fields
4. Discussion
4.1. Effect of Biochar on Soil Physico-Chemical Properties in First and Second Cropping Fields
4.2. Effect of Rice Husk Biochar on the Leaf Tissue and Sesame Seed Nutrient Concentration
4.3. Effect of Rice Husk Biochar on the Growth and Yield Components of Sesame
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ashri, A. Sesame. In Oil Crops of the World; Robbelen, G., Downey, R.K., Ashri, A., Eds.; McGraw Hill: New York, NY, USA, 1989; pp. 375–387. [Google Scholar]
- Borchani, C.; Besbes, S.; Blecker, C.; Attia, H. Chemical Characteristics and Oxidative Stability of Sesame Seed, Sesame Paste, and Olive Oils. J. Agric. Sci. Technol. 2010, 12, 585–596. [Google Scholar]
- Nzikou, J.M.; Matos, L.; Kalou, G.B.; Ndangui, C.B.; Tobi, N.P.G.P.; Kimbonguila, A.; Silou, T.; Linder, M.; Desobry, S. Chemical Composition on the Seeds and Oil of Sesame (Sesamum indicum L.) Grown in Congo-Brazzaville. Adv. J. Food Sci. Technol. 2009, 1, 6–11. [Google Scholar]
- Dossa, K.; Diouf, D.; Wang, L.; Wei, X.; Zhang, Y.; Niang, M.; Fonceka, D.; Yu, J.; Mmadi, M.A.; Yehouessi, L.W.; et al. The Emerging Oilseed Crop Sesamum indicum Enters the “Omics” Era. Front. Plant Sci. 2017, 8, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Yasumoto, S.; Katsuta, M. Breeding a high-lignan-content sesame cultivar in the prospect of promoting metabolic functionality. Japan Agric. Res. Q. 2006, 40, 123–129. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Statistical Database. 2016. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 20 July 2018).
- Chono, S.; Maeda, S.; Kawachi, T.; Imagawa, C.; Buma, N. Optimization model for cropping-plan placement in paddy fields considering agricultural profit and nitrogen load management in Japan. Paddy Water Environ. 2012, 10, 113–120. [Google Scholar] [CrossRef]
- MAFF. FY2013 Annual Report on Food, Agriculture and Rural Areas in Japan Summary Ministry of Agriculture, Forestry and Fisheries; MAFF: Tokyo, Japan, 2014.
- Nishida, M. Decline in fertility of paddy soils induced by paddy rice and upland soybean rotation, and measures against the decline. Japan Agric. Res. Q. 2016, 50, 87–94. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. Biochar Environ. Manag. Sci. Technol. 2009, 1, 1–12. [Google Scholar] [CrossRef]
- Jones, D.L.; Rousk, J.; Edwards-Jones, G.; DeLuca, T.H.; Murphy, D.V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 2012, 45, 113–124. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S.; Journal, A. Agronomic values of green waste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Nelissen, V.; Ruysschaert, G.; Manka’Abusi, D.; D’Hose, T.; De Beuf, K.; Al-Barri, B.; Cornelis, W.; Boeckx, P. Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. Eur. J. Agron. 2015, 62, 65–78. [Google Scholar] [CrossRef]
- Lu, S.G.; Sun, F.F.; Zong, Y.T. Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). Catena 2014, 114, 37–44. [Google Scholar] [CrossRef]
- Lehmann, J.; Pereira da Silva, J.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a\rFerralsol of the Central Amazon basin: Fertilizer, manure and charcoal\ramendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Xu, C.Y.; Hosseini-Bai, S.; Hao, Y.; Rachaputi, R.C.N.; Wang, H.; Xu, Z.; Wallace, H. Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils. Environ. Sci. Pollut. Res. 2015, 22, 6112–6125. [Google Scholar] [CrossRef] [PubMed]
- Rogovska, N.; Laird, D.A.; Rathke, S.J.; Karlen, D.L. Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma 2014, 230–231, 34–347. [Google Scholar] [CrossRef]
- Elmer, W.H.; Pignatello, J.J. Effect of Biochar Amendments on Mycorrhizal Associations and Fusarium Crown and Root Rot of Asparagus in Replant Soils. Plant Dis. 2011, 95, 960–966. [Google Scholar] [CrossRef]
- van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Woldetsadik, D.; Drechsel, P.; Marschner, B.; Itanna, F.; Gebrekidan, H. Effect of biochar derived from faecal matter on yield and nutrient content of lettuce (Lactuca sativa) in two contrasting soils. Environ. Syst. Res. 2018, 6. [Google Scholar] [CrossRef]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Haefele, S.M.; Konboon, Y.; Wongboon, W.; Amarante, S.; Maarifat, A.A.; Pfeiffer, E.M.; Knoblauch, C. Effects and fate of biochar from rice residues in rice-based systems. Field Crops Res. 2011, 121, 430–440. [Google Scholar] [CrossRef]
- Zhang, A.; Cui, L.; Pan, G.; Li, L.; Hussain, Q.; Zhang, X.; Zheng, J.; Crowley, D. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. 2010, 139, 469–475. [Google Scholar] [CrossRef]
- Ali, K.; Arif, M.; Shah, F.; Shehzad, A.; Munsif, F.; Mian, I.A.; Mian, A.A. Improvement in maize (Zea mays L.) growth and quality through integrated use of biochar. Pak. J. Bot. 2017, 49, 85–94. [Google Scholar]
- Varela Milla, E.B.; Rivera, W.-J.; Huang, C.-C.; Chien, Y.-M.W. Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field tes. J. Soil Sci. Plant Nutr. 2013, 13, 251–266. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Salazar, P.; Barrón, V.; Torrent, J.; Del Campillo, M.D.C.; Gallardo, A.; Villar, R. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron. Sustain. Dev. 2013, 33, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Baronti, S.; Alberti, G.; Vedove, G.D.; di Gennaro, F.; Fellet, G.; Genesio, L.; Miglietta, F.; Peressotti, A.; Vaccari, F.P. The biochar option to improve plant yields: First results from some field and pot experiments in Italy. Ital. J. Agron. 2010, 5, 3–11. [Google Scholar] [CrossRef]
- Cornelissen, G.; Nurida, N.L.; Hale, S.E.; Martinsen, V.; Silvani, L.; Mulder, J. Science of the Total Environment Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. Sci. Total Environ. 2018, 634, 561–568. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; de Macêdo, J.L.V.; Blum, W.E.H.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2014, 291, 275–290. [Google Scholar] [CrossRef]
- Carter, S.; Shackley, S.; Sohi, S.; Suy, T.; Haefele, S. The Impact of Biochar Application on Soil Properties and Plant Growth of Pot Grown Lettuce (Lactuca sativa) and Cabbage (Brassica chinensis). Agronomy 2013, 3, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Chen, C.; Chen, X.; Jiang, F.; Hopkins, I.; Zhang, X.; Han, Z.; Billy, G.; Benavides, J. Field Crops Research Soil acidity, available phosphorus content, and optimal biochar and nitrogen fertilizer application rates: A five-year field trial in upland red soil, China. Field Crops Res. 2019, 232, 77–87. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R.; Hamdan, R.; Cooper, W.T. Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging. Solid Earth 2014, 5, 693–704. [Google Scholar] [CrossRef]
- Furtado, G.F.; Chaves, L.H.G.; Lima, G.S.; Andrade, E.M.G.; Souza, L.P. Growth of sesame in function with NPK and poultry litter biochar. Int. J. Curr. Res. 2016, 8, 38499–38504. [Google Scholar]
- Ndor, E.; Jayeoba, O.; Asadu, C. Effect of Biochar Soil Amendment on Soil Properties and Yield of Sesame Varieties in Lafia, Nigeria. Am. J. Exp. Agric. 2015, 9, 1–8. [Google Scholar] [CrossRef]
- Nurhayati, D.R. The effect of coconut shell charcoal on sesame (Sesamum indicum L.) yield grown on coastal sandy land area in bantul, indonesia. Int. Res. J. Eng. Technol. 2017, 4, 1035–1041.39. [Google Scholar]
- Hussain, M.; Farooq, M.; Nawaz, A.; Al-Sadi, A.M.; Solaiman, Z.M.; Alghamdi, S.S.; Ammara, U.; Ok, Y.S.; Siddique, K.H.M. Biochar for crop production: Potential benefits and risks. J. Soils Sediments 2017, 17, 685–716. [Google Scholar] [CrossRef]
- FAO/IIASA/ISRIC/ISS-CAS/JRC. Harmonized World Soil Database (Version 1.2); FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2012. [Google Scholar]
- Truog, E. The determination of the readily available phosphorous of soils. Agron. J. 1930, 22, 874–882. [Google Scholar] [CrossRef]
- Chapman, H.D. Cation–exchange capacity. In Methods of Soil Analysis–Chemical and Microbiological Properties; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 891–901. [Google Scholar]
- Estefan, G.; Sommer, R.; Ryan, J. Methods of Soil, Plant, and Water Analysis: A Manual for the West Asia and North; International Center for Agricultural Research in the Dry Area (ICARDA): Beirut, Lebanon, 2013. [Google Scholar]
- Mitchell, G.A.; Bingham, F.T.; Yermanos, D.M. Growth, mineral composition and seed characteristics of sesame as affected by nitrogen, phosphorus and potassium nutrition. Soil Sci. Am. Proc. 1974, 38, 925–931. [Google Scholar] [CrossRef]
- Downie, A.; Crosky, A.; Munroe, P. Physical properties of biochar. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 13–32. [Google Scholar]
- Reeves, D.W. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res. 1997, 43, 131–167. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Calero, J.M.; Barrón, V.; Torrent, J.; del Campillo, M.C.; Gallardo, A.; Villar, R. Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J. Plant Nutr. Soil Sci. 2014, 177, 16–25. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, R.; Liu, R. Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. J. Anal. Appl. Pyrolysis 2014, 110, 375–381. [Google Scholar] [CrossRef]
- Sollins, P.; Robertson, G.P.; Uehara, G. Nutrient mobility in variable- and permanent- charge soils. Biogeochemistry 1988, 6, 181–199. [Google Scholar] [CrossRef]
- Bargmann, I.; Rillig, M.C.; Kruse, A.; Greef, J.M.; Kücke, M. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. J. Plant Nutr. Soil Sci. 2014, 177, 48–58. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Limwikran, T.; Kheoruenromne, I.; Suddhiprakarn, A.; Prakongkep, N.; Gilkes, R.J. Dissolution of K, Ca, and P from biochar grains in tropical soils. Geoderma 2018, 312, 139–150. [Google Scholar] [CrossRef]
- Abrishamkesh, S.; Gorji, M.; Asadi, H.; Bagheri-Marandi, G.H.; Pourbabaee, A.A. Effects of rice husk biochar application on the properties of alkaline soil and lentil growth. Plant Soil Environ. 2015, 62, 475–482. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Jien, S.H.; Wang, C.S. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 2013, 110, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Masulili, A.; Utomo, W.H.; MS, S. Rice Husk Biochar for Rice Based Cropping System in Acid Soil 1. The Characteristics of Rice Husk Biochar and Its Influence on the Properties of Acid Sulfate Soils and Rice Growth in West Kalimantan, Indonesia. J. Agric. Sci. 2010, 2. [Google Scholar] [CrossRef]
- Si, L.; Xie, Y.; Ma, Q. The Short-Term Effects of Rice Straw Biochar, Nitrogen and Phosphorus Fertilizer on Rice Yield and Soil Properties in a Cold Waterlogged Paddy Field. Sustainability 2018, 10, 537. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Nahar, K.; Awal, A.; Masud, C.; Fujita, M. Potassium: A Vital Regulator of Plant Responses and Tolerance to Abiotic Stresses. Agronomy 2018, 8, 31. [Google Scholar] [CrossRef]
- Koyama, S.; Hayashi, H. Rice yield and soil carbon dynamics over three years of applying rice husk charcoal to an Andosol paddy field. Plant Prod. Sci. 2017, 20, 176–182. [Google Scholar] [CrossRef]
- Syuhada, A.B.; Shamshuddin, J.; Fauziah, C.I.; Rosenani, A.B.; Arifin, A. Biochar as soil amendment: Impact on chemical properties and corn nutrient uptake in a Podzol. Can. J. Soil Sci. 2016, 412, 1–13. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson Education Ltd.: London, UK, 2016; p. 381. [Google Scholar]
- Zemanová, V.; Břendová, K.; Pavlíková, D.; Kubátová, P.; Tlustoš, P. Effect of biochar application on the content of nutrients(Ca, Fe, K, Mg, Na, P) and amino acids in subsequently growing spinach and mustard. Plant Soil Environ. 2017, 63, 322–327. [Google Scholar] [CrossRef]
- Butnan, S.; Deenik, J.L.; Toomsan, B.; Antal, M.J.; Vityakon, P. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 2015, 237, 105–116. [Google Scholar] [CrossRef]
- Khan, I.A.A. Biochar application and shoot cutting duration (days) influenced growth, yield and yield contributing parameters of Brassica napus L. J. Biol. Agric. Healthc. 2015, 7, 104–108. [Google Scholar]
- Schulz, H.; Dunst, G.; Glaser, B. Positive effects of composted biochar on plant growth and soil fertility. Agron. Sustain. Dev. 2013, 33, 817–827. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Thavamani, P.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environ. Int. 2016, 87, 1–12. [Google Scholar] [CrossRef]
- Persaud, T.; Homenauth, O.; Fredericks, D.; Hamer, S. Effect of Rice Husk Biochar as an Amendment on a Marginal Soil in Guyana. J. World Environ. 2018, 8, 20–25. [Google Scholar] [CrossRef]
- Borchard, N.; Siemens, J.; Ladd, B.; Möller, A.; Amelung, W. Soil & Tillage Research Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil Tillage Res. 2014, 144, 184–194. [Google Scholar]
- Clough, T.; Condron, L.M.; Kammann, C.; Muller, C. A Review of Biochar and Soil Nitrogen Dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Haider, G.; Steffens, D.; Moser, G.; Müller, C.; Kammann, C.I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 2017, 237, 80–94. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Bol, R. A Review of Biochar and Its Use and Function in Soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar]
- Spokas, K.A.; Novak, J.M.; Masiello, C.A.; Johnson, M.G.; Colosky, E.C.; Ippolito, J.A.; Trigo, C. Physical Disintegration of Biochar: An Overlooked Process. Environ. Sci. Technol. Lett. 2014, 1, 326–332. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Rondon, M. Bio-Char Soil Management on Highly Weathered Soils in the Humid Tropics. In Biological Approaches to Sustainable Soil Systems; Uphoff, N., Ed.; CRC Press: Boca Ration, FL, USA, 2006; pp. 517–530. [Google Scholar]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Hagemann, N.; Harter, J.; Kaldamukova, R.; Guzman-bustamante, I.; Ruser, R.; Graeff, S. Does soil aging affect the N2O mitigation potential of biochar? A combined microcosm and field study. GCB Bioenergy 2017, 9, 953–964. [Google Scholar] [CrossRef]
- Khorram, M.S.; Lin, D.; Zhang, Q.; Zheng, Y.; Fang, H.; Yu, Y. Effects of aging process on adsorption—desorption and bioavailability of fomesafen in an agricultural soil amended with rice hull biochar. J. Environ. Sci. 2016, 56, 180–191. [Google Scholar] [CrossRef]
- Mahmoud, A.H.; Saleh, M.E.; Abdel-Salam, A.A. Effect of Rice Husk Biochar on Cadmium Immobilization in Soil and Uptake by Wheat Plant Grown on Lacustrine Soil. Alex. J. Agric. Res. 2011, 56, 117–125. [Google Scholar]
- Woolf, D.; Amonette, J.E.; Street-perrott, F.A.; Lehmann, J.; Joseph, S. climate change. Nat. Commun. 2010, 1, 1–9. [Google Scholar] [CrossRef]
- Clare, A.; Shackley, S.; Joseph, S.; Hammond, J. Competing uses for China’s straw: The economic and carbon abatement potential of biochar. GCB Bioenergy 2015, 7, 1272–1282. [Google Scholar] [CrossRef]
Cropping | Biochar Treatment | Plant Height (cm) | Height of First Capsule (cm) | Number of Branches/Plant | 1000-Seeds Weight (g) |
---|---|---|---|---|---|
First cropping | F | 140.60 ab | 68.12 a | 1.72 b | 2.16 a |
F+20B | 137.85 b | 64.26 a | 2.03 b | 2.08 a | |
F+50B | 157.63 a | 67.48 a | 3.01 a | 2.23 a | |
F+100B | 152.47 ab | 70.37 a | 2.07 ab | 1.97 a | |
Second cropping | F | 114.42 b | 55.93 a | 2.34 a | 1.93 a |
F+20B | 134.71 ab | 57.50 a | 2.29 a | 2.13 a | |
F+50B | 124.30 ab | 58.14 a | 2.48 a | 2.03 a | |
F+100B | 139.63 a | 59.02 a | 2.45 a | 2.03 a | |
Source of variation | |||||
Biochar (B) | ** | ns | ns | ns | |
Cropping (C) | *** | *** | ns | ns | |
B × C | * | ns | ns | ns |
Cropping | Biochar Rate | N (%) | K (%) | P (%) | Ca (%) | Mg (%) |
---|---|---|---|---|---|---|
First cropping | F | 2.79 a | 2.89 b | 0.70 a | 1.72 a | 0.36 ab |
F+20B | 2.99 a | 3.10 ab | 0.68 a | 1.66 a | 0.33 b | |
F+50B | 3.26 a | 4.94 a | 0.71 a | 1.98 a | 0.49 a | |
F+100B | 3.31 a | 3.46 ab | 0.67 a | 1.58 a | 0.32 b | |
Second cropping | F | 2.91 a | 2.41 a | 0.44 a | 1.53 a | 0.35 a |
F+20B | 3.04 a | 2.69 a | 0.49 a | 1.47 a | 0.34 a | |
F+50B | 3.15 a | 2.75 a | 0.51 a | 1.46 a | 0.32 a | |
F+100B | 3.11 a | 2.49 a | 0.44 a | 1.33 a | 0.30 a | |
Source of variation | ||||||
Biochar (B) | ns | ** | ns | ns | * | |
Cropping (C) | ns | *** | * | ns | * | |
B × C | ns | ns | ns | ns | * |
Cropping | Biochar Rate | Crude Protein (%) | mg/100 g Seed | |||
---|---|---|---|---|---|---|
P | K | Ca | Mg | |||
First cropping | F | 20.0 a | 612.6 a | 744.7 b | 1222.2 a | 419.0 a |
F+20B | 19.8 a | 640.7 a | 794.9 ab | 1275.6 a | 416.2 a | |
F+50B | 20.6 a | 636.6 a | 846.7 a | 1321.5 a | 409.6 a | |
F+100B | 19.1 a | 617.6 a | 833.8 a | 1280.8 a | 403.2 a | |
Second cropping | F | 18.9b | 560.6 a | 820.9 a | 1252.2 a | 396.9 a |
F+20B | 20.4 ab | 640.7 a | 794.6 a | 1419.7 a | 398.7 a | |
F+50B | 21.2 a | 617.3 a | 857.6 a | 1315.5 a | 389.8 a | |
F+100B | 20.9 a | 608.9 a | 859.0 a | 1382.3 a | 422.4 a | |
Source of variation | ||||||
Biochar (B) | ns | ns | ** | ns | ns | |
Cropping (C) | ns | ns | ns | ns | ns | |
B × C | ns | ns | ns | ns | ns |
Cropping | Biochar Rate | pH | EC (dSm−1) | TN (g kg−1) | C/N | P (mg kg−1) | CEC (cmolc kg−1) | Exchangeable Cations | ||
---|---|---|---|---|---|---|---|---|---|---|
K (mg kg−1) | Ca (mg kg−1) | Mg (mg kg−1) | ||||||||
First cropping | F | 5.65 b | 0.10 ab | 2.40 a | 10.1 c | 13.3 a | 9.9 b | 190.7 c | 3272.2 a | 281.6 a |
F+20B | 5.52 b | 0.18 a | 2.40 a | 14.4 bc | 46.4 a | 12.3 ab | 292.6 bc | 3303.7 a | 250.0 ab | |
F+50B | 5.97 ab | 0.09 b | 2.60 a | 25.1 b | 20.9 a | 12.5 ab | 408.0 b | 2217.1 a | 224.6 ab | |
F+100B | 6.38 a | 0.12 ab | 2.89 a | 50.6 a | 31.2 a | 14.5 a | 686.1 a | 1683.5 a | 198.1 b | |
Second cropping | F | 5.54 a | 0.08 b | 2.09 b | 10.3 c | 40.2 a | 11.5 b | 179.5 b | 3213.1 a | 248.7 a |
F+20B | 5.84 a | 0.08 b | 2.18 ab | 15.6 bc | 19.1 a | 13.2 ab | 158.8 b | 1326.6 a | 215.8 a | |
F+50B | 5.49 a | 0.20 a | 2.29 ab | 19.1 b | 36.9 a | 12.9 ab | 447.4 a | 2575.9 a | 244.7 a | |
F+100B | 5.68 a | 0.09 b | 2.53 a | 31.4 a | 33.5 a | 14.3 a | 386.6 a | 1767.3 a | 215.8 a | |
Source of variation | ||||||||||
Biochar (B) | ns | * | * | *** | ns | *** | *** | ns | * | |
Cropping (C) | ns | ns | ** | ** | ns | ns | ** | ns | ns | |
B × C | ns | *** | ns | ** | ns | ns | ** | ns | ns |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wacal, C.; Ogata, N.; Basalirwa, D.; Handa, T.; Sasagawa, D.; Acidri, R.; Ishigaki, T.; Kato, M.; Masunaga, T.; Yamamoto, S.; et al. Growth, Seed Yield, Mineral Nutrients and Soil Properties of Sesame (Sesamum indicum L.) as Influenced by Biochar Addition on Upland Field Converted from Paddy. Agronomy 2019, 9, 55. https://doi.org/10.3390/agronomy9020055
Wacal C, Ogata N, Basalirwa D, Handa T, Sasagawa D, Acidri R, Ishigaki T, Kato M, Masunaga T, Yamamoto S, et al. Growth, Seed Yield, Mineral Nutrients and Soil Properties of Sesame (Sesamum indicum L.) as Influenced by Biochar Addition on Upland Field Converted from Paddy. Agronomy. 2019; 9(2):55. https://doi.org/10.3390/agronomy9020055
Chicago/Turabian StyleWacal, Cosmas, Naoki Ogata, Daniel Basalirwa, Takuo Handa, Daisuke Sasagawa, Robert Acidri, Tadashi Ishigaki, Masako Kato, Tsugiyuki Masunaga, Sadahiro Yamamoto, and et al. 2019. "Growth, Seed Yield, Mineral Nutrients and Soil Properties of Sesame (Sesamum indicum L.) as Influenced by Biochar Addition on Upland Field Converted from Paddy" Agronomy 9, no. 2: 55. https://doi.org/10.3390/agronomy9020055
APA StyleWacal, C., Ogata, N., Basalirwa, D., Handa, T., Sasagawa, D., Acidri, R., Ishigaki, T., Kato, M., Masunaga, T., Yamamoto, S., & Nishihara, E. (2019). Growth, Seed Yield, Mineral Nutrients and Soil Properties of Sesame (Sesamum indicum L.) as Influenced by Biochar Addition on Upland Field Converted from Paddy. Agronomy, 9(2), 55. https://doi.org/10.3390/agronomy9020055