Tetraploid Wheats: Valuable Source of Phytosterols and Phytostanols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Conditions
2.3. Seed Moisture Determination
2.4. Sterol–Stanol Determination
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marangoni, F.; Poli, A. Phytosterols and cardiovascular health. Pharmacol. Res. 2010, 61, 193–199. [Google Scholar] [CrossRef]
- Shahzad, N.; Khan, W.; Shadab, M.D.; Ali, A.; Al–Ghamdi, S.S. Phytosterols as a natural anticancer agent: Current status and future perspective. Biomed. Pharmacother. 2017, 88, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Fakih, O.; Sanver, D.; Kane, D.; Thorne, J.L. Exploring the biophysical properties of phytosterols in the plasma membrane for novel cancer prevention strategies. Biochimie 2018, 153, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.; Bouniols, A.; Cerny, M.; Mouloungui, Z.; Merah, O. Fatty acid and phytosterol accumulation during seed ripening in three oilseed species. Int. J. Food Sci. Technol. 2016, 51, 1820–1826. [Google Scholar] [CrossRef]
- Piironen, V.; Lindsay, D.G.; Miettinen, T.A.; Toivo, J.; Lampi, A.M. Plant sterols: Biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric. 2000, 80, 939–966. [Google Scholar] [CrossRef]
- Moreau, R.A.; Nyström, L.; Whitaker, B.D.; Winkler–Moser, J.K.; Hicks, K.B. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health–promoting uses. Prog. Lipid Res. 2018, 70, 35–61. [Google Scholar] [CrossRef]
- Hartmann, M.A. Plant sterols and the membrane environment. Trends Plant Sci. 1998, 3, 170–175. [Google Scholar] [CrossRef]
- Clouse, S.D. Plant development: A role for sterols in embryogenesis. Curr. Biol. 2000, 10, R601–R604. [Google Scholar] [CrossRef]
- Schaller, H. The role of sterols in plant growth and development. Prog. Lipid Res. 2003, 42, 163–175. [Google Scholar] [CrossRef]
- Määttä, K.; Lampi, A.M.; Petterson, J.; Fogelfors, B.M.; Piironen, V.; Kamal-Eldin, A. Phytosterol content in seven oat cultivars grown at three locations in Sweden. J. Agric. Food Chem. 1999, 79, 1021–1027. [Google Scholar] [CrossRef]
- Caboni, M.F.; Iafelice, G.; Pelillo, M.; Marconi, E. Analysis of fatty acid steryl esters in tetraploid and hexaploid wheats: Identification and comparison between chromatographic methods. J. Agric. Food Chem. 2005, 53, 7465–7472. [Google Scholar] [CrossRef]
- Ferrer, A.; Altabella, T.; Arró, M.; Boronat, A. Emerging roles for conjugated sterols in plants. Prog. Lipid Res. 2017, 67, 27–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toivo, J.; Lampi, A.M.; Aalto, S.; Piironen, V. Factors affecting sample preparation in the gas chromatographic determination of plant sterols in whole wheat flour. Food Chem. 2000, 68, 239–245. [Google Scholar] [CrossRef]
- Horník, Š.; Sajfrtová, M.; Karban, J.; Sýkora, J.; Březinová, A.; Wimmer, Z. LC–NMR Technique in the Analysis of Phytosterols in Natural Extracts. J. Anal. Meth. Chem. 2013, 526818. [Google Scholar] [CrossRef]
- Shi, T.; Zhu, M.T.; Zhou, X.Y.; Huo, X.; Long, Y.; Zeng, X.Z.; Chen, Y. 1H NMR combined with PLS for the rapid determination of squalene and sterols in vegetable oils. Food Chem. 2019, 287, 46–54. [Google Scholar] [CrossRef]
- Llaverias, G.; Escolà–Gil, J.C.; Lerma, E.; Julve, J.; Pons, C.; Cabré, A.; Cofán, M.; Ros, E.; Sánchez–Quesada, J.L.; Blanco–Vaca, F. Phytosterols inhibit the tumor growth and lipoprotein oxidizability induced by a high–fat diet in mice with inherited breast cancer. J. Nutr. Biochem. 2013, 24, 39–48. [Google Scholar] [CrossRef]
- O’Callaghan, Y.; Kenny, O.; O’Connell, N.M.; Maguire, A.R.; McCarthy, F.O.; O’Brien, N.M. Synthesis and assessment of the relative toxicity of the oxidised derivatives of campesterol and dihydrobrassicasterol in U937 and HepG2 cells. Biochimie 2013, 95, 496–503. [Google Scholar] [CrossRef]
- Baumgartner, S.; Mensink, R.P.; Husche, C.; Lutjohann, D.; Plat, J. Effects of plant sterol– or stanol–enriched margarine on fasting plasma oxyphytosterol concentrations in healthy subjects. Atherosclerosis 2013, 227, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, S.; Shidhaye, R.; Demonty, I.; Lakshmy, R.; Gupta, R.; Prabhakaran, D.; Lakshmy, R.; Mukherjee, R.; Gupta, R.; Snehi, U.; et al. Impact of omega–3 fatty acids and/or plant sterol supplementation on non–HDL cholesterol levels of dyslipidemic Indian adults. J. Funct. Foods 2013, 5, 36–43. [Google Scholar] [CrossRef]
- Oelrich, B.; Dewell, A.; Gardner, C.D. Effect of fish oil supplementation on serum triglycerides, LDL cholesterol and LDL subfractions in hypertriglyceridemic adults. Nutr. Metabol. Cardiovasc. Dis. 2013, 23, 350–357. [Google Scholar] [CrossRef]
- Ros, E.; Hu, F.B. Consumption of plant seeds and cardiovascular health: Epidemiological and clinical trial evidence. Circulation 2013, 128, 553–565. [Google Scholar] [CrossRef]
- Gomes, G.B.; Zazula, A.D.; Shigueoka, L.S.; Fedato, R.A.; Da, C.A.; Guarita–Souza, L.C. A randomized open–label trial to assess the effect of plant sterols associated with ezetimibe in low–density lipoprotein levels in patients with coronary artery disease on statin therapy. J. Med. Food 2017, 20, 30–36. [Google Scholar] [CrossRef]
- Alignan, M.; Roche, J.; Bouniols, A.; Cerny, M.; Mouloungui, Z.; Merah, O. Effects of genotype and sowing date on phytostanol–phytosterol content and agronomic traits in wheat under organic agriculture. Food Chem. 2009, 117, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.; Limas, E.; Sousa, M.; da Conceição Castilho, M.; Ramos, F.; Noronha da Silveira, M.I. Optimization of analytical procedures for GC–MS determination of phytosterols and phytostanols in enriched milk and yoghurt. Food Chem. 2007, 102, 113–117. [Google Scholar] [CrossRef]
- Hakala, P.; Lampi, A.M.; Ollilainen, V.; Werner, U.; Murkovic, M.; Wähälä, K.; Karkola, S.; Piironen, V. Steryl phenolic acid esters in cereals and their milling fractions. J. Agric. Food Chem. 2002, 50, 5300–5307. [Google Scholar] [CrossRef] [PubMed]
- Zangenberg, M.; Boskov Hansen, H.; Jorgensen, J.R.; Hellgren, L.I. Cultivar and Year–to–Year Variation of Phytosterol Content in Rye (Secale cereale L.). J. Agric. Food Chem. 2004, 52, 2593–2597. [Google Scholar] [CrossRef]
- Nyström, L.; Paasonen, A.; Lampi, A.M.; Piironen, V. Total plant sterols, steryl ferulates and steryl glycosides in milling fractions of wheat and rye. J. Cereal Sci. 2007, 45, 106–115. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, T. Phytosterols in Cereal By–products. J. Am. Oil Chem. Soc. 2005, 82, 439–444. [Google Scholar] [CrossRef]
- Harrabi, S.; St-Amand, A.; Sakouhi, F.; Sebei, K.; Kallel, H.; Mayer, P.M.; Boukhchina, S. Phytostanols and phytosterols distributions in corn kernel. Food Chem. 2008, 111, 115–120. [Google Scholar] [CrossRef]
- Nurmi, T.; Nystrom, L.; Edelmann, M.; Lampi, A.M.; Piironen, V. Phytosterols in wheat genotypes in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008, 56, 9710–9715. [Google Scholar] [CrossRef]
- Hammann, S.; Korf, A.; Bull, I.D.; Hayen, H.; Cramp, L.J.E. Lipid profiling and analytical discrimination of seven cereals using high temperature gas chromatography coupled to high resolution quadrupole time–of–flight mass spectrometry. Food Chem. 2019, 282, 27–35. [Google Scholar] [CrossRef]
- Iafelice, G.; Verardo, V.; Marconi, E.; Caboni, M.F. Characterization of total, free and esterified phytosterols in tetraploid and hexaploid wheats. J. Agric. Food Chem. 2009, 57, 2267–2273. [Google Scholar] [CrossRef]
- Andersson, A.A.; Kamal-Eldin, A.; Åman, P. Effects of environment and variety on alkylresorcinols in wheat in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2010, 58, 9299–9305. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Piironen, V.; Lampi, A.M.; Nystrom, L.; Li, L.; Rakszegi, M.; Fraś, A.; Boros, D.; Gebruers, K.; Courtin, C.M.; et al. Phytochemical and fiber components in oat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008, 56, 9777–9784. [Google Scholar] [CrossRef]
- Nystrom, L.; Lampi, A.M.; Andersson, A.A.M.; Kamal–Eldin, A.; Gebruers, K.; Courtin, C.M.; Delcour, J.A.; Li, L.; Ward, J.L.; Fraś, A.; et al. Phytochemicals and dietary fiber components in rye varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008, 56, 9758–9766. [Google Scholar] [CrossRef]
- Pelillo, M.; Iafelice, G.; Marconi, E.; Caboni, M.F. Identification of plant sterols in hexaploid and tetraploid wheats using gas chromatography with mass spectrometry. Rapid Commun. Mass Spec. 2003, 17, 2245–2252. [Google Scholar] [CrossRef]
- Al Hakimi, A.; Monneveux, P.; Nachit, M.M. Direct and indirect selection for drought tolerance in alien tetraploid wheat x durum wheat crosses. Euphytica 1998, 100, 287–294. [Google Scholar] [CrossRef]
- Merah, O. Potential Importance of water status traits for durum wheat improvement under Mediterranean conditions. J. Agric. Sci. 2001, 137, 139–145. [Google Scholar] [CrossRef]
- Merah, O.; Deléens, E.; Nachit, M.M.; Monneveux, P. Carbon isotope discrimination, leaf characteristics and grain yield of interspecific wheat lines and their durum wheat parents under Mediterranean conditions. Cereal Res. Commun. 2001, 29, 143–149. [Google Scholar]
- Merah, O.; Deléens, E.; Al Hakimi, A.; Monneveux, P. Carbon isotope discrimination and grain yield variations in tetraploid wheat species cultivated under contrasted precipitations regimes. J. Agron. Crop Sci. 2001, 186, 129–134. [Google Scholar] [CrossRef]
- Monneveux, P.; Ortiz, O.; Merah, O. Is crop breeding the first step to fill the yield gap? Understanding the impact and constraints of developing new improved varieties. Sécheresse 2013, 24, 254–260. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Nurmi, T.; Lampi, A.-M.; Nyström, L.; Piironen, V. Effects of environment and genotype on phytosterols in wheat in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2010, 58, 9314–9323. [Google Scholar] [CrossRef]
- Roche, J.; Alignan, M.; Bouniols, A.; Cerny, M.; Vear, F.; Mouloungui, Z.; Merah, O. Sterol content in sunflower seeds (Helianthus annuus L.) as affected by genotypes and environmental conditions. Food Chem. 2010, 121, 990–995. [Google Scholar] [CrossRef]
- Kumar, M.S.S.; Mawlong, I.; Ali, K.; Tyagi, A. Regulation of phytosterol biosynthetic pathway during drought stress in rice. Plant Physiol. Biochem. 2018, 129, 11–20. [Google Scholar] [CrossRef]
- Lampi, A.M.; Nurmi, T.; Piironen, V. Effects of the environment and genotype on tocopherols and tocotrienols in wheat in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2010, 58, 9306–9313. [Google Scholar] [CrossRef]
- Farrington, W.H.H.; Warwick, M.J.; Shearer, G. Changes in the carotenoids and sterol fractions during the prolonged storage of wheat flour. J. Sci. Food Agric. 1981, 32, 948–950. [Google Scholar] [CrossRef]
- Merah, O.; Langlade, N.; Alignan, M.; Roche, J.; Pouilly, N.; Lippi, Y.; Bouniols, A.; Vear, F.; Cerny, M.; Mouloungui, Z.; et al. Genetic control of phytosterol content in sunflower seeds. Theor. Appl. Genet. 2012, 125, 1589–1601. [Google Scholar] [CrossRef]
- Zohary, D.; Hopf, M.; Weiss, E. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin, 4th ed.; University Press: Oxford, UK, 2012; pp. 58–97. ISBN 9780199549061. [Google Scholar]
- Schaeffer, A.; Bronner, R.; Benveniste, P.; Schaller, H. The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by Sterol Methytransferase 2;1. Plant J. 2001, 25, 605–615. [Google Scholar] [CrossRef]
- Roche, J.; Alignan, M.; Bouniols, A.; Cerny, M.; Mouloungui, Z.; Merah, O. Sterol concentration and distribution in sunflower seeds (Helianthus annuus L.) during seed development. Food Chem. 2010, 119, 1451–1456. [Google Scholar] [CrossRef]
Species | Origin |
---|---|
Triticum turgidum var dicoccum (Schrank) Thell. | |
noricium Körn. | --- |
fuschii Alef. | Spain |
seminacum Krause | --- |
Triticum turgidum var turgidum L. | |
gentile novo | Portugal |
maisani | Yemen |
jodurum dezassete | Spain |
Triticum turgidum var polonicum (L.) MK. | |
pseudochrysospermum | Hungary |
skabsubovii Greb. | Portugal |
Hadrache | Morocco |
Triticum turgidum var carthlicum (Nevski.) MK. | |
fuliginosum n° 48478 | China |
fuliginosum ps 1 | --- |
stramineum dika 9/14 | Russia |
Triticum timopheevi Zhuk. | |
georgia 29541 | Georgia |
typicum tm4 8340 | --- |
dickson 36.357.1 | Russia |
Triticum turgidum var durum (Desf.) MK. | |
cv. Cham 1 | ICARDA |
cv. Korifla | ICARDA |
Gam Goum Rekham | Algeria |
Jennah Khetifa | Tunisia |
Period | Parameter | 2010–2011 | 2011–2012 | Last 50 Years |
---|---|---|---|---|
Grain filling | Rainfall (mm) | 98.5 | 87.9 | 112.9 |
Mean temperature (°C) | 18.4 | 22.4 | 16.7 | |
Rainfall (mm) | 501.2 | 483.4 | 515.0 | |
Plant cycle | Mean temperature (°C) | 12.0 | 12.4 | 11.3 |
Trait | Effect | ||
---|---|---|---|
Accession | Year | Acc × Year | |
Campesterol | 17.7 *** | 14.9 *** | 7.9 *** |
Stigmasterol | 0.9 *** | 0.9 *** | 1.0 *** |
β-sitoterol | 74.1 *** | 13.8 *** | 50.7 *** |
δ7-stigmaterol | 0.3 *** | 0.2 ** | 0.2 ** |
δ7-avenasterol | 0.3 *** | 0.4 *** | 0.4 *** |
Other sterols | 1.1 *** | 0.9 *** | 0.9 *** |
Total sterols | 131.2 *** | 2.7 *** | 102.3 *** |
Campestanol | 8.1 *** | 1.9 ** | 2.4 *** |
Sitostanol | 21.8 *** | 84.7 *** | 7.8 *** |
Total stanols | 41.9 *** | 4.9 *** | 0.9 *** |
Total sterols + stanols | 226.4 *** | 29.7 ** | 174.5 *** |
Species | Year | Parameter | Sterol | Stanol | Total | Moisture of Seed (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Camp | Stigm | β-Sito | δ7stigm | δ7aven | Other Sterols | Total | Campes | Sitostan | Total | |||||
Triticum turgidum var dicoccum | 2011 | Mean | 10.2 | 2.3 | 41.3 | 2.9 | 2.9 | 3.7 | 63.4 | 3.6 | 12.2 | 15.8 | 79.3 | 14.5 |
Range | 8.7–12.1 | 1.9–2.4 | 39.7–42.4 | 2.1–3.1 | 2.0–3.2 | 3.1–4.1 | 57.5–67.3 | 3.1–4.0 | 10.1–13.3 | 13.2–17.3 | 70.7–84.6 | 15.0 | ||
2012 | Mean | 11.7 | 2.6 | 47.5 | 2.8 | 2.8 | 2.2 | 67.3 | 3.8 | 11.5 | 15.3 | 82.6 | 15.0 | |
Range | 9.8–12.1 | 2.2–2.8 | 43.9–49.1 | 2.3–3.1 | 2.2–3.0 | 1.7–2.6 | 62.1–72.7 | 3.2–4.0 | 10.5–12.0 | 13.7–16 | 75.8–88.7 | 15.0 | ||
T. turgidum var turgidum | 2011 | Mean | 15.6 | 1.7 | 51.4 | 1.2 | 1.7 | 1.1 | 72.7 | 4.3 | 10.5 | 14.8 | 87.4 | 15.0 |
Range | 13.8–17.2 | 1.2–2.1 | 49.7–52.9 | 0.9–1.4 | 1.5–2 | 0.9–1.2 | 68.0–76.8 | 3.1–4.5 | 10.3–11.1 | 13.4–15.1 | 82.4–91.0 | 14.5 | ||
2012 | Mean | 17.1 | 3.1 | 57.7 | 1.2 | 1.3 | 1.7 | 80.5 | 6.5 | 12.1 | 18.6 | 99.1 | 14.5 | |
Range | 15.6–18.1 | 2.5–3.6 | 53.5–60.2 | 0.9–1.3 | 1.1–1.4 | 1.5–1.8 | 75.1–86.4 | 3.6–6.8 | 11.6–12.5 | 15.1–19.9 | 92.2–106.3 | 14.5 | ||
T. turgidum var polonicum | 2011 | Mean | 16.5 | 3.3 | 45.3 | 0.3 | 1.2 | 0.8 | 68.0 | 8.1 | 15.3 | 23.4 | 91.0 | 15.0 |
Range | 16.1–17.2 | 2.8–3.9 | 43.1–48.2 | 0.2–0.4 | 1.1–1.4 | 0.7–0.9 | 64.1–72.0 | 5.7–8.8 | 14.8–16.3 | 20.5–25.1 | 84.5–97.1 | 15.0 | ||
2012 | Mean | 19.6 | 4.0 | 66.5 | 1.8 | 1.7 | 2.5 | 93.7 | 9.0 | 17.3 | 28.1 | 121.9 | 14.5 | |
Range | 18.2–20.7 | 3.4–4.4 | 63.4–68.2 | 1.6–1.9 | 1.4–1.9 | 2.1–2.6 | 90.1–99.7 | 7.5–9.4 | 17.1–17.8 | 24.6–29.2 | 114.7–126.9 | 14.5 | ||
T.turgidum var carthlicum | 2011 | Mean | 15.3 | 3.0 | 52.1 | 1.5 | 1.3 | 2.9 | 76.3 | 7.0 | 14.0 | 20.9 | 97.2 | 15.0 |
Range | 14.2–15.7 | 2.7–3.3 | 50.1–53.7 | 1.3–1.6 | 1.2–1.4 | 2.6–3.1 | 72.1–78.8 | 5.5–7.7 | 13.3–15.0 | 18.8–22.7 | 90.9–101.5 | 14.5 | ||
2012 | Mean | 19.5 | 3.4 | 60.8 | 1.4 | 1.1 | 2.4 | 86.2 | 7.7 | 13.0 | 20.6 | 106.8 | 14.5 | |
Range | 18.6–20.9 | 3.0–3.7 | 59.8–62.3 | 1.2–1.6 | 0.9–1.2 | 2.1–2.6 | 93.6–92.3 | 4.2–7.9 | 12.4–13.9 | 16.6–21.8 | 100.1–114.1 | 14.5 | ||
T.turgidum var durum | 2011 | Mean | 15.2 | 2.6 | 53.4 | 2.7 | 1.6 | 2.2 | 78.0 | 9.5 | 18.2 | 27.7 | 105.7 | 14.5 |
Range | 14.7–16.5 | 2.2–2.8 | 50.1–55.7 | 2.5–2.9 | 1.4–1.7 | 2.0–2.4 | 72.9–81.9 | 8.7–9.9 | 18.0–19.0 | 26.7–28.8 | 99.8–110.6 | 14.5 | ||
2012 | Mean | 22.0 | 4.1 | 73.0 | 1.9 | 1.5 | 1.9 | 102.5 | 10.1 | 17.3 | 27.4 | 130.0 | 14.5 | |
Range | 20.1–23.2 | 3.9–4.3 | 68.4–74.8 | 1.7–2.1 | 1.3–1.7 | 1.6–2.1 | 97.1–108.2 | 8.6–10.9 | 15.9–18.2 | 24.5–29.1 | 121.5–137.3 | 15.0 | ||
T. timopheevi | 2011 | Mean | 15.5 | 3.6 | 54.0 | 1.8 | 1.3 | 2.4 | 78.5 | 8.9 | 18.0 | 26.7 | 105.2 | 15.0 |
Range | 14.3–16.9 | 3.1–4.0 | 51.2–56.7 | 1.7–2.0 | 1.1–1.4 | 2.0–2.7 | 73.4–83.7 | 7.7–9.1 | 17.3–18.8 | 25–27.9 | 98.4–111.6 | 15.0 | ||
2012 | Mean | 13.7 | 2.6 | 49.9 | 1.3 | 0.8 | 1.2 | 68.3 | 6.4 | 13.2 | 19.6 | 87.9 | 14.5 | |
Range | 13.0–14.4 | 2.1–3.0 | 47.5–52.6 | 1.0–1.5 | 0.7–0.9 | 1.0–1.3 | 65.3–73.7 | 3.7–6.9 | 12.4–14.6 | 16.1–21.6 | 81.4–95.3 | 14.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merah, O.; Mouloungui, Z. Tetraploid Wheats: Valuable Source of Phytosterols and Phytostanols. Agronomy 2019, 9, 201. https://doi.org/10.3390/agronomy9040201
Merah O, Mouloungui Z. Tetraploid Wheats: Valuable Source of Phytosterols and Phytostanols. Agronomy. 2019; 9(4):201. https://doi.org/10.3390/agronomy9040201
Chicago/Turabian StyleMerah, Othmane, and Zephirin Mouloungui. 2019. "Tetraploid Wheats: Valuable Source of Phytosterols and Phytostanols" Agronomy 9, no. 4: 201. https://doi.org/10.3390/agronomy9040201
APA StyleMerah, O., & Mouloungui, Z. (2019). Tetraploid Wheats: Valuable Source of Phytosterols and Phytostanols. Agronomy, 9(4), 201. https://doi.org/10.3390/agronomy9040201