Comparison between Chemical Fertilization and Integrated Nutrient Management: Yield, Quality, N, and P Contents in Dendranthema grandiflorum (Ramat.) Kitam. Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Treatments and Experimental Design
- Conventional NM (CNM or control) and integrated NM (INM);
- “White CV1” and “Yellow CV2”.
2.3. Economic Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yousaf, M.; Li, J.; Lu, J.; Ren, T.; Cong, R.; Fahad, S.; Li, X. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci. Rep. 2017, 7, 1270. [Google Scholar] [CrossRef] [PubMed]
- Stellacci, A.M.; Cristiano, G.; Rubino, P.; De Lucia, B.; Cazzato, E. Nitrogen uptake, nitrogen partitioning and N-use efficiency of container-grown Holm oak (Quercus ilex L.) under different nitrogen levels and fertilizer sources. J. Food Agric. Environ. 2013, 11, 990–994. [Google Scholar]
- Mantovani, J.R.; Silveira, L.G.D.; Landgraf, P.R.C.; Santos, A.R.D.; Costa, B.D.S. Phosphorus rates and use of cattle manure in potted gerbera cultivation. Ornam. Hortic. 2017, 23, 412–418. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D.G. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 1997, 7, 737–750. [Google Scholar] [CrossRef]
- Tilman, D. The greening of the green revolution. Nature 1998, 396, 211–212. [Google Scholar] [CrossRef]
- Berg, M.; Köpke, U.; Haas, G. Nitrate leaching: Comparing conventional, integrated and organic agricultural production systems. Intern. Assoc. Hydrol. Sci. 2002, 273, 131–136. [Google Scholar]
- Chen, J.H. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In Proceedings of the International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use, Bangkok, Thailand, 16–20 October 2006; Volume 16, p. 20. [Google Scholar]
- Hansen, B.; Thorling, L.; Schullehner, J.; Termansen, M.; Dalgaard, T. Groundwater nitrate response to sustainable nitrogen management. Sci. Rep. 2017, 7, 8566. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Wu, H.; Chen, M.; Peng, H.; Li, B.; Liu, R.; Liu, Z.; Wang, B.; Huang, T.; Hu, Z. Fractional removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using carbonate and struvite precipitation. Water Res. 2019, 153, 229–238. [Google Scholar] [CrossRef]
- Torbert, H.A.; King, K.W.; Harmel, R.D. Impact of Soil Amendments on Reducing Phosphorus Losses from Runoff in Sod. J. Environ. Qual. 2005, 34, 1415. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, L.; Goldewijk, K.K.; Van Der Hoek, K.W.; Beusen, A.H.W.; Van Vuuren, D.P.; Willems, J.; Rufino, M.C.; Stehfest, E. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl. Acad. Sci. USA 2013, 110, 20882–20887. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Murillo-Amador, B.; Morales-Prado, L.E.; Troyo-Diéguez, E.; Córdoba-Matson, M.V.; Hernández-Montiel, L.G.; Rueda-Puente, E.O.; Nieto-Garibay, A. Changing environmental conditions and applying organic fertilizers in Origanum vulgare L. Front. Plant Sci. 2015, 6, 549. [Google Scholar] [CrossRef]
- Szparaga, A.; Kocira, S. Generalized logistic functions in modelling emergence of Brassica napus L. PLoS ONE 2018, 13, e0201980. [Google Scholar] [CrossRef] [PubMed]
- Alori, E.T.; Babalola, O.O. Microbial Inoculants for Improving Crop Quality and Human Health in Africa. Front. Microbiol. 2018, 9, 2213. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, N.; Ventorino, V.; Woo, S.L.; Pepe, O.; De Rosa, A.; Gioia, L.; Romano, I.; Lombardi, N.; Napolitano, M.; Colla, G.; et al. Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front. Plant Sci. 2018, 9, 743. [Google Scholar] [CrossRef] [PubMed]
- Wani, S.A.; Chand, S.; Wani, M.A.; Ramzan, M.; Hakeem, K.R. Azotobacter chroococcum—A Potential Biofertilizer in Agriculture: An Overview. In Soil Science: Agricultural and Environmental Prospectives; Springer International Publishing: Cham, Switzerland, 2016; pp. 333–348. ISBN 9783319344515. [Google Scholar]
- Gruhn, P.; Goletti, F.; Yudelman, M. Integrated nutrient management, soil fertility, and sustainable agriculture: Current issues and future challenges. Food Agric. Environ. Discuss. Pap. 2000, 32. [Google Scholar]
- Ertani, A.; Francioso, O.; Tinti, A.; Schiavon, M.; Pizzeghello, D.; Nardi, S. Evaluation of Seaweed Extracts From Laminaria and Ascophyllum nodosum spp. as Biostimulants in Zea mays L. Using a Combination of Chemical, Biochemical and Morphological Approaches. Front. Plant Sci. 2018, 9, 428. [Google Scholar] [CrossRef]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2018, 82, 277–285. [Google Scholar] [CrossRef]
- Chiaiese, P.; Corrado, G.; Colla, G.; Kyriacou, M.C.; Rouphael, Y. Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop Performance. Front. Plant Sci. 2018, 9, 1782. [Google Scholar] [CrossRef]
- Nelson, W.R.; van Staden, J. Effect of seaweed concentrate on the growth of wheat. South Afr. J. Sci. 1986, 82, 199–200. [Google Scholar]
- Abetz, P.; Young, C.L. The Effect of Seaweed Extract Sprays Derived from Ascophyllum nodosum on Lettuce and Cauliflower Crops. Bot. Mar. 1983, 26, 487–492. [Google Scholar] [CrossRef]
- Crouch, I.J.; Van Staden, J. Effect of seaweed concentrate on the establishment and yield of greenhouse tomato plants. J. Appl. Phycol. 1992, 4, 291–296. [Google Scholar] [CrossRef]
- Burchett, S.; Fuller, M.P.; Jellings, A.J. Application of seaweed extract improves winter hardiness of winter barley cv Igri. In Proceedings of the Society for Experimental Biology, Annual Meeting, The York University, Toronto, ON, Canada, 22–27 March 1998; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Zaidi, A.; Khan, M.S.; Ahemad, M.; Oves, M.; Wani, P.A. Recent Advances in Plant Growth Promotion by Phosphate-Solubilizing Microbes. In Microbial Strategies for Crop Improvement; Springer: Berlin/Heidelberg, Germany, 2009; pp. 23–50. ISBN 9783642019791. [Google Scholar]
- Rafi, M.M.; Krishnaveni, M.S.; Charyulu, P.B.B.N. Phosphate-Solubilizing Microorganisms and Their Emerging Role in Sustainable Agriculture. In Recent Developments in Applied Microbiology and Biochemistry; Buddolla, V., Ed.; Academic Press: Dordrecht, The Netherlands, 2019; Chapter 17; pp. 223–233. ISBN 9780128163283. [Google Scholar] [CrossRef]
- Canbolat, M.Y.; Bilen, S.; Çakmakçı, R.; Şahin, F.; Aydın, A. Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol. Fertil. Soils 2006, 42, 350–357. [Google Scholar] [CrossRef]
- Ipsilantis, I.; Karamesouti, M.; Gasparatos, D. Beneficial Microorganisms for the Management of Soil Phosphorus. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2018; Volume 32. [Google Scholar]
- Rajkumar, M.; Nagendran, R.; Lee, K.J.; Lee, W.H.; Kim, S.Z. Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 2006, 62, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, S.; Rahman Bakar, M.A.; Malik, K.A.; Hafeez, F.Y. Isolation, characterization and beneficial effects of rice associated plant growth promoting bacteria from Zanzibar soils. J. Basic Microbiol. 2004, 44, 241–252. [Google Scholar] [CrossRef]
- Stewart, L.I.; Hamel, C.; Hogue, R.; Moutoglis, P. Response of strawberry to inoculation with arbuscular mycorrhizal fungi under very high soil phosphorus conditions. Mycorrhiza 2005, 15, 612–619. [Google Scholar] [CrossRef]
- Li, H.; Smith, S.E.; Holloway, R.E.; Zhu, Y.; Smith, F.A. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol. 2006, 172, 536–543. [Google Scholar] [CrossRef]
- Estaun, V.; Camprubi, A.; Joner, E.J. Selecting arbuscular mycorrhizal fungi for field application. In Mycorrhizal Technology in Agriculture; Gianinazzi, S., Schuepp, H., Barea, J.M., Haselwandter, K., Eds.; Birkhauser Verlag: Berlin, Germany, 2002; pp. 249–259. [Google Scholar]
- Wang, C.; Li, X.; Zhou, J.; Wang, G.; Dong, Y. Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Commun. Soil Sci. Plant Anal 2008, 39, 499–509. [Google Scholar] [CrossRef]
- Kapulnik, Y.; Tsror (Lahkim), L.; Zipori, I.; Hazanovsky, M.; Wininger, S.; Dag, A. Effect of AMF application on growth, productivity and susceptibility to Verticillium wilt of olives grown under desert conditions. Symbiosis 2010, 52, 103–111. [Google Scholar] [CrossRef]
- Ortas, I. Effect of mycorrhiza application on plant growth and nutrient concentration in cucumber production under field conditions. Span. J. Agric. Res. 2010, 8, 116–122. [Google Scholar] [CrossRef]
- Mwangi, A.M.K.; Kahangi, E.M.; Ateka, E.; Onguso, J.; Mukhongo, R.W.; Mwangi, E.K.; Jefwa, J.M. Growth effects of microorganisms based commercial products inoculated to tissue cultured banana cultivated in three different soils in Kenya. Appl. Soil Ecol. 2013, 64, 152–162. [Google Scholar] [CrossRef]
- Lim, T.K. Chrysanthemum morifolium. In Edible Medicinal and Non-Medicinal Plants; Springer Netherlands: Dordrecht, The Netherlands, 2014; pp. 250–269. [Google Scholar]
- Liu, D.; Liu, W.; Zhu, D.; Geng, M.; Zhou, W.; Yang, T. Nitrogen effects on total flavonoids, chlorogenic acid, and antioxidant activity of the medicinal plant Chrysanthemum morifolium. J. Plant Nutr. Soil Sci. 2010, 173, 268–274. [Google Scholar] [CrossRef]
- Lunt, O.R.; Kofranek, A.M. Nitrogen and potassium nutrition of chrysanthemum. Proc. Am. Soc. Hort. Sci 1958, 72, 487–497. [Google Scholar]
- Yoon, H.S.; Goto, T.; Kageyama, Y. Developing a Nitrogen Application Curve for Spray Chrysanthemums grown in Hydroponic System and its Practical Use in NFT System. Engei Gakkai zasshi 2000, 69, 416–422. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Y.; Li, Z.; Zhao, L. A study of phosphorus uptake kinetic characteristic of four terrestrial economic plants. In Proceedings of the 2009 Beijing International Environmental Technology Conference, Beijing, China, 16–19 October 2009; pp. 140–145. [Google Scholar]
- Vanek, V.; Balik, J.; Cerny, J.; Pavliik, M.; Pavlikova, D.; Tlustos, P.; Valtera, J. The Nutrition of Horticultural Plants. Academic Press: Prague, Czech Republic, 2012. [Google Scholar]
- Tesi, R. Colture Protette, Ortoflorovivaismo. Colt. Protette 1987.
- Ceccon, P.; Fagnano, M.; Grignani, C.; Monti, M.; Orlandini, S. (Eds.) Agronomia; SES: Napoli, Italy, 2017. [Google Scholar]
- Nammidevi, M.; Shalini, B.; Bhongle, S.A.; Khiratkar, S.D. Effect of bio-inoculants with graded doses of NPK on flowering, yield attributes and economics of annual chrysanthemum. J. Soils Crop. 2008, 18, 217–220. [Google Scholar]
- Deshmukh, P.G.; Khiratkar, S.D.; Badge, S.A.; Bhongle, S.A. Effect of bio-inoculants with graded doses of NPK on growth and yield of gaillardia. J. Soils Crop. 2008, 18, 212–216. [Google Scholar]
- Sunitha, H.M.; Hunje, R.; Vyakaranahal, B.S.; Bablad, H.B. Effect of plant population and integrated nutrient management on growth, seed yield and quality of African marigold (Tagetes erecta L.). Karnataka J. Agric. Sci 2010, 23, 783–786. [Google Scholar]
- Kale, R.D.; Bano, K.; Sreenivasa, M.N.; Bagyaraj, D.J. Influence of worms cast on the grown and mycorrhizal colonization of two ornamental plants. South Indian Hortic. 1987, 35, 433–437. [Google Scholar]
- Nethra, N.N. Effect PH, Organic and Inorganic Fertilizer on Growth, Yield and Post Harvest Life of China Aster (Callistephns Chinensis (L.) Nexx.). Ph.D. Dissertation, University of Agricultural Sciences, GKVK, Karnataka, India, 1996. [Google Scholar]
- Gersani, M.; Kende, H. Studies on cytokinin-stimulated translocation in isolated bean leaves. J. Plant Growth Regul. 1982, 1, 161–171. [Google Scholar]
- Verma, S.K.; Angadi, S.G.; Patil, V.S.; Mokashi, A.N.; Mathad, J.C.; Mummigatti, U.V. Growth, yield and quality of chrysanthemum (Chrysanthemum morifolium Ramat.) cv. Raja as influenced by integrated nutrient management. Karn J. Agric. Sci. 2011, 24, 681–683. [Google Scholar]
- Narsimha Raju, S.; Haripriya, K. Integrated nutrient management in cossandra (Crossandra infundibuliformis L.) Cv. Dindigul local. South Indian Hortic. 2001, 49, 318–322. [Google Scholar]
- Warade, A.P.; Golliwar, V.J.; Chopde, N.; Lanje, P.W.; Thakre, S.A. Effect of organic manures and bio-fertilizers on growth, flowering and yield of dahlia. J. Soils Crop. 2007, 17, 354–357. [Google Scholar]
- Gajathri, H.N.; Jayaprassed, K.V.; Narayanaswamy, P. Response of bio-fertilezers and their combined application with different levels of inorganic fertilizers in statice (Limonium caspia). J. Ornam. Hortic. 2004, 7, 70–74. [Google Scholar]
- Shashikanth, G. Effect of Different Sources of Nutrients on Growth and Yield of Tall Marigold. Master’s Thesis, University of Agricultural Sciences, Dharwad, India, 2005. [Google Scholar]
- De Lucia, B.; Vecchietti, L. Type of bio-stimulant and application method effects on stem quality and root system growth in L.A. Lily. Eur. J. Hortic. Sci. 2012, 77, 10. [Google Scholar]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Wu, S.C.; Cao, Z.H.; Li, Z.G.; Cheung, K.C.; Wong, M.H. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 2005, 125, 155–166. [Google Scholar] [CrossRef]
- Cristiano, G.; Pallozzi, E.; Conversa, G.; Tufarelli, V.; De Lucia, B. Effects of an Animal-Derived Biostimulant on the Growth and Physiological Parameters of Potted Snapdragon (Antirrhinum majus L.). Front. Plant Sci. 2018, 9, 861. [Google Scholar] [CrossRef]
- Crouch, I.J.; Van Staden, J. Evidence for rooting factors in a seaweed concentrate prepared from Ecklonia maxima. J. Plant Physiol. 1991, 137, 319–322. [Google Scholar] [CrossRef]
- Mancuso, S.; Azzarello, E.; Mugnai, S.; Briand, X. Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv. Hortic. Sci. 2006, 20, 1000–1006. [Google Scholar]
- Biswas, J.C.; Ladha, J.K.; Dazzo, F.B. Rhizobia Inoculation Improves Nutrient Uptake and Growth of Lowland Rice. Soil Sci. Soc. Am. J. 2000, 64, 1644. [Google Scholar] [CrossRef]
- Adesemoye, A.O.; Torbert, H.A.; Kloepper, J.W. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can. J. Microbiol. 2008, 54, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Patanwar, M.; Sharma, G.; Banjare, C.; Chandravanshi, D.; Sahu, E. Growth and development of chrysanthemum (Dendranthema grandiflora Tzvelev) as influenced by integrated nutrient management. Ecoscan 2014, 6, 459–462. [Google Scholar]
- Kumari, A.; Goyal, R.K.; Choudhary, M.; Sindhu, S.S. Effect of different nitrogen levels and biofertilizers on growth, yield and nutrient content of chrysanthemum. Ann. Agric. Res. New Ser. 2014, 35, 156–163. [Google Scholar]
- Mahadik, M.K.; Dalal, S.R.; Patil, S.W.U. Dry matter production and nutrients composition of chrysanthemum in relation to integrated nutrient management. J. Pharmacogn. Phytochem. 2017, 6, 1879–1882. [Google Scholar]
- Shirmardi, M.; Savaghebi, G.R.; Khavazi, K.; Akbarzadeh, A.; Farahbakhsh, M.; Rejali, F.; Sadat, A. Effect of Microbial Inoculants on Uptake of Nutrient Elements in Two Cultivars of Sunflower (Helianthus annuus L.) in Saline Soils. Notulae Scientia Biologicae 2010, 2, 57. [Google Scholar] [CrossRef]
- Shahid, M.; Hameed, S.; Tariq, M.; Zafar, M.; Ali, A.; Ahmad, N. Characterization of mineral phosphate-solubilizing bacteria for enhanced sunflower growth and yield-attributing traits. Ann. Microbiol. 2015, 65, 1525–1536. [Google Scholar] [CrossRef]
- Rodríguez, H.; Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 319–339. [Google Scholar] [CrossRef]
- Garbaye, J. Tansley Review No. 76 Helper bacteria: A new dimension to the mycorrhizal symbiosis. New Phytol. 1994, 128, 197–210. [Google Scholar] [CrossRef]
- Rodríguez-Romero, A.S.; Guerra, M.S.P.; Del Carmen Jaizme-Vega, M. Effect of arbuscular mycorrhizal fungi and rhizobacteria on banana growth and nutrition. Agron. Sustain. Dev. 2005, 25, 395–399. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
pH (soil:H2O ratio 1:2.5) | 7.34 ± 0.2 |
Electric Conductivity (EC) (soil:H2O ratio 1:5) (dS m−1) | 1.77 ± 0.08 |
Cation exchange capacity (CEC) (Meq100g−1) | 23.8 |
Sand (%) | 52 ± 3 |
Silt (%) | 16 ± 2 |
Clay (%) | 32 ± 4 |
Total C (g kg−1) | 12.54 ± 1.2 |
Organic matter (g kg−1) | 21.61 ± 1.9 |
T Kjeldahl-N (g kg−1) | 1.15 ± 0.13 |
P (mg kg−1) | 71.25 ± 0.9 |
Available K (mg kg−1) | 579 ± 10.1 |
Available Ca (mg kg−1) | 2160 ± 22 |
Available Mg (mg kg−1) | 495 ± 31 |
Type and Commercial Product (*) | Content | Total Rate (g/100m2) | Weeks of Applications (n) (**) |
---|---|---|---|
N organic fertilizer (Euroflorid) | N = 5% w/w (N = 0.5 g/m2) | 75 | I, II, III, IV, V |
N organic fertilizer (Amminostim-bio) | N = 6% w/w (N = 0.9 g/m2) | 25 | VI, VII, VIII |
Seaweed extract (Euroalg) | Ascophyllum nodosum (L.) Le Jol. 32% w/w, N = 1.5% w/w (N = 0.9 g/m2), K20 = 5.0% w/w | 58 | I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII |
Microrganism consortium (Micotric L) | Glomus mosseae and G. intraradices (2 spores g−1) and Bacillus megaterium var. Phosphaticum 6 × 107 CFUs g−1 | 90 | I, II, III, IV |
Microrganism consortium (Europlus) | Glomus mosseae (2 spores g−1) + Trichoderma viride and Bacillus megaterium var. Phosphaticum 6 × 107 CFUs g−1 | 162 | I, II, III, IV |
Treatments | Yield (no. stems m−2) | Stem Height (cm) | Leaves (no./plant) | Leaf Area (cm−2) | Chl. Index (SPAD) | Flower Heads (no. stems−1) |
---|---|---|---|---|---|---|
Nutrition Management (NM) | ||||||
Conventional NM (CNM) | 118a | 103 | 60b | 2064b | 44.8 | 6.6b |
Integrated NM (INM) | 140b | 106 | 80a | 3017a | 46.9 | 8.4a |
Significance | * | ns | * | ** | ns | ** |
Cultivar (CV) | ||||||
CV 1 | 120b | 105 | 64 | 2416 | 45.1 | 8.2 |
CV 2 | 138a | 104 | 76 | 2665 | 46.6 | 6.9 |
Significance | * | ns | ns | ns | ns | ns |
Year | ||||||
2011 | 133 | 116a | 82 | 2795 | 46.6 | 8.1 |
2012 | 133 | 92b | 59 | 2486 | 45.1 | 7.3 |
Significance | ns | * | * | ns | ns | ns |
Interaction | ||||||
NM × CV | * | ns | ns | ns | ns | * |
NM × Year | ns | ns | ns | ns | ns | ns |
CV × Year | ns | ns | ns | ns | ns | ns |
NM × CV × year | ns | ns | ns | ns | ns | ns |
Treatments | Dry Weight (g) | |||
---|---|---|---|---|
Leaves | Stem | Heads | Above-plant | |
Nutrition Management (NM) | ||||
CNM | 8.30 b | 14.61 b | 5.65 b | 28.56 b |
INM | 11.10 a | 20.05 a | 8.75 a | 39.90 a |
Significance | ** | ** | ** | ** |
Cultivar (CV) | ||||
CV 1 | 9.40 | 17.10 | 8.05 | 34.55 |
CV 2 | 10.00 | 16.60 | 7.95 | 34.55 |
Significance | ns | ns | * | ns |
Year | ||||
2011 | 10.80 | 19.80 | 8.70 a | 39.30 a |
2012 | 8.60 | 14.40 | 6.50 b | 29.5 b |
Significance | * | ** | * | ** |
Interaction | ||||
NM × CV | ns | ns | ns | ns |
NM × Year | * | ns | * | * |
CV × Year | ns | ns | ns | ns |
NM × CV × year | ns | ns | ns | ns |
Treatments | TRL (cm) | AP (cm−2) | SA (cm−2) | RV (cm3) | RT (no.) | RF (no.) | RC (no.) |
---|---|---|---|---|---|---|---|
Nutrition Management (NM) | |||||||
CNM | 382.1 b | 21.2 b | 66.7 b | 0.9 b | 1264.8 b | 948.4 b | 34.7 b |
INM | 1049.2 a | 56.3 a | 177.0 a | 2.4 a | 3486.6 a | 3655.4 a | 195.6 a |
Significance | ** | ** | ** | ** | ** | ** | * |
Cultivar (CV) | |||||||
CV 1 | 975.0 a | 48.7 a | 153.0 a | 1.9 a | 3535.2 a | 3501.8 a | 208.2 a |
CV 2 | 597.4 b | 35.5 b | 110.8 b | 1.6 b | 1768.3 b | 1676.0 b | 70.0 b |
Significance | * | * | * | * | ** | ** | ** |
Interaction | |||||||
NM × CV | * | * | * | * | ** | ** | ** |
Treatments | DAT | ||
---|---|---|---|
55 | 93 | 131 | |
First Year | |||
Nutrition Management (NM) | |||
CNM | 4.33 b | 5.47 b | 6.20 b |
INM | 6.28 a | 9.13 a | 10.39 a |
Significance | * | * | * |
Cultivar (CV) | |||
CV 1 | 5.55 | 7.20 | 8.99 |
CV 2 | 5.61 | 7.68 | 8.48 |
Significance | ns | ns | ns |
Interaction | |||
NM × CV | ns | ns | ns |
Second Year | |||
Nutrition Management (NM) | |||
CNM | 2.67 | 5.05 | 6.37 b |
INM | 3.31 | 6.12 | 9.90 a |
Significance | * | * | ** |
Cultivar (CV) | |||
CV 1 | 2.93 | 5.42 | 8.47 a |
CV 2 | 3.03 | 5.72 | 7.57 b |
Significance | NS | NS | * |
Interaction | |||
NM × CV | ns | ns | ns |
Treatments | DAT | ||||||
---|---|---|---|---|---|---|---|
55 | 93 | 131 | |||||
Leaves | Stems | Leaves | Stems | Leaves | Heads | Stems | |
First Year | |||||||
Nutrition Management (NM) | |||||||
CNM | 3.05 | 1.28 | 3.31 | 2.16 | 2.83 | 1.87 | 1.50 |
INM | 4.52 | 1.76 | 5.14 | 3.99 | 4.50 | 3.34 | 2.55 |
Significance | ** | * | ** | ** | ** | ** | ** |
Cultivar (CV) | |||||||
CV 1 | 4.09 | 1.46 | 4.08 | 3.13 | 3.52 | 3.48 | 2.00 |
CV 2 | 4.04 | 1.57 | 4.53 | 3.26 | 3.75 | 2.73 | 2.00 |
Significance | ns | ns | ns | ns | ns | * | ns |
Interaction | |||||||
NM × CV | |||||||
Second Year | |||||||
Nutrition Management (NM) | |||||||
CNM | 1.84 | 0.83 | 3.07 | 1.88 | 2.75 | 1.28 | 1.75 |
INM | 2.35 | 0.96 | 3.57 | 2.55 | 3.30 | 2.78 | 2.57 |
Significance | * | * | * | * | * | ** | * |
Cultivar (CV) | |||||||
CV 1 | 2.07 | 0.87 | 3.23 | 2.19 | 3.09 | 1.71 | 2.54 |
CV 2 | 2.11 | 0.91 | 3.52 | 2.20 | 2.95 | 1.97 | 1.77 |
Significance | ns | ns | ns | ns | ns | ns | * |
Interaction | |||||||
NM × CV |
TMTS | Leaves | Stem | Flower Heads |
---|---|---|---|
First Year | |||
Nutrition Management (NM) | |||
CNM | 0.19 b | 0.15 b | 0.33 b |
INM | 0.21 a | 0.18 a | 0.40 a |
Significance | * | * | * |
Cultivar (CV) | |||
CV 1 | 0.20 | 0.16 | 0.32 |
CV 2 | 0.21 | 0.17 | 0.31 |
Significance | ns | ns | ns |
Interaction | |||
NM × CV | ns | ns | ns |
Second Year | |||
Nutrition Management (NM) | |||
CNM | 0.17 b | 0.16 b | 0.29 b |
INM | 0.19 a | 0.18 a | 0.33 a |
Significance | * | * | * |
Cultivar (CV) | |||
CV 1 | 0.18 | 0.19 | 0.31 |
CV 2 | 0.18 | 0.18 | 0.30 |
Significance | ns | ns | ns |
Interaction | |||
NM × CV | ns | ns | ns |
Fertilizer Cost | Yield | Gross Production | Takings Difference | |
---|---|---|---|---|
(€ ha−1) | (stems m−2) | (€ ha−1) * | (€) | |
CNM | 1945.00 | 118 | 271,400.00 | |
INM | 3144.00 | 140 | 322,000.00 | +50,600.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leoni, B.; Loconsole, D.; Cristiano, G.; De Lucia, B. Comparison between Chemical Fertilization and Integrated Nutrient Management: Yield, Quality, N, and P Contents in Dendranthema grandiflorum (Ramat.) Kitam. Cultivars. Agronomy 2019, 9, 202. https://doi.org/10.3390/agronomy9040202
Leoni B, Loconsole D, Cristiano G, De Lucia B. Comparison between Chemical Fertilization and Integrated Nutrient Management: Yield, Quality, N, and P Contents in Dendranthema grandiflorum (Ramat.) Kitam. Cultivars. Agronomy. 2019; 9(4):202. https://doi.org/10.3390/agronomy9040202
Chicago/Turabian StyleLeoni, Beniamino, Danilo Loconsole, Giuseppe Cristiano, and Barbara De Lucia. 2019. "Comparison between Chemical Fertilization and Integrated Nutrient Management: Yield, Quality, N, and P Contents in Dendranthema grandiflorum (Ramat.) Kitam. Cultivars" Agronomy 9, no. 4: 202. https://doi.org/10.3390/agronomy9040202
APA StyleLeoni, B., Loconsole, D., Cristiano, G., & De Lucia, B. (2019). Comparison between Chemical Fertilization and Integrated Nutrient Management: Yield, Quality, N, and P Contents in Dendranthema grandiflorum (Ramat.) Kitam. Cultivars. Agronomy, 9(4), 202. https://doi.org/10.3390/agronomy9040202