Analysis of Distribution of Selected Bioactive Compounds in Camelina sativa from Seeds to Pomace and Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Field Test
2.3. Oil Pressing
2.4. Content of Phenolic and Flavonoids Compounds
2.5. Content of Carotenoids
2.6. FAME (Fatty Acid Methyl Esters) Analysis
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rosiak, E. Spożycie tłuszczów w Polsce i Unii Europejskiej. Proble. World Agric. Problemy Rolnictwa Światowego 2016, 16, 279–288. [Google Scholar]
- Fan, L.; Eskin, N.A.M. Camelina oil: Chemistry, properties and utilization. Recent Res. Dev. Lipids 2013, 9, 125–137. [Google Scholar]
- Sikorski, Z.E. Interakcje składników żywności. W: Chemia żywności. T. III. Odżywcze i zdrowotne właściwości składników żywności. Red. Z.E. Sikorski; WN-T: Warszawa, Poland, 2007; pp. 204–222. [Google Scholar]
- Cosima, A.; Konkel, A.; Fischer, R.; Schunck, W.-H. Cytochrome P450–dependent metabolism of ω-6 and ω-3 long-chain polyunsaturated fatty acids. Pharmacol. Rep. 2010, 62, 536–547. [Google Scholar]
- Belayneh, H.D.; Wehling, R.L.; Cahoon, E.; Ciftci, O.N. Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbon dioxide. J. Supercrit. Fluids 2015, 104, 153–159. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 2, 128. [Google Scholar] [CrossRef]
- Callaway, J.; Schwab, U.; Harvima, I.; Halonen, P.; Mykkänen, O.; Hyvönen, P.; Järvinen, T. Efficacy of dietary hempseed oil in patients with atopic dermatitis. J. Dermatol. Treat. 2005, 16, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Edge, R.; McGarvey, D.J.; Truscott, T.G. The carotenoids as anti-oxidants—A review. J. Photochem. Photobiol. B 1997, 41, 189–200. [Google Scholar] [CrossRef]
- Palermo, N.E.; Holick, M.F. Vitamin D, bone health, and other health benefits in pediatric patients. J. Pediat. Rehabil. Med. 2014, 7, 179–192. [Google Scholar]
- Choo, W.S.; Birch, J.; Dufour, J.P. Physicochemical and quality characteristics of cold-pressed flaxseed oils. J. Food Compos. Anal. 2007, 20, 202–211. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, V.D.; Haque, A.; Bhat, S.R.; Prakash, S.; Chopra, V.L. Brassica coenspecies: A rich reservoir for genetic resistance to leaf spot caused by Alternaria brassicae. Euphytica 2002, 125, 411–417. [Google Scholar] [CrossRef]
- Henderson, A.E.; Hallett, R.H.; Soroka, J.J. Prefeeding behaviour of the crucifer flea beetle, Phyllotreta cruciferae, on host and nonhost crucifers. J. Insect Behav. 2004, 17, 17–39. [Google Scholar] [CrossRef]
- Lu, C.; Napier, J.A.; Clemente, T.E.; Cahoon, E.B. New frontiers in oilseed biotechnology: Meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr. Opin. Biotechnol. 2011, 22, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Kurasiak-Popowska, D.; Stuper-Szablewska, K.; Nawracała, J. Olej rydzowy jako naturalne źródło karotenoidów dla przemysłu kosmetycznego [Camelina oil as a natural source of carotenoids for the cosmetic industry]. Przem. Chem. 2017, 96, 2077–2080. [Google Scholar]
- Young, J.C. Microwave-assisted extraction of the fungal metabolite ergosterol and total fatty acids. J. Agric. Food Chem. 1995, 4311, 2904–2910. [Google Scholar] [CrossRef]
- Cai, R.; Arntfield, S.D. A rapid high-performance liquid chromatographic method for the determination of sinapine and sinapic acid in canola seed and meal. J. Am. Oil Chem. Soc. 2001, 78, 903–910. [Google Scholar] [CrossRef]
- Siger, A.; Nogala-Kalucka, M.; Lampart-Szczapa, E. The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. J. Food Lipids 2008, 15, 137–149. [Google Scholar] [CrossRef]
- Siger, A.; Nogala-Kalucka, M.; Lampart-Szczapa, E.; Hoffmann, A. Phenolic compound contents in new rape varieties. Rośliny Oleiste/Oilseed Crops 2004, 25, 263–274. (In Polish) [Google Scholar]
- Tuberoso, C.I.G.; Kowalczyk, A.; Sarritzu, E.; Cabras, P. Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food Chem. 2007, 103, 1494–1501. [Google Scholar] [CrossRef]
- Gugel, R.K.; Falk, K.C. Agronomic and seed quality evaluation of Camelina sativa in western Canada. Can. J. Plant Sci. 2006, 1047–1058. [Google Scholar] [CrossRef]
- Urbaniak, S.D.; Caldwell, C.D.; Zheljazkov, V.D.; Lada, R.; Luan, L. The effect of cultivar and applied nitrogen on the performance of Camelina sativa L. In: The Maritime Provinces of Canada. Can. J. Plant Sci. 2008, 88, 111–119. [Google Scholar] [CrossRef]
- Urbaniak, S.; Caldwell, C.; Zheljazkov, V.; Lada, R.; Luan, L. The effect of seeding rate: Seeding date and seeder type on the performance of Camelina sativa L. in the Maritime Provinces of Canada. Can. J. Plant Sci. 2008, 88, 501–508. [Google Scholar] [CrossRef]
- Budin, J.T.; Breene, W.M.; Putman, D.H. Some compositional properties of camelina (Camelina sativa L. Crantz) seeds and oils. J. Am. Oil Chem. Soc. 1995, 72, 309–315. [Google Scholar] [CrossRef]
- Zubr, J.; Matthäus, B. Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind Crops Prod. 2002, 15, 155–162. [Google Scholar] [CrossRef]
- Zubr, J. Oil-seed crop: Camelina sativa. Ind. Crops Prod. 1997, 6, 113–119. [Google Scholar] [CrossRef]
- Singh, B.K.; Bala, M.; Rai, P.K. Fatty acid composition and seed meal characteristics of Brassica and allied genera. Natl. Acad. Sci. Lett. 2014, 373, 219–226. [Google Scholar] [CrossRef]
- Berti, M.; Gesch, R.; Eynck, C.; Anderson, J.; Cermak, S. Camelina uses, genetics, genomics, production, and management. Ind. Crops Prod. 2016, 94, 690–710. [Google Scholar] [CrossRef]
- Popa, A.L.; Jurcoane, Ș.; Dumitriu, B. Camelina sativa oil-a review. Sci. Bull. Ser. F Biotechnol. 2017, 21, 233–238. [Google Scholar]
- Nettleton, J.A. ω-3 Fatty acids: Comparison of plant and seafood sources in human nutrition. J. Am. Diet. Assoc. 1991, 91, 331–337. [Google Scholar]
- Hui, Y.H. Bailey’s Industrial Oil and Fat Products, 5th ed.; Wiley: New York, NY, USA, 1996; Volume 2. [Google Scholar]
- Gebauer, S.K.; Psota, T.L.; Harris, W.S.; Kris-Etherton, P.M. n-3 Fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am. J. Clin. Nutr. 2006, 83 (Suppl. 6), 1526–1535. [Google Scholar] [CrossRef]
- Tapiero, H.; Couvreur, G.N.; Ba, P.; Tew, K.D. Polyunsaturated fatty acids PUFA and eicosanoids in human health and pathologies. Biomed. Pharmacother. 1999, 56, 215–222. [Google Scholar] [CrossRef]
Apigenin | Catechin | Kaempherol | Luteolin | Naringenin | Quercetin | Rutin | Vitexin | |
---|---|---|---|---|---|---|---|---|
seeds (mg/kg d.m.) | ||||||||
Omega | 97.78 b | 8.34 a | 51.35 c | 60.71 c | 63.88 c | 127.76 d | 19.84 a | 55.29 c |
Hoga | 34.82 a | 51.72 d | 41.83 b | 67.25 c | 31.24 a | 34.27 a | 21.51 ab | 46.85 b |
CSS-CAM 25 | 117.56 b | 20.70 c | 24.18 a | 47.53 b | 46.12 b | 48.97 b | 25.07 b | 41.88 b |
Luna | 125.46 b | 14.47 b | 45.99 b | 25.88 a | 48.74 b | 97.48 c | 16.76 a | 25.08 a |
oil (mg/L) | ||||||||
Omega | 85.24 b | 7.26 a | 48.25 d | 55.25 c | 59.25 c | 119.25 d | 10.41 b | 50.41 d |
Hoga | 21.25 a | 49.33 c | 35.57 b | 57.13 c | 25.26 a | 30.41 a | 4.53 a | 42.53 c |
CSS-CAM 25 | 89.37 b | 18.22 b | 15.25 a | 40.11 b | 41.22 b | 35.89 a | 7.86 b | 37.86 b |
Luna | 102.23 c | 10.13 a | 40.12 c | 21.32 a | 40.12 b | 82.33 b | 9.25 b | 21.33 a |
pomace (mg/kg d.m.) | ||||||||
Omega | 11.25 a | 1.13 a | 2.65 a | 3.52 a | 3.10 a | 6.55 b | 6.22 b | 3.27 a |
Hoga | 12.65 a | 2.16 a | 4.67 b | 8.25 c | 4.11 a | 2.67 a | 15.45 a | 4.53 a |
CSS-CAM 25 | 25.45 b | 2.06 a | 5.37 b | 4.11 b | 3.45 a | 12.45 c | 17.07 c | 3.17 a |
Luna | 21.24 b | 3.05 a | 4.07 b | 4.07 b | 5.45 a | 12.33 c | 5.25 b | 2.01 a |
A | 4-hydroxy-benzoic | Chlorogenic | Gallic | Proto-Catechuic | Syringic | Vanillic | |
---|---|---|---|---|---|---|---|
seeds (mg/kg d.m.) | |||||||
Omega | 88.43 b | 222.08 a | 28.46 b | 77.24 b | 89.34 b | 63.54 c | |
Hoga | 98.08 a | 345.45 b | 30.20 b | 63.25 a | 72.15 a | 53.33 b | |
CSS-CAM 25 | 144.96 c | 459.31 d | 38.66 c | 90.30 c | 113.70 c | 37.65 a | |
Luna | 121.93 b | 380.26 c | 22.38 a | 73.06 b | 88.00 b | 42.35 a | |
oil (mg/L) | |||||||
Omega | 52.14 b | 165.33 a | 12.33 a | 65.33 b | 63.24 b | 59.37 c | |
Hoga | 31.27 a | 182.32 b | 10.25 a | 48.26 a | 25.53 a | 29.89 a | |
CSS-CAM 25 | 47.13 b | 246.37 d | 8.99 a | 66.64 b | 71.23 b | 30.17 a | |
Luna | 62.13 c | 198.53 c | 8.97 a | 52.33 a | 52.33 b | 35.23 b | |
pomace (mg/kg d.m.) | |||||||
Omega | 35.63 a | 50.25 a | 12.33 a | 9.33 a | 21.23 a | 1.25 a | |
Hoga | 65.33 b | 151.27 b | 16.57 b | 12.66 b | 40.13 b | 12.25 b | |
CSS-CAM 25 | 90.52 c | 200.55 d | 20.26 c | 21.17 d | 41.25 b | 4.55 a | |
Luna | 58.25 b | 173.63 c | 10.45 a | 15.25 c | 29.56 a | 3.53 a | |
B | Caffeic | Ferulic | p-Cumaric | Sinapic | t-Cinnamic | ||
seeds (mg/kg d.m.) | |||||||
Omega | 266.32 b | 139.93 b | 26.27 a | 1029.72 b | 195.18 a | ||
Hoga | 261.67 b | 127.62 a | 31.94 b | 783.65 a | 267.85 b | ||
CSS-CAM 25 | 216.52 a | 194.86 c | 25.67 a | 716.25 a | 245.10 b | ||
Luna | 239.58 a | 126.86 a | 25.33 a | 1013.64 b | 203.81 a | ||
oil (mg/L) | |||||||
Omega | 106.24 a | 46.37 b | 4.12 a | 265.32 b | 52.33 b | ||
Hoga | 126.37 b | 43.27 b | 13.23 b | 103.24 a | 68.26 c | ||
CSS-CAM 25 | 110.85 a | 13.65 a | 10.05 b | 98.24 a | 76.86 c | ||
Luna | 115.25 a | 26.55 a | 7.12 a | 123.33 b | 31.25 a | ||
pomace (mg/kg d.m.) | |||||||
Omega | 132.33 b | 82.33 b | 19.33 c | 652.33 c | 132.33 a | ||
Hoga | 130.25 b | 65.33 a | 16.37 b | 524.27 a | 187.25 b | ||
CSS-CAM 25 | 100.56 a | 167.52 c | 10.45 a | 600.56 b | 156.37 a | ||
Luna | 106.24 a | 87.25 b | 18.25 c | 712.25 d | 149.65 a |
Lutein | Zeaxanthin | β-Carotene | |
---|---|---|---|
seeds (mg/kg d.m.) | |||
Omega | 12.19 a | 0.25 a | 146.31 a |
Hoga | 16.10 b | 7.09 b | 133.69 a |
CSS-CAM 25 | 17.15 b | 0.22 a | 140.64 a |
Luna | 12.74 a | 0.25 a | 139.36 a |
oil (mg/L) | |||
Omega | 8.75 a | 0.21 a | 140.23 b |
Hoga | 14.58 b | 6.54 b | 120.74 a |
CSS-CAM 25 | 15.98 b | 0.19 a | 131.58 a |
Luna | 9.35 a | 0.18 a | 125.69 a |
pomace (mg/kg d.m.) | |||
Omega | 3.53 a | 0.05 a | 30.56 a |
Hoga | 5.25 a | 1.72 b | 28.56 a |
CSS-CAM 25 | 4.26 a | 0.07 a | 33.66 a |
Luna | 4.22 a | 0.09 a | 25.15 a |
Fatty Acid | Omega | Hoga | CSS-CAM 25 | Luna |
---|---|---|---|---|
Seed oil content | 21 a | 21 a | 24 a | 30 a |
myristic acid | 0.251 b | 0 | 0.125 a | 0.125 a |
pentadecanoic acid | 0 | 0 | 0 | 0 |
pentadecenoic acid | 0 | 0 | 0 | 0 |
palmitic acid (PA) | 3.513 a | 3.136 a | 6.022 b | 3.764 a |
palmitoleic acid | 0.125 b | 0 | 1.004 b | 0 |
margaric acid | 0 | 0 | 0 | 0 |
10-heptadecenoic acid | 0 | 0 | 0.125 | 0 |
stearic acid | 2.384 b | 1.882 a | 2.785 b | 1.882 a |
oleic acid | 14.427 b | 12.294 a | 16.058 c | 12.294 a |
linoleic acid (LA) | 18.316 b | 14.051 a | 19.821 b | 14.803 a |
γ-linolenic acid (GLA) | 0 | 0 | 0.251 | 0 |
α-linolenic acid (ALA) | 36.883 a | 35.378 a | 46.041 c | 39.141 b |
arachidic acid (ARA) | 0.627 a | 0.502 a | 1.756 b | 0.878 a |
c-11-eicosenoic acid | 20.07 b | 25.96 c | 15.355 a | 23.45 b |
c-11, 14-eicosadienoic acid | 0.878 a | 1.30 b | 0.502 a | 1.255 b |
heneicosanoic acid | 0.125 a | 0.251 a | 0 | 0.251 a |
erucic acid (EU) | 3.262 a | 3.889 a | 0 | 3.262 a |
lignoceric acid | 0.125 a | 0.202 a | 0 | 0.125 a |
nervonic acid | 0.376 a | 0.753 b | 0 | 0.753 b |
∑SFA | 10.3 a | 9.9 a | 10.7 a | 10.3 a |
∑MUFA | 35.0 b | 39.0 b | 32.5 a | 36.5 b |
∑PUFA | 56.1 b | 50.8 a | 66.6 c | 55.2 b |
EFA | 55.2 a | 49.4 a | 65.9 b | 53.9 a |
PUFA ω-6/PUFA ω-3 | 1:2.0 | 1:2.5 | 1:2.3 | 1:2.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurasiak-Popowska, D.; Ryńska, B.; Stuper-Szablewska, K. Analysis of Distribution of Selected Bioactive Compounds in Camelina sativa from Seeds to Pomace and Oil. Agronomy 2019, 9, 168. https://doi.org/10.3390/agronomy9040168
Kurasiak-Popowska D, Ryńska B, Stuper-Szablewska K. Analysis of Distribution of Selected Bioactive Compounds in Camelina sativa from Seeds to Pomace and Oil. Agronomy. 2019; 9(4):168. https://doi.org/10.3390/agronomy9040168
Chicago/Turabian StyleKurasiak-Popowska, Danuta, Bernadetta Ryńska, and Kinga Stuper-Szablewska. 2019. "Analysis of Distribution of Selected Bioactive Compounds in Camelina sativa from Seeds to Pomace and Oil" Agronomy 9, no. 4: 168. https://doi.org/10.3390/agronomy9040168
APA StyleKurasiak-Popowska, D., Ryńska, B., & Stuper-Szablewska, K. (2019). Analysis of Distribution of Selected Bioactive Compounds in Camelina sativa from Seeds to Pomace and Oil. Agronomy, 9(4), 168. https://doi.org/10.3390/agronomy9040168