An Overview of Rice QTLs Associated with Disease Resistance to Three Major Rice Diseases: Blast, Sheath Blight, and Bacterial Panicle Blight
Abstract
:1. Introduction
2. Rice Disease Resistance to Blast
2.1. Epidemiology and Symptoms of Blast Disease
2.2. Conducive Environmental Conditions for Blast Disease
2.3. QTLs of Rice Associated with the Disease Resistance to Blast
3. Rice Disease Resistance to Sheath Blight
3.1. Epidemiology and Symptoms of Sheath Blight Disease
3.2. Conducive Environmental Conditions for Sheath Blight and Benefits of Sheath Blight Resistance
3.3. QTLs of Rice Associated with the Disease Resistance to Sheath Blight
4. Rice Disease Resistance to Bacterial Panicle Blight
4.1. Symptoms and Infection Process of Bacterial Panicle Blight
4.2. Conducive Environmental Conditions for Bacterial Panicle Blight
4.3. QTLs of Rice Associated with the Disease Resistance to Bacterial Panicle Blight
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Building a Common Vision for Sustainable Food and Agriculture: Principles and Approaches. 2014. Available online: http://fao.org/3/a-i3940e.pdf (accessed on 27 February 2016).
- Crist, E.; Mora, C.; Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 2017, 356, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Song, X.J.; Huang, W.; Shi, M.; Zhu, M.Z.; Lin, H.X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 2007, 39, 623–630. [Google Scholar] [CrossRef]
- Manandhar, H.K.; Lyngs Jorgensen, H.J.; Mathur, S.B.; Smedegaard-Peterson, V. Suppression of rice blast by preinoculation with avirulent Pyricularia oryzae and the nonrice pathogen Bipolaris sorokiniana. Phytopathology 1998, 88, 735–739. [Google Scholar] [CrossRef]
- Song, X.J.; Ashikari, M. Toward an optimum return from crop plants. Rice 2008, 1, 135–143. [Google Scholar] [CrossRef]
- Azegami, K. Burkholderia glumae and Burkholderia plantarii, the pathogens of bacterial grain rot of rice and bacterial seedling blight of rice, respectively. MAFF Microorg. Genet. Resour. Man. 2009, 26, 1–23. [Google Scholar]
- Pinson, S.R.M.; Shahjahan, A.K.M.; Rush, M.C.; Groth, D.E. Bacterial panicle blight resistance QTLs in rice and their association with other disease resistance loci and heading date. Crop Sci. 2010, 50, 1287–1297. [Google Scholar] [CrossRef]
- Tanksley, S.D. Mapping polygenes. Annu. Rev. Genet. 1993, 27, 205–233. [Google Scholar] [CrossRef]
- Mackay, T.F.C. The genetic architecture of quantitative traits. Annu. Rev. Genet. 2001, 35, 303–339. [Google Scholar] [CrossRef]
- Collard, B.C.Y.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 2005, 142, 169–196. [Google Scholar] [CrossRef]
- Sudupak, M.A.; Bennetzen, J.L.; Hulbert, S.H. Unequal exchange and meiotic instability of disease-resistance genes in the Rp1 region of maize. Genetics 1993, 133, 119–125. [Google Scholar]
- Aarts, M.G.M.; Hekkert, B.T.L.; Holub, E.B.; Beynon, J.L.; Stiekema, W.J.; Pereira, A. Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol. Plant Microbe Interact. 1998, 11, 251–258. [Google Scholar] [CrossRef]
- Mizobuchi, R.; Sato, H.; Fukuoka, S.; Tanabata, T.; Tsushima, S.; Imbe, T.; Yano, M. Mapping a quantitative trait locus for resistance to bacterial grain rot in rice. Rice 2013, 6, 13. [Google Scholar] [CrossRef]
- Mizobuchi, R.; Sato, H.; Fukuoka, S.; Tsushima, S.; Imbe, T.; Yano, M. Identification of qRBS1, a QTL involved in resistance to bacterial seedling rot in rice. Theor. Appl. Genet. 2013, 126, 2417–2425. [Google Scholar] [CrossRef]
- Kearsey, M.J.; Farquhar, A.G.L. QTL analysis in plants; where are we now? Heredity 1998, 80, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Mizobuchi, R.; Fukuoka, S.; Tsushima, S.; Yano, M.; Sato, H. QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot. Rice 2016, 9, 23. [Google Scholar] [CrossRef]
- Fukuoka, S.; Saka, N.; Mizukami, Y.; Koga, H.; Yamanouchi, U.; Yoshioka, Y.; Hayashi, N.; Ebana, K.; Mizobuchi, R.; Yano, M. Gene pyramiding enhances durable blast disease resistance in rice. Sci. Rep. 2015, 5, 7773. [Google Scholar] [CrossRef]
- Zhang, F.; Xie, J. Genes and QTLs resistant to biotic and abiotic stresses from wild rice and their applications in cultivar improvements. In Rice-Germplasm, Genetics and Improvement; Yan, W., Bao, J., Eds.; IntechOpen: London, UK, 2014; pp. 59–78. [Google Scholar]
- Rossman, A.Y.; Howard, R.J.; Valent, B. Pyricularia grisea, the correct name for the rice blast disease fungus. Mycologia 1990, 82, 509–512. [Google Scholar] [CrossRef]
- Miah, G.; Rafii, M.Y.; Ismail, M.R.; Puteh, A.B.; Rahim, H.A.; Asfaliza, R.; Latif, M.A. Blast resistance in rice: A review of conventional breeding to molecular approaches. Mol. Biol. Rep. 2013, 40, 2369–2388. [Google Scholar] [CrossRef]
- Nasruddin, A.; Amin, N. Effects of variety, planting period, and fungicide usage on rice blast infection levels and crop yield. J. Agric. Sci. 2013, 5, 160–167. [Google Scholar] [CrossRef]
- Scheuermann, K.K.; Raimondi, J.V.; Marschalek, R.; Andrade, A.D.; Wickert, E. Magnaporthe oryzae genetic diversity and its outcomes on the search for durable resistance. In The Molecular Basis Plant Genetics Diversity; Caliskan, M., Ed.; IntechOpen: London, UK, 2012; pp. 331–356. [Google Scholar]
- Couch, B.C.; Kohn, L.M. A multilocus gene gene alogy concordant with host preference indicates segregation of new species, Magnaporthe oryzae from M. grisea. Mycologia 2002, 94, 683–693. [Google Scholar] [CrossRef]
- Dean, R.A.; Talbot, N.J.; Ebbole, D.J.; Farman, M.L.; Mitchell, T.K.; Orbach, M.J.; Thon, M.; Kulkarni, R.; Xu, J.R.; Pan, H.; et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 2005, 434, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Devi, S.; Sharma, G.D. Blast disease of rice caused by Magnaporthe grisea: A review. Assam Univ. J. Sci. Technol. 2010, 6, 144–154. [Google Scholar]
- Hubert, J.; Mabagala, R.B.; Mamiro, D.P. Efficacy of selected plant extracts against Pyricularia grisea, causal agent of rice blast disease. Am. J. Plant Sci. 2015, 6, 602–611. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Scardaci, S.C.; Webster, R.K.; Greer, C.A.; Hill, J.E.; William, J.F.; Mutters, R.G.; Brandon, D.M.; McKenzie, K.S.; Oster, J.J. Rice Blast: A New Disease in California. In Agronomy Fact Sheet Series; Department of Agronomy and Range Science, University of California: Davis, CA, USA, 1997; Volume 1, pp. 2–5. [Google Scholar]
- Ou, S.H. Rice Disease, 2nd ed.; Commonwealth Mycological Institute: Kew, Surrey, UK, 1985; 380p. [Google Scholar]
- Hamer, J.E.; Howard, R.J.; Chumley, F.G.; Valent, B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 1988, 239, 288–290. [Google Scholar] [CrossRef]
- Bourett, T.M.; Howard, R.J. In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea. Can. J. Bot. 1990, 68, 329–342. [Google Scholar] [CrossRef]
- Dean, R.A. Signal pathways and appressorium morphogenesis. Annu. Rev. Phytopathol. 1997, 35, 211–234. [Google Scholar] [CrossRef]
- Kato, H.; Kozaka, T. Effect of temperature on lesion enlargement and sporulation of Pyricularia oryzae on rice leaves. Phytopathology 1974, 64, 828–830. [Google Scholar] [CrossRef]
- Suzuki, H. Temperature related to spore germination and appressorium formation of rice blast fungus. Proc. Assoc. Plant Prot. Hokuriku 1969, 17, 6–9. [Google Scholar]
- Adachi, T. Relationship between wind and occurrence of rice blast disease. Ann. Phytopathol. Soc. Jpn. 1981, 47, 363–364. [Google Scholar]
- Taguch, Y.; Elsharkawy, M.M.; Hassan, N.; Hyakumachi, M. A novel method for controlling rice blast disease using fan-forced wind on paddy fields. Crop Prot. 2014, 63, 68–75. [Google Scholar] [CrossRef]
- Jeyanandarajah, P.; Seveviratne, S.N.S. Fungi seed-borne in rice (Oryza sativa) in Sri Lanka. Seed Sci. Technol. 1991, 19, 561–569. [Google Scholar]
- Harmon, P.F.; Latin, R. Perennation of Magnaporthe grisea in the Midwest: Disease management implications. Phytopathology 2001, 91, S148. [Google Scholar]
- Valent, B.; Chumley, F.G. Genes for cultivar specificity in the rice blast fungus, Magnaporthe grisea. In Signal Molecules in Plant-Microbe Interactions; Lutenberg, B.J.J., Ed.; NATO ASI Series; Springer: Berlin, Germany, 1991; Volume 36, pp. 415–422. ISBN 978-3-642-74158-6. [Google Scholar]
- Gnanamanickam, S.S.; Mew, T.W. Biological control of blast disease of rice (Oryza sativa L.) with antagonistic bacteria and its mediation by a Pseudomonas antibiotic. Ann. Phytopathol. Soc. Jpn. 1992, 58, 380–385. [Google Scholar] [CrossRef]
- Chatterjee, A.; Valasubramanian, R.; Ma, W.L.; Vachani, A.K.; Gnanamanickam, S.; Chatterjee, A.K. Isolation of ant mutants of Pseudomonas fluorescens strain Pf7-14 altered in antibiotic production, cloning of ant+ DNA and an evaluation of the role of antibiotic production in the control of blast and sheath blight of rice. Biol. Control 1996, 7, 185–195. [Google Scholar] [CrossRef]
- Krishnamurthy, K.; Gnanamanickam, S.S. Biological control of rice blast by Pseudomonas fluorescens strain Pf7-14: Evaluation of a marker gene and formulations. Biol. Control 1998, 13, 158–165. [Google Scholar] [CrossRef]
- Mbodi, Y.; Gaye, S.; Diaw, S. The role of tricyclazole in rice protection against blast and cultivar improvement. Parasitica 1987, 43, 187–198. [Google Scholar]
- Moletti, M.; Giudici, M.L.; Nipoti, E.; Villa, B. Chemical control trials against rice blast in Italy. Informatore Fitopatologic 1988, 38, 41–47. [Google Scholar]
- Naidu, V.D.; Reddy, G.V. Control of blast (BI) in main field and nursery with some new fungicides. RPP 1989, 69, 209. [Google Scholar]
- Huang, S.W.; Wang, L.; Liu, L.M.; Fu, Q.; Zhu, D.F. Nonchemical pest control in China rice: A review. Agron. Sustain. Dev. 2014, 34, 275–291. [Google Scholar] [CrossRef]
- International Rice Research Institute (IRRI). International Rice Research Institute. 2010. Available online: http://irri.org/component/itpgooglesearch/search?q=annual+reports (accessed on 10 November 2013).
- Ou, S.H. Pathogen variability and host resistance in rice blast disease. Annu. Rev. Phytopathol. 1980, 18, 167–187. [Google Scholar] [CrossRef]
- Joshi, B.K.; Bimb, H.P.; Parajuli, G.; Chaudhary, B. Molecular tagging, allele mining and marker aided breeding for blast resistance in rice. BSN e-Bull. 2009, 1, 1–23. [Google Scholar]
- Fjellstrom, R.; McClung, A.; Shank, A.R.; Marchetti, M.A.; Bormans, C.; Park, W.D. Progress on development of microsatellite markers associated with rice blast resistance genes. In Proceedings of the 29th Rice Technical Working Group Meeting, Little Rock, AR, USA, 24–27 February 2002; pp. 43–44. [Google Scholar]
- Kiyosawa, S. Gene analysis for blast resistance. Oryza 1981, 18, 196–203. [Google Scholar]
- Kiyosawa, S. Genetics and epidemical modeling of breakdown of plant disease resistance. Annu. Rev. Phytopathol. 1982, 20, 93–117. [Google Scholar] [CrossRef]
- Bonman, J.M.; Khush, G.S.; Nelson, R.J. Breeding rice for resistance to pests. Annu. Rev. Phytopathol. 1992, 30, 507–528. [Google Scholar] [CrossRef]
- Michelmore, R.W. The impact zone: Genomics and breeding for durable disease resistance. Curr. Opin. Plant Biol. 2003, 6, 397–404. [Google Scholar] [CrossRef]
- Poland, J.A.; Balint-Kurti, P.J.; Wisser, R.J.; Pratt, R.C.; Nelson, R.J. Shades of gray: The world of quantitative disease resistance. Trends Plant Sci. 2009, 14, 21–29. [Google Scholar] [CrossRef]
- Kou, Y.; Wang, S. Broad-spectrum and durability: Understanding of quantitative disease resistance. Curr. Opin. Plant Biol. 2010, 13, 181–185. [Google Scholar] [CrossRef]
- Ballini, E.; Morel, J.B.; Droc, G.; Price, A.; Courtois, B.; Notteghem, J.L.; Tharreau, D. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol. Plant Microbe Interact. 2008, 21, 859–868. [Google Scholar] [CrossRef]
- Fukuoka, S.; Saka, N.; Koga, H.; Ono, K.; Shimizu, T.; Ebana, K.; Hayashi, N.; Takahashi, A.; Hirochika, H.; Okuno, K.; et al. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 2009, 325, 998–1001. [Google Scholar] [CrossRef] [PubMed]
- Ashkani, S.; Rafii, M.Y.; Shabanimofrad, M.; Miah, G.; Sahebi, M.; Azizi, P.; Tanweer, F.A.; Akhtar, M.S.; Nasehi, A. Molecualr breeding strategy and challenges towards improvement of blast disease resistance in rice crop. Front. Plant Sci. 2015, 6, 886. [Google Scholar] [CrossRef] [PubMed]
- Somssich, I.E.; Hahlbrock, K. Pathogen defense in plants—A paradigm of biological complexity. Trends Plant Sci. 1998, 3, 86–90. [Google Scholar] [CrossRef]
- Puri, K.D.; Shrestha, S.M.; Chhetri, G.B.K.; Joshi, K.D. Leaf and neck blast resistance reaction in tropical rice lines under greenhouse condition. Euphytica 2009, 165, 523. [Google Scholar] [CrossRef]
- Sharma, T.R.; Rai, A.K.; Gupta, S.K.; Vijayan, J.; Devanna, B.N.; Ray, S. Rice Blast Management through Host-Plant Resistance: Retrospect and Prospects. Agric. Res. 2012, 1, 37–52. [Google Scholar] [CrossRef]
- Ishihara, T.; Hayano-Saito, Y.; Oide, S.; Ebana, K.; La, N.T.; Hayashi, K.; Ashizawa, T.; Suzuki, F.; Koizumi, S. Quantitative trait locus analysis of resistance to panicle blast in the rice variety Miyazakimochi. Rice 2014, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qi, X.; Young, N.D.; Olsen, K.M.; Caicedo, A.L.; Jia, Y. Characterization of resistance genes to rice blast fungus Magnaporthe oryzae in a “Green Revolution” rice variety. Mol. Breed. 2015, 35, 52. [Google Scholar] [CrossRef]
- China Rice Data Center. Available online: http://www.ricedata.cn/gene/gene_pi.htm (accessed on 20 April 2018).
- Zhu, D.; Kang, H.; Li, Z.; Liu, M.; Zhu, X.; Wang, Y.; Wang, D.; Wang, Z.; Liu, W.; Wang, G.L. A genome-wide association study of field resistance to Magnaporthe Oryzae in rice. Rice 2016, 9, 44. [Google Scholar] [CrossRef]
- Imbe, T.; Matsumoto, S. Inheritance of resistance of rice varieties to the blast fungus strains virulent to the variety “Reiho”. Jpn. J. Breed. 1985, 35, 332–339. [Google Scholar] [CrossRef]
- Takahashi, A.; Hayashi, N.; Miyao, A.; Hirochika, H. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Boil. 2010, 10, 175. [Google Scholar] [CrossRef]
- Hayashi, K.; Yoshida, H.; Ashikawa, I. Development of PCR-based allele specific and InDel marker sets for nine rice blast resistance genes. Theor. Appl. Genet. 2006, 113, 251–260. [Google Scholar] [CrossRef]
- Hayashi, K.; Yoshida, H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J. 2009, 57, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Yasuda, N.; Fujita, Y.; Koizumi, S.; Yoshida, H. Identification of the blast resistance gene Pit in rice cultivars using functional markers. Theor. Appl. Genet. 2010, 121, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, L.; Que, Z.; Pan, R.; Pan, Q. Genetic and physical mapping of Pi37(t), a new gene conferring resistance to rice blast in the famous cultivar St. No. 1. Theor. Appl. Genet. 2005, 111, 1563–1570. [Google Scholar] [CrossRef]
- Lin, F.; Chen, S.; Que, Z.; Wang, L.; Liu, X.; Pan, Q. The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 2007, 177, 1871–1880. [Google Scholar] [CrossRef]
- Yokoo, M.; Kikuchu, F.; Fujimaki, H.; Nagai, K. Breeding of blast resistance lines (BL1 to 7) from indica-japonica crosses of rice. Jpn. J. Breed 1978, 28, 359–365. [Google Scholar] [CrossRef]
- Wang, Z.X.; Yano, M.; Yamanouchi, U.; Iwamoto, M.; Monna, L.; Hayasaka, H.; Katayose, Y.; Sasaki, T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 1999, 19, 55–64. [Google Scholar] [CrossRef]
- Fukuoka, S.; Okuno, K. QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor. Appl. Genet. 2001, 103, 185–190. [Google Scholar] [CrossRef]
- Xu, X.; Hayashi, N.; Wang, C.T.; Fukuoka, S.; Kawasaki, S.; Takatsuji, H.; Jiang, C.J. Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol. Breed. 2014, 34, 691–700. [Google Scholar] [CrossRef]
- Goto, I. Genetic studies on resistance of rice plant to blast fungus II. Difference in resistance to the blast disease between Fukunishiki and its parental cultivar, Zenith. Ann. Phytopathol. Soc. Jpn. 1976, 42, 253–260. [Google Scholar] [CrossRef]
- Fjellstrom, R.; McClung, A.M.; Shank, A.R. SSR markers closely linked to the Pi-z locus are useful for selection of blast resistance in a broad array of rice germplasm. Mol. Breed. 2006, 17, 149–157. [Google Scholar] [CrossRef]
- Zhou, B.; Qu, S.; Liu, G.; Dolan, M.; Sakai, H.; Lu, G.; Bellizzi, M.; Wang, G.L. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol. Plant-Microbe Interact. 2006, 19, 1216–1228. [Google Scholar] [CrossRef] [PubMed]
- Amante-Bordeos, A.; Sitch, L.A.; Nelson, R.; Damacio, R.D.; Oliva, N.P.; Aswidinnoor, H.; Leung, H. Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa. Theor. Appl. Genet. 1992, 84, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Liu, G.; Zhou, B.; Bellizzi, M.; Zeng, L.; Dai, L.; Han, B.; Wang, G.L. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 2006, 172, 1901–1914. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shang, J.; Chen, D.; Lei, C.; Zou, Y.; Zhai, W.; Liu, G.; Xu, J.; Ling, Z.; Cao, G.; et al. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J. 2006, 46, 794–804. [Google Scholar] [CrossRef]
- Shang, J.; Tao, Y.; Chen, X.; Zou, Y.; Lei, C.; Wang, J.; Li, X.; Zhao, X.; Zhang, M.; Lu, Z.; et al. Identification of a new rice blast resistance gene, Pid3, by genome wide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics 2009, 182, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.Y.; Wu, J.L.; Fan, Y.Y.; Rao, Z.M.; Zheng, K.L. Genetic drag between a blast resistance gene and QTL conditioning yield trait detected in a recombinant inbred line population in rice. Rice Genet. Newsl. 2001, 18, 69–70. [Google Scholar]
- Chen, J.; Shi, Y.; Liu, W.; Chai, R.; Fu, Y.; Zhuang, J.; Wu, J. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J. Genet. Genom. 2011, 38, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Q.; Wang, L.; Chen, S.; Lin, F.; Pan, Q.H. Genetic and physical mapping of Pi36(t), a novel rice blast resistance gene located on rice chromosome 8. Mol. Genet. Genom. 2005, 274, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lin, F.; Wang, L.; Pan, Q. The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding-site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics 2007, 176, 2541–2549. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.S.; Chen, D.; Yi, G.H.; Wang, G.L.; Ronald, P.C. Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Mol. Genet. Genom. 2003, 269, 280–289. [Google Scholar] [CrossRef]
- Lee, S.K.; Song, M.Y.; Seo, Y.S.; Kim, H.K.; Ko, S.; Cao, P.J.; Suh, J.P.; Yi, G.; Roh, J.H.; Lee, S.; et al. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil–nucleotide-binding–leucine-rich repeat genes. Genetics 2009, 181, 1627–1638. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, B.; Zhu, X.; Yang, J.; Bordeos, A.; Wang, G.; Leach, J.E.; Leung, H. Fine-mapping and molecular marker development for Pi56(t), a NBS-LRR gene conferring broad-spectrum resistance to Magnaporthe oryzae in rice. Theor. Appl. Genet. 2013, 126, 985–998. [Google Scholar] [CrossRef] [PubMed]
- Goto, I.; Jaw, Y.L.; Baluch, A.A. Genetic studies on resistance of rice plant to blast fungus IV. Linkage analysis of four genes, Pi-a, Pi-k, Pi-z and Pi-i. Ann. Phytopathol. Soc. Jpn. 1981, 47, 252–254. [Google Scholar] [CrossRef]
- Okuyama, Y.; Kanzaki, H.; Abe, A.; Yoshida, K.; Tamiru, M.; Saitoh, H.; Fujibe, T.; Matsumura, H.; Shenton, M.; Galam, D.C.; et al. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J. 2011, 66, 467–479. [Google Scholar] [CrossRef]
- Chauhan, R.S.; Farman, M.L.; Zhang, H.B.; Leong, S.A. Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol. Genet. Genom. 2002, 267, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Cesari, S.; Thilliez, G.; Ribot, C.; Chalvon, V.; Michel, C.; Jauneau, A.; Rivas, S.; Alaux, L.; Kanzaki, H.; Okuyama, Y.; et al. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 2013, 25, 1463–1481. [Google Scholar] [CrossRef] [PubMed]
- Hayasaka, H.; Miyao, A.; Yano, M.; Matsunaga, K.; Sasaki, T. RFLP mapping of a rice blast resistance gene Pi-k. Breed. Sci. 1996, 46, 68. [Google Scholar]
- Wang, L.; Xu, X.; Lin, F.; Pan, Q. Characterization of rice blast resistance genes in the Pik cluster and fine mapping of the Pik-p locus. Phytopathology 2009, 99, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Zhai, C.; Lin, F.; Dong, Z.; He, X.; Yuan, B.; Zeng, X.; Wang, L.; Pan, Q. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol. 2011, 189, 321–334. [Google Scholar] [CrossRef]
- Yu, Z.H.; Mackill, D.J.; Bonman, J.M.; Tanksley, S.D. Tagging genes for blast resistance in rice via linkage to RFLP markers. Theor. Appl. Genet. 1991, 81, 471–476. [Google Scholar] [CrossRef]
- Hua, L.; Wu, J.; Chen, C.; Wu, W.; He, X.; Lin, F.; Wang, L.; Ashikawa, I.; Matsumoto, T.; Wang, L.; et al. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor. Appl. Genet. 2012, 125, 1047–1055. [Google Scholar] [CrossRef]
- Sharma, T.R.; Madhav, M.S.; Singh, B.K.; Shanker, P.; Jana, T.K.; Dalal, V.; Pandit, A.; Singh, A.; Gaikwad, K.; Upreti, H.C.; et al. High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea. Mol. Genet. Genom. 2005, 274, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Sharma, T.R.; Shanker, P.; Singh, B.K.; Jana, T.K.; Madhav, M.S.; Gaikwad, K.; Singh, N.K.; Plaha, P.; Rathour, R. Molecular mapping of rice blast resistance gene Pi-kh in rice variety Tetep. J. Plant Biochem. Biotechnol. 2005, 14, 127–133. [Google Scholar] [CrossRef]
- Rai, A.K.; Kumar, S.P.; Gupta, S.K.; Gautam, N.; Singh, N.K.; Sharma, T.R. Functional complementation of rice blast resistance gene Pi-kh (Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. J. Plant Biochem. Biotechnol. 2011, 20, 55–65. [Google Scholar] [CrossRef]
- Kaji, R.; Ogawa, T. RFLP mapping of a blast resistance gene, Pi-km, in rice. Breed. Sci. 1996, 46, 70. [Google Scholar]
- Ashikawa, I.; Hayashi, N.; Yamane, H.; Kanamori, H.; Wu, J.; Matsumoto, T.; Ono, K.; Yano, M. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 2008, 180, 2267–2276. [Google Scholar] [CrossRef]
- Yuan, B.; Zhai, C.; Wang, W.; Zeng, X.; Xu, X.; Hu, H.; Lin, F.; Wang, L.; Pan, Q. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor. Appl. Genet. 2011, 122, 1017–1028. [Google Scholar] [CrossRef]
- Fujii, K.; Hayano-Saito, Y.; Sugiura, N.; Hayashi, N.; Saka, N.; Takamicji, T.; Izawa, T.; Shumiya, A. Gene analysis of panicle blast resistance in rice varieties with rice stripe resistance. Breed Res. 1999, 1, 203–210. [Google Scholar] [CrossRef]
- Hayashi, N.; Inoue, H.; Kato, T.; Funao, T.; Shirota, M.; Shimizu, T.; Kanamori, H.; Yamane, H.; Hayano-Saito, Y.; Matsumoto, T.; et al. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J. 2010, 64, 498–510. [Google Scholar] [CrossRef]
- Bryan, G.T.; Wu, K.S.; Farrall, L.; Jia, Y.; Hershey, H.P.; McAdams, S.A.; Faulk, K.N.; Donaldson, G.K.; Tarchini, R.; Valent, B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 2000, 12, 2033–2045. [Google Scholar] [CrossRef]
- Miah, G.; Rafii, M.Y.; Ismail, M.R.; Puteh, A.B.; Rahim, H.A.; Islam, K.N.; Latif, M.A. A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int. J. Mol. Sci. 2013, 14, 22499–22528. [Google Scholar] [CrossRef] [PubMed]
- Girish Kumar, K.; Hittalmani, S.; Srinivasachary, S.; Shashidhar, H.E. Marker-assisted backcross gene introgression of major genes for blast resistance in rice. Adv. Rice Blast Res. 2000, 82, 43–53. [Google Scholar] [CrossRef]
- Lavanya, B.; Gnanamanickam, S.S. Molecular tools for characterization of rice blast pathogen (Magnaporthe grisea) population and molecular marker-assisted breeding for disease resistance. Curr. Sci. 2000, 78, 248–257. [Google Scholar]
- Thippeswamy, S.; Nagesh, K.; Reddy, C.S. Identification of effective blast resistance genes and validation of linked molecular markers in rice. In Proceedings of the International Symposium on Frontiers in Genetics and Biotechnology-Retrospect and Prospect, Osmania University, Hyderabad, India, 8–10 January 2006. P-III-18. [Google Scholar]
- Yang, X.; Wang, J. Genome-wide analysis of NBS-LRR genes in sorghum genome revealed several events contributing to NBS-LRR gene evolution in grass species. Evol. Bioinform. 2016, 12, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Pennill, L.A.; Ning, J.; Lee, S.W.; Ramalingam, J.; Webb, C.A.; Zhao, B.; Sun, Q.; Nelson, J.C.; Leach, J.E.; et al. Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res. 2002, 12, 1871–1884. [Google Scholar] [CrossRef] [PubMed]
- Meyers, B.C.; Kozik, A.; Griego, A.; Kuang, H.; Michelmore, R.W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 2003, 15, 809–834. [Google Scholar] [CrossRef]
- Rush, M.C.; Lee, F.N. Sheath blight. In Compendium of Rice Diseases; Webster, R.K., Gunnel, P.S., Eds.; American Phytopathological Society: St. Paul, MN, USA, 1992; pp. 22–23. [Google Scholar]
- Miyaki, I. Studies uber die reisptlance in Japan. Jl Cell Agric. Imp Univ. 1910, 2, 237–276. [Google Scholar]
- Lee, F.N.; Rush, M.C. Rice sheath blight: A major rice disease. Plant Dis. 1983, 67, 829–832. [Google Scholar] [CrossRef]
- Webster, R.K.; Gunnel, P.S. Compendium of Rice Diseases; American Phytopathological Society: Minnesota, MN, USA, 1992; pp. 22–23. ISBN 0890541264. [Google Scholar]
- Kim, W.G.; Ishii, K. Lesion and sclerotial formation and penetration of sclerotial fungi on rice plants. Crop Prot. 1992, 34, 7–11. [Google Scholar]
- Wu, W.; Huang, J.; Cui, K.; Nie, L.; Wang, Q.; Yang, F.; Shah, F.; Yao, F.; Peng, S. Sheath blight reduces stem breaking resistance and increases lodging susceptibility of rice plants. Field Crops Res. 2012, 128, 101–108. [Google Scholar] [CrossRef]
- Nagarajkumar, M.; Bhaskaran, R.; Velazhahan, R. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 2004, 159, 73–81. [Google Scholar] [CrossRef]
- Kannaiyan, S.; Prasad, N.N. Effect of organic amendments on seedling infection of rice caused by Rhizoctonia solani. Plant Soil 1981, 62, 131–133. [Google Scholar] [CrossRef]
- Mian, M.S.; Stevens, C.; Mia, M.A.T. Diversity of the rice blast pathogen Pyricularia grisea from Bangladesh analysed by DNA fingerprinting. Bangladesh J. Plant Pathol. 2003, 1, 81–85. [Google Scholar]
- Sivalingan, P.N.; Vishwakarma, S.N.; Singh, U.S. Role of seed-borne inoculum of Rhizoctonia solani in sheath blight of rice. Indian Phytopath. 2006, 59, 445–452. [Google Scholar]
- Glazebrook, J. Genes controlling expression of defense responses in Arabidopsis—2001 status. Curr. Opin. Plant Biol. 2001, 4, 301–308. [Google Scholar] [CrossRef]
- Ramonell, K.M.; Somerville, S. The genomics parade of defense responses: To infinity and beyond. Curr. Opin. Plant Biol. 2002, 5, 291–294. [Google Scholar] [CrossRef]
- Van Loon, L.C.; Bakker, P.A.; Pieterse, C.M. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 1998, 36, 453–483. [Google Scholar] [CrossRef]
- Biswas, A. Reaction of hybrid rice varieties to sheath blight (ShB) disease in West Bengal, India. J. Mycol. Plant Pathol. 2001, 31, 360–361. [Google Scholar]
- Groth, D.E. Effects of variety resistance and single fungicide application on rice sheath blight, yield, and quality. Crop Prot. 2008, 27, 1125–1130. [Google Scholar] [CrossRef]
- Kannaiyan, S.; Prasad, N.N. Studies on the variability of sclerotia of R. solani Kuhn in soil and water. Madras Agric. J. 1978, 65, 741–742. [Google Scholar]
- Tiwari, R.K.S.; Chaure, N.K. Studies on factors influencing appearance and severity of sheath blight (Rhizoctonia solani f. sp. sasaki) of rice. Adv Plant Sci. 1997, 10, 223–226. [Google Scholar]
- Tsiboe, F.; Lanier Nalley, L.; Durand, A.; Thoma, G.; Shew, A. The Economic and Environmental Benefits of Sheath Blight Resistance in Rice. J. Agric. Resour. Econ. 2017, 42, 215–235. [Google Scholar]
- Marchetti, M.A.; Bollich, C.N. Quantification of the relationship between sheath blight severity and yield loss in rice. Plant Dis. 1991, 75, 773–775. [Google Scholar] [CrossRef]
- Jia, Y.; Correa-Victoria, F.; McClung, A.; Zhu, L.; Liu, G.; Wamishe, Y.; Xie, J.; Marchetti, M.A.; Pinson, S.R.M.; Rutger, J.N.; et al. Rapid determination of rice variety responses to the sheath blight pathogen Rhizoctonia solani using a micro-chamber screening method. Plant Dis. 2007, 91, 485–489. [Google Scholar] [CrossRef]
- Eizenga, G.C.; Lee, F.N.; Rutger, J.N. Screening Oryza species plants for rice sheath blight resistance. Plant Dis. 2002, 86, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.A. Sensitivity to a Phytotoxin from Rhizoctonia solani Correlates with Sheath Blight Susceptibility in Rice. Phytopathology 2007, 97, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Liu, G.; Costanzo, S.; Lee, S.; Dai, Y. Current progress on genetic interactions of rice with rice blast and sheath blight fungi. Front. Agric. China 2009, 3, 231–239. [Google Scholar] [CrossRef]
- Hashiba, T. Forecasting model and estimation of yield loss by rice sheath blight disease. Jpn. Agric. Res. Q. 1984, 18, 92–98. [Google Scholar]
- Hashiba, T.; Uchiyamada, H.; Kimura, K. A method to estimate the disease incidence based on the height of the infected parts in rice sheath blight disease. Ann. Phytopathol. Soc. Jpn. 1981, 47, 194–198. [Google Scholar] [CrossRef]
- Groth, D.E.; Nowick, E.M. Selection for resistance to rice sheath blight through number of infection cushions and lesion type. Plant Dis. 1992, 76, 721–723. [Google Scholar] [CrossRef]
- Li, Z.; Pinson, S.R.M.; Marchetti, M.A.; Stansel, J.W.; Park, W.D. Characterization of Quantitative Trait Loci (QTLs) in Cultivated Rice Contributing to Field Resistance to Sheath Blight (Rhizoctonia solani). Theor. Appl. Genet. 1995, 91, 382–388. [Google Scholar] [CrossRef]
- Pinson, S.R.M.; Capdevielle, F.M.; Oard, J.H. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci. 2005, 45, 503–510. [Google Scholar] [CrossRef]
- Sharma, A.; McClung, A.M.; Pinson, S.R.M.; Kepiro, J.L.; Shank, A.R.; Tabien, R.E.; Fjellstrom, R. Genetic mapping of sheath blight resistance QTLs within tropical japonica rice varieties. Crop Sci. 2009, 49, 256–264. [Google Scholar] [CrossRef]
- Zuo, S.M.; Wang, Z.B.; Chen, X.J.; Gu, F.; Zhang, Y.F.; Chen, Z.X.; Pan, X.B.; Pan, C.H. Evaluation of resistance of a novel rice line YSBR1 to sheath blight. Acta Agron. Sin. 2009, 35, 608–614. [Google Scholar] [CrossRef]
- Prasad, B.; Eizenga, G.C. Rice sheath blight disease resistance identified in Oryza spp. accessions. Plant Dis. 2008, 92, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.X.; Ji, Z.J.; Ma, L.Y.; Li, X.M.; Yang, C.D. Advances in mapping loci conferring resistance to rice sheath blight and mining Rhizoctonia solani resistant resources. Rice Sci. 2011, 18, 56–66. [Google Scholar] [CrossRef]
- Pan, X.B.; Rush, M.C.; Sha, X.Y.; Xie, Q.J.; Linscombe, S.D.; Stetina, S.R.; Oard, J.H. Major gene, nonallelic sheath blight resistance form the rice cultivars jasmine 85 and teqing. Crop Sci. 1999, 39, 338–346. [Google Scholar]
- Pan, X.B.; Zou, J.; Chen, Z.; Lu, J.; Yu, H.; Li, H.; Wang, Z.; Pan, X.; Rush, M.C.; Zhu, L. Tagging major quantitative trait loci for sheath blight resistance in a rice variety, Jasmine 85. Chin. Sci. Bull. 1999, 44, 1783–1789. [Google Scholar] [CrossRef]
- Zou, J.H.; Pan, X.B.; Chen, Z.X.; Xu, J.Y.; Lu, J.F.; Zhai, W.X.; Zhu, L.H. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theor. Appl. Genet. 2000, 101, 569–573. [Google Scholar] [CrossRef]
- Han, Y.P.; Xing, Y.Z.; Chen, Z.X.; Gu, S.L.; Pan, X.B.; Chen, X.L.; Zhang, Q.F. Mapping QTLs for horizontal resistance to sheath blight in an elite rice restorer line, Minghui 63. Acta Genet. Sin. 2002, 29, 622–626. [Google Scholar] [PubMed]
- Kunihiro, Y.; Qian, Q.; Sato, H.; Teng, S.; Zeng, D.L. QTL analysis of sheath blight resistance in rice (Oryza sativa L.). Chin. J. Genet. 2002, 29, 50–55. [Google Scholar]
- Che, K.P.; Zhan, Q.C.; Xing, Q.H.; Wang, Z.P.; Jin, D.M.; He, D.J.; Wang, B. Tagging and mapping of rice sheath blight resistant gene. Theor. Appl. Genet. 2003, 106, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Ideta, O.; Ando, I.; Kunihiro, Y.; Hirabayashi, H.; Iwano, M.; Miyasaka, A.; Nemoto, H.; Imbe, T. Mapping QTLs for sheath blight resistance in the rice line WSS2. Breed. Sci. 2004, 54, 265–271. [Google Scholar] [CrossRef]
- Tan, C.X.; Ji, X.M.; Yang, Y.; Pan, X.Y.; Zuo, S.M.; Zhang, Y.F.; Zou, J.H.; Chen, Z.X.; Zhu, L.H.; Pan, X.B. Identification and marker-assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations. Acta Genet. Sin. 2005, 32, 399–405. [Google Scholar] [PubMed]
- Zuo, S.M.; Yin, Y.J.; Zhang, L.; Zhang, Y.F.; Chen, Z.X.; Pan, X.B. Breeding value and further mapping of a QTL qSB-11 conferring the rice sheath blight utilized resistance. Chin. J. Rice Sci. 2007, 21, 136–142. [Google Scholar]
- Li, F.; Cheng, L.R.; Xu, M.R.; Zhou, Z.; Zhang, F.; Sun, Y.; Zhou, Y.L.; Zhu, L.H.; Xu, J.L.; Li, Z.K. QTL mining for sheath blight resistance using the backcross selected introgression lines for grain quality in rice. Acta Agron. Sin. 2009, 35, 1729–1737. [Google Scholar] [CrossRef]
- Liu, G.; Jia, Y.; Crrea-Victoria, F.J.; Prado, G.A.; Yeater, K.M.; McClung, A.; Correll, J.C. Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology 2009, 99, 1078–1084. [Google Scholar] [CrossRef]
- Channamallikarjuna, V.; Sonah, H.; Prasad, M.; Rao, G.J.N.; Chand, S.; Upreti, H.C.; Singh, N.K.; Sharma, T.R. Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice. Mol. Breed. 2010, 25, 155–166. [Google Scholar] [CrossRef]
- Fu, D.; Chen, L.; Yu, G.; Liu, Y.; Lou, Q.; Mei, H.; Xiong, L.; Li, M.; Xu, X.; Luo, L. QTL mapping of sheath blight resistance in a deep-water rice cultivar. Euphytica 2011, 180, 209–218. [Google Scholar] [CrossRef]
- Xu, Q.; Yuan, X.P.; Yu, H.Y.; Wang, Y.P.; Tang, S.X.; Wei, X.H. Mapping quantitative trait loci for sheath blight resistance in rice using double haploid population. Plant Breed. 2011, 130, 404–406. [Google Scholar] [CrossRef]
- Jia, L.; Yan, W.; Zhu, C.; Agrama, H.A.; Jackson, A.; Yeater, K.; Li, X.; Huang, B.; Hu, B.; McClung, A.; et al. Allelic Analysis of Sheath Blight Resistance with Association Mapping in Rice. PLoS ONE 2012, 7, e32703. [Google Scholar] [CrossRef]
- Nelson, J.C.; Oard, J.H.; Groth, D.; Utomo, H.S.; Jia, Y.; Liu, G.; Moldenhauer, K.A.K.; Correa-Victoria, F.J.; Fjellstrom, R.G.; Scheffler, B.; et al. Sheath-blight resistance QTLS in japonica rice germplasm. Euphytica 2012, 184, 23–34. [Google Scholar] [CrossRef]
- Eizenga, G.C.; Prasad, B.; Jackson, A.K.; Jia, M.H. Identification of rice sheath blight and blast quantitative trait loci in two different O. sativa/O. nivara advanced backcross populations. Mol. Breed. 2013, 31, 889–907. [Google Scholar] [CrossRef]
- Liu, G.; Jia, Y.; McClung, A.; Oard, J.H.; Lee, F.N.; Correll, J.C. Confirming QTLs and finding additional loci responsible for resistance to rice sheath blight disease. Plant Dis. 2013, 97, 113–117. [Google Scholar] [CrossRef]
- Taguchi-Shiobara, F.; Ozaki, H.; Sato, H.; Maeda, H.; Kojima, Y.; Ebitani, T.; Yano, M. Mapping and validation of QTLs for rice sheath blight resistance. Breed. Sci. 2013, 63, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zuo, S.; Chen, Z.; Chen, X.; Li, G.; Zhang, Y.; Zhang, G.; Pan, X. Identification of two major rice sheath blight resistance QTLs, qSB1-1HJX74 and qSB11HJX74, in field trials using chromosome segment substitution lines. Plant Dis. 2014, 98, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.H.; Zeng, Y.X.; Ji, Z.J.; Yang, C.D. Mapping quantitative trait loci for sheath blight disease resistance in Yangdao 4 rice. Genet. Mol. Res. 2015, 14, 1636–1649. [Google Scholar] [CrossRef]
- Yadav, S.; Anuradha, G.; Kumar, R.R.; Vemireddy, L.R.; Sudhakar, R.; Donempudi, K.; Venkata, D.; Jabeen, F.; Narasimhan, Y.K.; Marathi, B.; et al. Identification of QTLs and possible candidate genes conferring sheath blight resistance in rice (Oryza sativa L.). Springerplus 2015, 4, 175. [Google Scholar] [CrossRef]
- Zeng, Y.X.; Xia, L.Z.; Wen, Z.H.; Ji, Z.J.; Zeng, D.L.; Qian, Q.; Yang, C.D. Mapping resistant QTLs for rice sheath blight disease with a doubled haploid population. J. Integr. Agric. 2015, 14, 801–810. [Google Scholar] [CrossRef]
- Zuo, S.; Yin, Y.; Zhang, L.; Zhang, Y.; Chen, Z.; Gu, S.; Zhu, L.; Pan, X. Effect and breeding potential of qSB-11LE, a sheath blight resistance quantitative trait loci from a susceptible rice cultivar. Can. J. Plant Sci. 2011, 91, 191–198. [Google Scholar] [CrossRef]
- Yin, Y.; Zuo, S.; Wang, H.; Chen, Z.; Gu, S.; Zhang, Y.; Pan, X. Evaluation of the effect of qSB-9Tq involved in quantitative resistance to rice sheath blight using near-isogenic lines. Can. J. Plant Sci. 2009, 89, 731–737. [Google Scholar] [CrossRef]
- Pinson, S.R.M.; Oard, J.H.; Groth, D.; Miller, R.; Marchetti, M.A.; Shank, A.R.; Jia, M.H.; Jia, Y.; Fjellstrom, R.G.; Li, Z. Registration of TIL:455, TIL:514, and TIL:642, Three rice germplasm lines containing introgressed sheath blight resistance alleles. J. Plant Regist. 2008, 2, 251–254. [Google Scholar] [CrossRef]
- Zuo, S.; Yin, Y.; Pan, C.; Chen, Z.; Zhang, Y.; Gu, S.; Zhu, L.; Pan, X. Fine mapping of qSB-11LE, the QTL that confers partial resistance to rice sheath blight. Theor. Appl. Genet. 2013, 126, 1257–1272. [Google Scholar] [CrossRef] [PubMed]
- Ham, J.H.; Melanson, R.A.; Rush, M.C. Burkholderia glumae: Next major pathogen of rice? Mol. Plant Pathol. 2011, 12, 329–339. [Google Scholar] [CrossRef]
- Xie, G.L.; Luo, J.Y.; Li, B. Bacterial panicle blight: A rice dangerous diseases and its identification. Plant Prot. 2003, 29, 47–49. [Google Scholar]
- Ham, J.H.; Groth, D.E. Bacterial panicle blight: An emerging rice disease. In Louisiana Agriculture; Louisiana State University Agricultural Center: Baton Rouge, LA, USA, 2011; Volume 54, pp. 16–17. [Google Scholar]
- Nandakumar, R.; Shahjahan, A.K.M.; Yuan, X.L.; Dickstein, E.R.; Groth, D.E.; Clark, C.A.; Cartwright, R.D.; Rush, M.C. Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. Plant Dis. 2009, 93, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Shahjahan, A.K.M.; Groth, D.E.; Clark, C.A.; Linscombe, S.D.; Rush, M.C. Epidemiological studies on panicle blight of rice: Critical stage of infection and the effect of infected seeds on disease development and yield of rice. In Proceedings of the 28th Rice Technical Working Group Meeting, Biloxi, MS, USA, 27 February–1 March 2000; Rice Tech. Work. Group, Louisiana State University Agricultural Center, Rice Research Station: Crowley, LA, USA, 2000. [Google Scholar]
- Nandakumar, R.; Rush, M.C.; Shahjahan, A.K.M.; O’Reilly, K.L.; Groth, D.E. Bacterial panicle blight of rice in the southern United States caused by Burkholderia glumae and B. gladioli. Phytopathology 2005, 95, S73. [Google Scholar]
- Hikichi, Y. Mode of action of oxolinic acid against bacterial seedling rot of rice caused by Pseudomonas glumae. I. Relationship between population dynamics of P. glumae on seedlings of rice and disease severity of bacterial seedling rot of rice. Ann. Phytopathol. Soc. Jpn. 1993, 59, 441–446. [Google Scholar] [CrossRef]
- Maeda, Y.; Horita, M.; Shinohara, H.; Kiba, A.; Ohnishi, K.; Tsushima, S.; Hikichi, Y. Analysis of sources of oxolinic acid-resistant field strains of Burkholderia glumae based on rep-PCR analysis and nucleotide sequences of gyrB and rpoD. J. Gen. Plant Pathol. 2007, 73, 46–52. [Google Scholar] [CrossRef]
- Shrestha, B.K.; Karki, H.S.; Groth, D.E.; Jungkhun, N.; Ham, J.H. Biological control activities of rice-associated Bacillus sp. strains against sheath blight and bacterial panicle blight of rice. PLoS ONE 2016, 11, e0146764. [Google Scholar] [CrossRef]
- Miyagawa, H.; Takaya, S. Biological control of bacterial grain rot of rice by avirulent strain of Burkholderia gladioli. Bull. Chugoku Natl. Agric. Exp. Stat. 2000, 21, 1–12. [Google Scholar]
- Hikichi, Y. The spread of bacterial grain rot of rice and its control in the paddy fields. J. Pestic. Sci. 1995, 20, 329–331. [Google Scholar] [CrossRef]
- Hikichi, Y. Relationship between population dynamics of Pseudomonas glumae on rice plants and disease severity of bacterial grain rot. J. Pestic. Sci. 1993, 18, 319–324. [Google Scholar] [CrossRef]
- Hikichi, Y.; Okuno, T.; Furusawa, I. Immunofluorescent antibody technique for detecting Pseudomonas glumae on rice plants. Ann. Phytopathol. Soc. Jpn. 1993, 59, 477–480. [Google Scholar] [CrossRef]
- Hikichi, Y.; Okuno, T.; Furusawa, I. Susceptibility of rice spikelets to infection with Pseudomonas glumae and its population dynamics. J. Pestic. Sci. 1994, 19, 11–17. [Google Scholar] [CrossRef]
- Hikichi, Y.; Okuno, T.; Furusawa, I. Mode of action of oxolinic acid against bacterial seedling rot of rice caused by Pseudomonas glumae. III. Infection with P. glumae into plumules. Ann. Phytopathol. Soc. Jpn. 1995, 61, 134–136. [Google Scholar] [CrossRef]
- Hikichi, Y.; Egami, H.; Oguri, Y.; Okuno, T. Fitness for survival of Burkholderia glumae resistant to oxolinic acid in rice plants. Ann. Phytopathol. Soc. Jpn. 1998, 64, 147–152. [Google Scholar] [CrossRef]
- Tabei, H.; Azegami, K.; Fukuda, T.; Goto, T. Stomatal infection of rice grain with Pseudomonas glumae, the causal agent of the bacterial grain rot of rice. Ann. Phytopathol. Soc. Jpn. 1989, 55, 224–228. [Google Scholar] [CrossRef]
- Goto, T. Resistance to Burkholderia glumae of lowland rice culitvars and promising lines in Japan. Ann. Phytopathol. Soc. Jpn. 1983, 49, 410. [Google Scholar]
- Saichuk, J. Louisiana Rice Production Handbook; Louisiana State University Agricultural Center: Baton Rouge, LA, USA, 2009; p. 128. [Google Scholar]
- Cha, K.H.; Lee, Y.H.; Ko, S.J.; Park, S.K.; Park, I.J. Influence of weather condition at heading period on the development of rice bacterial grain rot caused by Burkholderia glumae. Res. Plant Dis. 2001, 7, 150–154. [Google Scholar]
- Li, Z.K.; Luo, L.J.; Mei, H.W.; Paterson, A.H.; Zhao, X.H.; Zhong, D.B.; Wang, Y.P.; Yu, X.Q.; Zhu, L.; Tabien, R.; et al. A “defeated” rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv oryzae. Mol. Genet. Genom. 1999, 261, 58–63. [Google Scholar] [CrossRef]
- Tabien, R.E.; Li, Z.; Paterson, A.H.; Marchetti, M.A.; Stansel, J.W.; Pinson, S.R.M. Mapping QTL for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties. Theor. Appl. Genet. 2002, 105, 313–324. [Google Scholar] [CrossRef] [PubMed]
- McClung, A.M.; Marchetti, M.A.; Lai, X.H.; Tillman, B.L. Association of genetic and environmental factors with panicle blight. In Proceedings of the 26th Rice Technical Working Group Meeting, San Antonio, TX, USA, 25–28 February 1996; Agric. Exp. Stn.: College Station, TX, USA, 1996; pp. 135–136. [Google Scholar]
- Mizobuchi, R.; Sato, H.; Fukuoka, S.; Tsushima, S.; Yano, M. Fine mapping of RBG2, a quantitative trait locus for resistance to Burkholderia glumae, on rice chromosome 1. Mol. Breed. 2015, 35, 15. [Google Scholar] [CrossRef]
- Miyagawa, H.; Kimura, T. A test of rice varietal resistance to bacterial grain rot by inoculation on cut-spikes at anthesis. Chugoku Natl. Agric. Exp. Stn. 1989, 78, 17–21. [Google Scholar]
- Fukuoka, S.; Ebana, K.; Yamamoto, T.; Yano, M. Integration of genomics into rice breeding. Rice 2010, 3, 131–137. [Google Scholar] [CrossRef]
- Sato, H.; Ando, I.; Takeuchi, Y.; Hirabayashi, H.; Arase, S.; Kihara, J.; Nemoto, H. Genetic analysis of brown spot resistance in rice using the 39 chromosome segment substitution lines (CSSLs) derived from crossing Koshihikari and Kasalath. Breed. Res. 2008, 10, 274. [Google Scholar]
- Goto, M. Fundamentals of Bacterial Plant Pathology; Academic Press: San Diego, CA, USA, 1992; 342p, ISBN 978-0-12-293465-0. [Google Scholar]
Gene Name | Chromosome | Molecular Function | Source (Variety/Line) | Reference |
---|---|---|---|---|
Pi-sh | 1 | Protein binding (Diacylglycerol kinase) | Shin-2 | [67,68] |
Pi-t | 1 | Nucleotide binding (NBS-LRR disease resistance protein) | Tjahaja, K59 | [69,70,71] |
Pi-37 | 1 | Protein binding (rp1) | St. No.1 | [72,73] |
Pi-b | 2 | Nucleotide binding | Tohoku IL9 | [74,75] |
pi-21 | 4 | Binding (Basic prolin-rich protein) | Owarihatamochi | [58,76] |
Pi-63 | 4 | - | Kahei | [77] |
Pi-z | 6 | Protein binding, Nucleotide binding (Disease resistance protein RPM1) | Zenith, Fukunishiki, Toride 1, Tadukan | [78,79,80] |
Pi-2 | 6 | Protein binding, Nucleotide binding (Disease resistance protein RPM1) | Fukunishiki | [80] |
Pi-9 | 6 | Protein binding, Nucleotide binding (Disease resistance protein RPM1) | O. minuta (wild rice) | [81,82] |
Piz-t | 6 | Protein binding, Nucleotide binding (Disease resistance protein RPM1) | TKM.1 | [80] |
Pi-d2 | 6 | Carbohydrate binding, Kinase activity, Protein binding (Lectin protein kinase family protein) | Digu | [83] |
Pi-d3 | 6 | Protein binding, nucleotide binding (Disease resistance protein RPM1) | - | [84] |
Pi-25 | 6 | Protein binding, nucleotide binding (Disease resistance protein RPM1) | Gumei 2 | [85,86] |
Pi-36 | 8 | F-box domain (Cyclin-like domain containing protein) | Q61 | [87,88] |
Pi5/Pi3/Pi-i | 9 | Nucleotide binding (NBS-LRR disease resistance protein) | Moroberekan | [89,90] |
pi-56 | 9 | Nucleotide binding (NBS-LRR disease resistance protein) | - | [91] |
Pi-a | 11 | Protein binding, Nucleotide binding (NBS-LRR type disease resistance protein) | Aichi Asahi | [92,93] |
Pi-C039 | 11 | - | CO39 | [94,95] |
Pi-k | 11 | Protein binding, Nucleotide binding (NB-ARC domain containing protein) | Kusabue | [96,97,98] |
Pi-1 | 11 | - | LAC23 | [99,100] |
Pik-h/Pi-54 | 11 | Nucleotide binding (NBS-LRR disease resistance protein) | Tetep | [101,102,103] |
Pik-m | 11 | Nucleotide binding (NBS-LRR disease resistance protein) | Tsuyuake | [104,105] |
Pik-p | 11 | - | HR22 | [69,106] |
pb1 | 11 | Protein binding (PB1 domain containing protein) | Modan | [107,108] |
Pi-ta | 12 | Nucleotide binding (NB-ARC domain containing protein) | Tadukan, Yashiro-mochi | [109] |
Chromosome | QTL | Source of Resistance Allele | Material Used for QTL Analysis | Flanking Markers or Nearest Marker | Phenotypic Variance (%) | Ref. |
---|---|---|---|---|---|---|
1 | qSB-1 | Teqing | 216 Recombinant inbred lines population from a cross of Teqing (R) and Lemont (S) | RG532x | [144] | |
1 | QRh1 | IR64 | BC2F5 introgression lines from a cross of Binam (R) and IR64 (S) | RM265 | [158] | |
1 | qShB1 | Jasmine 85 (Microchamber and Mist chamber) | 250 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM1361–RM104 (Microchamber) RM1361–RM104 (Mist chamber) | 3.4 (Microchamber) 3.6 (Mist chamber) | [159] |
1 | - | Pecos | 279 F2:3 population from a cross of Pecos (R) and Rosemont (S) | RM1339 (Interval mapping & Composite interval mapping) | 36.4 (Interval mapping) 35 (Composite interval mapping) | [145] |
1 | qSBR1-1 | - | 127 F2:10 recombinant inbred lines population from a cross of Tetep (R) and HP2216 (S) | Hvssr68-RM306 (2004/New Delhi) RM1232-Hvssr68 (2006/Hyderabad) | 15.01 (2004/New Delhi) 8.13 (2006/Hyderabad) | [160] |
1 | qSBR1-1 | RSB03 | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM5389-RM3825 | 12.7 | [161] |
1 | qSBR1-2 | RSB03 | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM3825-RM8278 | 42.6 | [161] |
1 | qShB1 | Baiyeqiu | Double haploid population from a cross of Baiyeqiu (R) and Maybelle (S) | RM431-RM12017 | 8.9 (2007)/13.2 (2008) | [162] |
1 | - | - | 217 sub-core entries from the USDA rice core collection | RM11229 | 9.5 | [163] |
1 | - | - | 217 sub-core entries from the USDA rice core collection | RM237 | 6.9 | [163] |
1 | qShB1 | O. nivara (Wild2/2008) Bengal (Wild-1/2008, Wild-1/2009, Wild-2/2009) | 253 BC2F1 lines populations from a cross of O. nivara (acc. IRGC104705) (R) and Bengal (S) as wild-2 population. | RM1361-RM104 (Wild-1/2008, 2009) RM431-RM1361 (Wild-2/2008) RM403-RM431 (Wild-2/2009) | 3.4 (Wild-1/2008) 8.2 (Wild-2/2008) 4 (Wild-1/2009) 3 (Wild-2/2009) | [165] |
1 | qSB1-1HJX74 | HJX74 | 63 chromosome segment substitution lines carrying the genetic background of HJX74 (R) and the donor parent Amol3(sona) (S) | - | - | [168] |
1 | qSB1-2HJX74 | HJX74 | 63 chromosome segment substitution lines carrying the genetic background of HJX74 (R) and the donor parent Amol3(sona) (S) | - | - | [168] |
1 | qSBD-1 | Lemont | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | D134B-D140A | 5.53 | [169] |
1 | qshb1.1 | F2:3 and BC1F2 populations from a cross of ARC10531 (R) and BPT-5204 (S) | RM151-RM12253 | 10.99 | [170] | |
1 | qHZaLH1 | CJ06 | Double haploid population from a cross of TN1 (R) and CJ06 (S) | RM428B-RM5302 | 6.12 | [171] |
1 | qHNDR1 | CJ06 | Double haploid population from a cross of TN1 (R) and CJ06 (S) | RM259-RM600 | 2 | [171] |
2 | QSbr2a | Teqing | F4 bulked populations from a cross of Teqing (R) and Lemont (S) | RG654-RZ260 | - | [143] |
2 | Rh-2 | Jasmin 85 | 128 F2 clonal population from a cross of Jasmine 85 (R) and Lemont (S) | G243-RM29 | 14.4 | [150] |
2 | qSB-2 | Jasmin 85 (1997 & 1998) | 128 F2 clonal population from a cross of Jasmine 85 (R) and Lemont (S) | G243–RM29 (1997) RM29–RG171 (1998) | 14.4 (1997) 21.2 (1998) | [151] |
2 | qSB-2 | Zhai Ye Qing 8 | Double haploid population from a cross of Zhai Ye Qing 8 (R) and Jingxi 17 (S) | RG171-G243A | 2.5-2.6 | [153] |
2 | qSB-2 | Teqing | 216 Recombinant inbred lines population from a cross of Teqing (R) and Lemont (S) | C624x | - | [144] |
2 | QDs2b | Tarom Molaii | BC2F5 introgression lines from a cross of Tarom Molaii (R) and Teqing (S) | RM208 | - | [158] |
2 | QRh2b | Tarom Molaii | BC2F5 introgression lines from a cross of Tarom Molaii (R) and Teqing (S) | RM208 | - | [158] |
2 | QDs2a | Binam | BC2F5 introgression lines from a cross of Binam (R) and IR64 (S) | RM279 | - | [158] |
2 | QRh2a | IR64 | BC2F5 introgression lines from a cross of Binam (R) and IR64 (S) | RM341 | - | [158] |
2 | qShB2-1 | Jasmine 85 | 250 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM424–RM5427 | 6.9 | [159] |
2 | qShB2-2 | Jasmine 85 | 250 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM112–RM250 | 3.2 | [159] |
2 | - | Rosemont | 279 F2:3 population from a cross of Pecos (R) and Rosemont (S) | RM3685 (Interval mapping & Composite interval mapping) | 5.8 (Interval mapping & Composite interval mapping) | [145] |
2 | qSBR2-1 | HH1B | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM5340-RM521 | 8.2 | [161] |
2 | qSBR2-2 | RSB03 | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM110-osr14 | 5.3 | [161] |
2 | qSBR2-3 | HH1B | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM7245-RM5303 | 4.3 | [161] |
2 | qLL2-1 | HH1B | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM1106-RM3549 | 7.8 | [161] |
2 | qLL2-2 | RSB03 | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RIO02051-RIO02053 | 8.9 | [161] |
2 | qRLL2-1 | HH1B | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM1106-RM3549 | 22.1 | [161] |
2 | qRLL2-2 | RSB03 | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RIO02044-RIO02046 | 71.1 | [161] |
2 | qShB2 | Maybelle | Double haploid population from a cross of Baiyeqiu (R) and Maybelle (S) | RM174-RM145 | 7.3 | [162] |
2 | - | - | 217 sub-core entries from the USDA rice core collection | RM341 | 4.1 | [163] |
2 | qsbr_2.1 | MCR10277 | Double haploid lines population from a cross of MCR10277 (R) and Cocodrie (S) | RM8254-RM8252 | - | [164] |
2 | qsbr_2.2 | MCR10277 | Double haploid lines population from a cross of MCR10277 (R) and Cocodrie (S) | RM3857*RM5404 | - | [164] |
2 | qSB2.1-AR | Jasmine 85 | 216 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM279–RM71/RM555 | 6.82 | [166] |
2 | qSB2.2-AR | Jasmine 85 | 216 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM221–RM112/RM221 | 6.50 | [166] |
2 | qSB2.1-TX | Jasmine 85 | 216 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM424–RM341/RM561 | 8.64 | [166] |
2 | qSB2.2-TX | Jasmine 85 | 216 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM221–RM250/RM530 | 6.64 | [166] |
2 | qSB2-LA | Jasmine 85 | 216 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM221–RM112/RM530 | 5.70 | [166] |
2 | qSB2AM | Amol3(sona) | 63 chromosome segment substitution lines carrying the genetic background of HJX74 (R) and the donor parent Amol3(sona) (S) | - | - | [168] |
3 | QSbr3a | Teqing | F4 bulked populations from a cross of Teqing (R) and Lemont (S) | RG348-RG944 | - | [143] |
3 | Rh-3 | Jasmin 85 | 128 F2 clonal population from a cross of Jasmine 85 (R) and Lemont (S) | R250-C746 | 26.1 | [150] |
3 | qSB-3 | Jasmin 85 (1997) Not identified in 1998 | 128 F2 clonal population from a cross of Jasmine 85 (R) and Lemont (S) | R250–C746 (1997) Not identified in 1998 | 26.5 (1997) Not identified in 1998 | [151] |
3 | qSB-3 | Zhai Ye Qing 8 | Double haploid population from a cross of Zhai Ye Qing 8 (R) and Jingxi 17 (S) | G249-G164 | 2.4-2.5 | [153] |
3 | qSB-3 | WSS2 | 60 BC1F1 population from a cross of Hinohikari (S) /WSS2 (R)//Hinohikari (S) | RM3856 | 19.4 | [155] |
3 | qSB-3-1 | Teqing | 216 Recombinant inbred lines population from a cross of Teqing (R) and Lemont (S) | RG348x | - | [144] |
3 | qSB-3-2 | Teqing | 216 Recombinant inbred lines population from a cross of Teqing (R) and Lemont (S) | RZ474 | - | [144] |
3 | QDs3 | IR64 | BC2F5 introgression lines from a cross of Tarom Molaii (R) and IR64 (S) | RM22 | - | [158] |
3 | QRh3 | IR64 | BC2F5 introgression lines from a cross of Tarom Molaii (R) and IR64 (S) | RM22 | - | [158] |
3 | qShB3-1 | Jasmine 85 | 250 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM16–RM426 | 3.7 | [159] |
3 | qShB3-2 | Jasmine 85 | 250 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM5626–RM426 | 3.3 | [159] |
3 | qShB3-3 | Jasmine 85 | 250 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM514–RM85 | 3 | [159] |
3 | - | Pecos | 279 F2:3 population from a cross of Pecos (R) and Rosemont (S) | RM3117 (Interval mapping) RM7072 (Composite interval mapping) | 6.4 (Interval mapping) 2.4 (Composite interval mapping) | [145] |
3 | qSBR3-1 | - | 127 F2:10 recombinant inbred lines population from a cross of Tetep (R) and HP2216 (S) | RM251-RM338 (2007/Cuttack) | 9.96 (2007/Cuttack) | [160] |
3 | qShB3 | Baiyeqiu | Double haploid population from a cross of Baiyeqiu (R) and Maybelle (S) | RM135-RM186 | 6.1 | [162] |
3 | qShB3 | O. nivara (Wild2/2008, Wild-2/2009) Bengal (Wild-1/2008, Wild-1/2009) | 252 BC2F1 lines populations from a cross of O. nivara (acc. IRGC100898) (R) and Bengal (S) as wild-1 population and | RM232-282 (All assays including two populations and two years) | 3.7 (Wild-1/2008) 9.3 (Wild-2/2008) 2.5 (Wild-1/2009) 3.5 (Wild-2/2009) | [165] |
3 | qSB3-AR | Jasmine 85 | 216 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM5626–RM55/RM55 | 5.82 | [166] |
3 | qSB3-TX | Jasmine 85 | 216 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM5626–RM55/RM55 | 5.62 | [166] |
3 | - | Jarjian | Backcross inbred lines population from a cross of Jarjian (R) and Koshihikari (S) | RM570 | - | [167] |
3 | - | Koshihikari | Backcross inbred lines population from a cross of Jarjian (R) and Koshihikari (S) | RM16200 | - | [167] |
3 | qSB3AM | Amol3(sona) | 63 chromosome segment substitution lines carrying the genetic background of HJX74 (R) and the donor parent Amol3(sona) (S) | - | - | [168] |
3 | qSBD-3-1 | Yangdao 4 | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | D328B-D331B | 10.51 (E1) / 14.66 (E3) | [169] |
3 | qSBD-3-2 | Yangdao 4 | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | D333B-D334 | 9.84 (E2) / 11.25 (E3) | [169] |
3 | qSBL-3-1 | Yangdao 4 | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | D333B-D334 | 7.93 | [169] |
3 | qSBL-3-2 | Yangdao 4 | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | D328B-D331B | 31.53 | [169] |
3 | qSBPL-3-1 | Yangdao 4 | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | D333B-D334 | 8.70 | [169] |
3 | qSBPL-3-2 | Lemont | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | D336B-RM3585 | 15.90 | [169] |
3 | qSBPL-3-3 | Yangdao 4 | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | D328B-D331B | 29.81 | [169] |
3 | qHNLH3 | TN1 | Double haploid population from a cross of TN1 (R) and CJ06 (S) | RM6759-STS146.1 | 8.46 | [171] |
3 | qHZaLH3 | TN1 | Double haploid population from a cross of TN1 (R) and CJ06 (S) | RM143-RM514 | 5.57 | [171] |
4 | QSbr4a | Teqing | F4 bulked populations from a cross of Teqing (R) and Lemont (S) | RG143-RG214 | - | [143] |
4 | qSB-4-1 | Teqing | 216 Recombinant inbred lines population from a cross of Teqing (R) and Lemont (S) | RG1094e | - | [144] |
4 | qSB-4-2 | Teqing | 216 Recombinant inbred lines population from a cross of Teqing (R) and Lemont (S) | RZ590x | - | [144] |
4 | qSBR4 | RSB03 | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM3288-RM7187 | 12.4 | [161] |
4 | qRLH4 | RSB03 | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM3288-RM7187 | 15.7 | [161] |
4 | - | - | 217 sub-core entries from the USDA rice core collection | RM8217 | 3.2 | [163] |
4 | qSBL-4 | Yangdao 4 | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | RM1113-D468 | 4.15 | [169] |
4 | qHNLH4 | TN1 | Double haploid population from a cross of TN1 (R) and CJ06 (S) | RM255-SSIII-1 | 17.53 | [171] |
5 | qSB-5 | Minghui 63 | 240 F11-12 recombinant inbred lines population from a cross of Minghui 63 (R) and Zhenshan 97 (S) | C624-RM26 | 9.5-10.5 | [152] |
5 | Rsb 1 | 1030 F2 population from a cross of 4011 (R) and Xiangzaoxian 19 (S) | RM173, C624 | - | [154] | |
5 | qSB-5 | Teqing | 216 Recombinant inbred lines population from a cross of Teqing (R) and Lemont (S) | Y1049 | - | [144] |
5 | QDs5 | Teqing | BC2F5 introgression lines from a cross of Binam (R) and Teqing (S) | RM161 | - | [158] |
5 | QRh5 | Teqing | BC2F5 introgression lines from a cross of Binam (R) and Teqing (S) | RM161 | - | [158] |
5 | qShB5 | Lemont | 250 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM507–RM7349 | 5.1 | [159] |
5 | qSBR5-1 | HH1B | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM421-RM6545 | 12.3 | [161] |
5 | qSBR5-2 | RSB03 | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM7446-RM3620 | 15.7 | [161] |
5 | qLL5 | HH1B | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM6545-RM7446 | 10 | [161] |
5 | qRLL5 | HH1B | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM6545-RM7446 | 5.7 | [161] |
5 | qShB5 | Baiyeqiu | Double haploid population from a cross of Baiyeqiu (R) and Maybelle (S) | RM18872-RM421 | 7.8 | [162] |
5 | - | - | 217 sub-core entries from the USDA rice core collection | RM146 | 3.8 | [163] |
5 | qShB5-mc (Green house assay) | Bengal (Wild-1 and wild-2) | 252 BC2F1 lines populations from a cross of O. nivara (acc. IRGC100898) (R) and Bengal (S) as wild-1 population and 253 BC2F1 lines populations from a cross of O. nivara (acc. IRGC104705) (R) and Bengal (S) as wild-2 population. | RM122-RM5796 (Wild-1), RM122-RM413 (Wild-2) | 3 (Wild-1) and 5.4 (Wild-2) | [165] |
5 | - | Koshihikari | Backcross inbred lines population from a cross of Jarjian (R) and Koshihikari (S) | RM5784 (2009) / RM3286 (2011) | [167] | |
5 | qHZbLH5 | CJ06 | Double haploid population from a cross of TN1 (R) and CJ06 (S) | RM3321-RM3616 | 7.15 | [171] |
5 | qHZbDR5 | CJ06 | Double haploid population from a cross of TN1 (R) and CJ06 (S) | RM3321-RM3616 | 8.97 | [171] |
6 | qSB-6-1 | Teqing | 216 Recombinant inbred lines population from a cross of Teqing (R) and Lemont (S) | C | - | [144] |
6 | qSB-6-2 | Teqing | 216 Recombinant inbred lines population from a cross of Teqing (R) and Lemont (S) | RZ508 | - | [144] |
6 | QRh6 | IR64 | BC2F5 introgression lines from a cross of Binam (R) and IR64 (S) | RM30 | - | [158] |
6 | qShB6 | Lemont | 250 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM435–RM190 | 3.4 | [159] |
6 | qLH6 | HH1B | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM508-RM1369 | 14.1 | [161] |
6 | - | 217 sub-core entries from the USDA rice core collection | RM133 | 2.4 | [163] | |
6 | qShB6-mc (Green house assay) | O. nivara (Wild-1) Not identified in other assay | 252 BC2F1 lines populations from a cross of O. nivara (acc. IRGC100898) (R) and Bengal (S) as wild-1 population and | RM3183-RM541 (Wild-1) Not identified in other assay | 5.8 (Wild-1) Not identified in other assay | [165] |
6 | qShB6 | O. nivara (All assays including two populations and two years) | 253 BC2F1 lines populations from a cross of O. nivara (acc. IRGC104705) (R) and Bengal (S) as wild-2 population. | RM3431-RM3183 (Wild-1- 2008, 2009) RM253-RM3431 (Wild-2- 2008, 2009) | 8.2 (Wild-1/2008) 18.2 (Wild-2/2008) 13.3 (Wild-1/2009) 32 (Wild-2/2009) | [165] |
6 | - | Koshihikari | Backcross inbred lines population from a cross of Jarjian (R) and Koshihikari (S) | RM1161 | - | [167] |
6 | - | Koshihikari | Backcross inbred lines population from a cross of Jarjian (R) and Koshihikari (S) | RM2615 | - | [167] |
6 | - | Jarjian | Backcross inbred lines population from a cross of Jarjian (R) and Koshihikari (S) | RM6395 | - | [167] |
6 | qshb6.1 | - | F2:3 and BC1F2 populations from a cross of ARC10531 (R) and BPT-5204 (S) | RM400-RM253 | 13.25 | [170] |
6 | qHNLH6 | TN1 | Double haploid population from a cross of TN1 (R) and CJ06 (S) | AP3510-AP4991 | 4.35 | [171] |
6 | qHZaLH6 | CJ06 | Double haploid population from a cross of TN1 (R) and CJ06 (S) | WX-RM587 | 6.79 | [171] |
6 | qHNDR6 | CJ06 | Double haploid population from a cross of TN1 (R) and CJ06 (S) | AP3510-AP4991 | 2.38 | [171] |
7 | Rh-7 | Jasmin 85 | 128 F2 clonal population from a cross of Jasmine 85 (R) and Lemont (S) | RG30-RG477 | 22.2 | [150] |
7 | qSB-7 | Jasmin 85 (1997) Not identified in 1998 | 128 F2 clonal population from a cross of Jasmine 85 (R) and Lemont (S) | RG30–RG477 (1997) Not identified in 1998 | 22.2 (1997) Not identified in 1998 | [151] |
7 | qSB-7 | Zhai Ye Qing 8 | Double haploid population from a cross of Zhai Ye Qing 8 (R) and Jingxi 17 (S) | RG511-TCT122 | 3.9-4.3 | [153] |
7 | qSB-7 | Teqing | 216 Recombinant inbred lines population from a cross of Teqing (R) and Lemont (S) | C285 | - | [144] |
7 | QRh7 | IR64 | BC2F5 introgression lines from a cross of Tarom Molaii (R) and IR64 (S) | RM180 | - | [158] |
7 | QDs7 | IR64 | BC2F5 introgression lines from a cross of Binam (R) and IR64 (S) | RM11 | - | [158] |
7 | qSBR7-1 | - | 127 F2:10 recombinant inbred lines population from a cross of Tetep (R) and HP2216 (S) | RM3691-RM336 (2007/Hyderabad) RM5481-RM3691 (2007/Cuttack) | 10.02 (2007/Hyderabad) 26.05 (2007/Cuttack) | [160] |
7 | qSBR7 | RSB03 | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM1132-RM473 | 5.9 | [161] |
7 | qLL7 | RSB03 | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM1253-RM1132 | 39.3 | [161] |
7 | qLH7 | RSB03 | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM1253-RM1132 | 12.8 | [161] |
7 | qRLL7 | RSB03 | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM1253-RM1132 | 23.4 | [161] |
7 | qRLH7 | RSB03 | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM1132-RM473 | 10.5 | [161] |
7 | qShB7-mc (Green house assay) | Bengal (Wild-2) Not identified in other assay | 253 BC2F1 lines populations from a cross of O. nivara (acc. IRGC104705) (R) and Bengal (S) as wild-2 population. | RM295-RM5711 (Wild-2) Not identified in other assay | 5.6 (Wild-2) Not identified in other assay | [165] |
7 | qShB7 | O. nivara (Wild2/2009) Bengal (Wild-2/2008) Not identified in two other assays | 252 BC2F1 lines populations from a cross of O. nivara (acc. IRGC100898) (R) and Bengal (S) as wild-1 population and | RM295-RM5711 (Wild-2-2008) RM5711-RM2 (Wild-2-2009)Not identified in two other assays | 6.5 (Wild-2/2008) 4.3 (Wild-1/2009) Not identified in two other assays | [165] |
7 | qSB7-AR | Jasmine 85 | 216 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM5711–RM2/RM125 | 7.41 | [166] |
7 | qSB7-LA | Jasmine 85 | 216 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM5711–RM2/RM125 | 11.54 | [166] |
7 | qSBD-7 | Yangdao 4 | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | RM505-RM234 | 1.12 | [169] |
7 | qSBL-7 | Yangdao 4 | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | D760-RM248 | 4.82 | [169] |
7 | qSBPL-7 | Yangdao 4 | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | D760-RM248 | 6.97 | [169] |
7 | qshb7.1 | F2:3 and BC1F2 populations from a cross of ARC10531 (R) and BPT-5204 (S) | RM81-RM6152 | 10.52 | [170] | |
7 | qshb7.2 | F2:3 and BC1F2 populations from a cross of ARC10531 (R) and BPT-5204 (S) | RM10-RM21693 | 9.72 | [170] | |
7 | qshb7.3 | F2:3 and BC1F2 populations from a cross of ARC10531 (R) and BPT-5204 (S) | RM336-RM427 | 21.76 | [170] | |
8 | QSbr8a | Lemont | F4 bulked populations from a cross of Teqing (R) and Lemont (S) | RG20-RG1034 | - | [143] |
8 | qSB-8-1 | Lemont | 216 Recombinant inbred lines population from a cross of Teqing (R) and Lemont (S) | G104 | - | [144] |
8 | qSB-8-2 | Lemont | 216 Recombinant inbred lines population from a cross of Teqing (R) and Lemont (S) | R662 | - | [144] |
8 | QDs8 | Tarom Molaii | BC2F5 introgression lines from a cross of Tarom Molaii (R) and IR64 (S) | RM25 | - | [158] |
8 | QRh8b | Tarom Molaii | BC2F5 introgression lines from a cross of Tarom Molaii (R) and IR64 (S) | RM25 | - | [158] |
8 | QRh8a | Binam | BC2F5 introgression lines from a cross of Binam (R) and IR64 (S) | RM407 | - | [158] |
8 | qSBR8-1 | - | 127 F2:10 recombinant inbred lines population from a cross of Tetep (R) and HP2216 (S) | RM210-Hvssr47 (2007/Hyderabad) | 8.37 (2007/Hyderabad) | [160] |
8 | qSBR8 | HH1B | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM8264-RM1109 | 12.7 | [161] |
8 | qLL8 | HH1B | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM8271-RM8264 | 18.4 | [161] |
8 | qLH8 | HH1B | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM8271-RM8264 | 23.5 | [161] |
8 | qRLL8 | HH1B | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM8264-RM1109 | 5.8 | [161] |
8 | qRLH8 | HH1B | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM8271-RM8264 | 17.4 | [161] |
8 | - | - | 217 sub-core entries from the USDA rice core collection | RM408 | 4 | [163] |
8 | qshb8.1 | - | F2:3 and BC1F2 populations from a cross of ARC10531 (R) and BPT-5204 (S) | RM21792-RM310 | 10.52 | [170] |
8 | qHZaLH8 | CJ06 | Double haploid population from a cross of TN1 (R) and CJ06 (S) | RM1376-RM4085 | 16.71 | [171] |
8 | qHZaDR8 | CJ06 | Double haploid population from a cross of TN1 (R) and CJ06 (S) | RM1376-RM4085 | 11.27 | [171] |
9 | QSbr9a | Teqing | F4 bulked populations from a cross of Teqing (R) and Lemont (S) | RG910b-RZ777 | - | [143] |
9 | qSB-9-1 | Lemont (1998) Not identified in 1997 | 128 F2 clonal population from a cross of Jasmine 85 (R) and Lemont (S) | C397–G103 (1998) Not identified in 1997 | 9.8 (1998) Not identified in 1997 | [151] |
9 | qSB-9-2 | Jasmin 85 (1998) Not identified in 1997 | 128 F2 clonal population from a cross of Jasmine 85 (R) and Lemont (S) | RG570–C356 (1998) Not identified in 1997 | 10.1 (1998) Not identified in 1997 | [151] |
9 | qSB-9 | Minghui 63 | 240 F11-12 recombinant inbred lines population from a cross of Minghui 63 (R) and Zhenshan 97 (S) | RM242-C472 | 6.9-10.1 | [152] |
9 | qSB-9 | Teqing | 216 Recombinant inbred lines population from a cross of Teqing (R) and Lemont (S) | RZ404 | - | [144] |
9 | qSB-9 | Teqing | 115 F2 clonal population from a cross of Teqing (R) and Lemont (S) | RM205-RM201 | 11.8-22.2 | [156] |
9 | qShB9-1 | Lemont | 250 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM409–RM257 | 5.4 | [159] |
9 | qShB9-2 | Jasmine 85 (Microchamber and Mist chamber) | 250 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM215–RM245 (Microchamber) RM215–RM245 (Mist chamber) | 24.3 (Microchamber) 27.2 (Mist chamber) | [159] |
9 | - | Pecos | 279 F2:3 population from a cross of Pecos (R) and Rosemont (S) | RM3823 (Interval mapping & Composite interval mapping) | 7 (Interval mapping & Composite interval mapping) | [145] |
9 | qSBR9-1 | - | 127 F2:10 recombinant inbred lines population from a cross of Tetep (R) and HP2216 (S) | Hvssr9-27-RM257 (2006/Cuttack) | 9.19 (2006/Cuttack) | [160] |
9 | qSBR9 | RSB03 | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM23869-RM3769 | 11.9 | [161] |
9 | qsbr_9.1 | MCR10277 | Double haploid lines population from a cross of MCR10277 (R) and Cocodrie (S) | RM24708-RM3823 | - | [164] |
9 | qSB9-AR | Jasmine 85 | 216 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM215–RM245/RM245 | 8.55 | [166] |
9 | qSB9-TX | Jasmine 85 | 216 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM215–RM245/RM245 | 11.72 | [166] |
9 | qSB9-LA | Jasmine 85 | 216 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM215–RM245/RM245 | 4.56 | [166] |
9 | qSBR-9 | Jarjian | Backcross inbred lines population from a cross of Jarjian (R) and Koshihikari (S) | Nag08KK18184-Nag08KK18871 | - | [167] |
9 | qshb9.1 | - | F2:3 and BC1F2 populations from a cross of ARC10531 (R) and BPT-5204 (S) | RM257-RM242 | 8.40 | [170] |
9 | qshb9.2 | - | F2:3 and BC1F2 populations from a cross of ARC10531 (R) and BPT-5204 (S) | RM205-RM105 | 19.81 | [170] |
9 | qshb9.3 | - | F2:3 and BC1F2 populations from a cross of ARC10531 (R) and BPT-5204 (S) | RM24260-RM3744 | 12.58 | [170] |
9 | qHZaDR9 | CJ06 | Double haploid population from a cross of TN1 (R) and CJ06 (S) | RM444-AGPSMA | 4.26 | [171] |
9 | qHZbDR9 | CJ06 | Double haploid population from a cross of TN1 (R) and CJ06 (S) | RM278-RM3919B | 6.76 | [171] |
10 | qSB-10 | Teqing | 216 Recombinant inbred lines population from a cross of Teqing (R) and Lemont (S) | RG561 | - | [144] |
10 | QDs10 | Binam | BC2F5 introgression lines from a cross of Binam (R) and Teqing (S) | RM467 | - | [158] |
11 | qSB-11 | Lemont (1997 & 1998) | 128 F2 clonal population from a cross of Jasmine 85 (R) and Lemont (S) | G44–RG118 (1997) G44–RG118 (1998) | 20.5 (1997) 31.2 (1998) | [151] |
11 | qSB-11 | Zhai Ye Qing 8 | Double haploid population from a cross of Zhai Ye Qing 8 (R) and Jingxi 17 (S) | CT224-CT44 | 2.8 | [153] |
11 | qSB-11 | Teqing | 115 F2 clonal population from a cross of Teqing (R) and Lemont (S) | RM167-Y529 | 12.5-12.3 | [156] |
11 | qSB11Le | BC4F1 population from a cross of Teqing (R) and Lemont (S) | Z405-Z286 | - | [157] | |
11 | QDs11b | Teqing | BC2F5 introgression lines from a cross of Tarom Molaii (R) and Teqing (S) | RM224 | - | [158] |
11 | QRh11 | Teqing | BC2F5 introgression lines from a cross of Tarom Molaii (R) and Teqing (S) | RM224 | - | [158] |
11 | QDs11a | Binam | BC2F5 introgression lines from a cross of Binam (R) and Teqing (S) | RM187 | - | [158] |
11 | qSBR11-1 | - | 127 F2:10 recombinant inbred lines population from a cross of Tetep (R) and HP2216 (S) | sbq1-RM224 (2004/New Delhi) sbq11-RM224 (2005/New Delhi) RM224-K39516 (2007/Cuttack) | 13.99 (2004/New Delhi) 11.99 (2005/New Delhi) 13.38 (2007/Cuttack) | [160] |
11 | qSBR11-2 | - | 127 F2:10 recombinant inbred lines population from a cross of Tetep (R) and HP2216 (S) | RM3428-RM209 (2006/New Delhi) | 7.81 (2006/New Delhi) | [160] |
11 | qSBR11-3 | - | 127 F2:10 recombinant inbred lines population from a cross of Tetep (R) and HP2216 (S) | RM536-RM202 (2007/Cuttack) | 13.38 (2007/Cuttack) | [160] |
11 | - | - | 217 sub-core entries from the USDA rice core collection | RM7203 | 1.9 | [163] |
11 | - | - | 217 sub-core entries from the USDA rice core collection | RM254 | 5.3 | [163] |
11 | - | - | 217 sub-core entries from the USDA rice core collection | RM1233 | 5.1 | [163] |
11 | qShB11 | Bengal (Wild2/2008) Not identified in three other assays | 253 BC2F1 lines populations from a cross of O. nivara (acc. IRGC104705) (R) and Bengal (S) as wild-2 population. | RM5711-RM2 (Wild2/2008) Not identified in three other assays | 7.4 (Wild-2/2008) Not identified in three other assays | [165] |
11 | qSB11.1-TX | Lemont | 216 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM7203–RM536/RM202 | 4.79 | [166] |
11 | qSB11.2-TX | Lemont | 216 Recombinant inbred lines population from a cross of Jasmine 85 (R) and Lemont (S) | RM536–RM229/RM287 | 5.29 | [166] |
11 | qSB11HJX74 | HJX74 | 63 chromosome segment substitution lines carrying the genetic background of HJX74 (R) and the donor parent Amol3(sona) (S) | - | - | [168] |
11 | qSBD-11-1 | Lemont | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | D1103-RM26155 | 2.13 (E1)/1.56 (E2) | [169] |
11 | qSBD-11-2 | Lemont | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | RM26155-D1113 | 15.19 | [169] |
11 | qSBL-11-1 | Lemont | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | D1103-RM26155 | 2.28 | [169] |
11 | qSBL-11-2 | Lemont | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | RM26155-D1113 | 12.58 | [169] |
11 | qSBPL-11-1 | Lemont | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | D1103-RM26155 | 2.82 | [169] |
11 | qSBPL-11-2 | Lemont | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | RM26155-D1113 | 12.27 | [169] |
11 | qHNDR11 | TN1 | Double haploid population from a cross of TN1 (R) and CJ06 (S) | STS30-RM202 | 9.77 | [171] |
12 | QSbr12a | Teqing | F4 bulked populations from a cross of Teqing (R) and Lemont (S) | RG214a-RZ397 | [143] | |
12 | qSB-12 | WSS2 | 60 BC1F1 population from a cross of Hinohikari (S) /WSS2 (R)//Hinohikari (S) | RM1880 | 12.9 | [155] |
12 | qSB-12 | Teqing | 216 Recombinant inbred lines population from a cross of Teqing (R) and Lemont (S) | G1106 | - | [144] |
12 | QRh12 | Tarom Molaii | BC2F5 introgression lines from a cross of Tarom Molaii (R) and Teqing (S) | RM235 | - | [158] |
12 | qRLL12 | RSB03 | Recombinant inbred line population from a cross of RSB03 (RR) and HH1B (S) | RM27404-RM27412 | 9.2 | [161] |
12 | qsbr_12.1 | MCR10277 | Double haploid lines population from a cross of MCR10277 (R) and Cocodrie (S) | RM3747-RM27608 | - | [164] |
12 | qShB12-mc (Green house assay) | Bengal (Wild-2) Not identified in other assay | 252 BC2F1 lines populations from a cross of O. nivara (acc. IRGC100898) (R) and Bengal (S) as wild-1 population and | RM5746-RM277 (Wild-2) Not identified in other assay | 5.3 (Wild-2) Not identified in other assayq | [165] |
12 | - | Koshihikari | Backcross inbred lines population from a cross of Jarjian (R) and Koshihikari (S) | RM7025 | - | [167] |
12 | qSBD-12-1 | Yangdao 4 | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | D1239-D1246 | 10.49 | [169] |
12 | qSBD-12-2 | Yangdao 4 | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | RM1246-D1252 | 11.95 | [169] |
12 | qSBPL-12 | Yangdao 4 | 2 F2 and 1 F2:3 Populations from a cross of Yangdao 4 (R) and Lemont (S) | RM1246-D1260 | 6.99 | [169] |
12 | qHNDR12 | TN1 | Double haploid population from a cross of TN1 (R) and CJ06 (S) | RM3226-RM12 | 9.15 | [171] |
Chromosome | QTL | Source of Resistance Allele | Material Used for QTL Analysis | Flanking Markers or Nearest Marker | Phenotypic Variance (%) | References |
---|---|---|---|---|---|---|
1 | qBPB-1-1 | TeQing | 300 Recombinant inbred lines from a cross of TeQing (R) and Lemont (S) | RG472–C131 (2-year average) | 2.7 (2-year average) | [7] |
1 | qBPB-1-2 | TeQing | 300 Recombinant inbred lines from a cross of TeQing (R) and Lemont (S) | CDO455–CDO118 (2002) | 4.6 (2002) | [7] |
1 | qBPB-1-3 | Lemont | 300 Recombinant inbred lines from a cross of TeQing (R) and Lemont (S) | RG236–C112x (2-year average) RG236–C112x (2001) RZ14–RZ801 (2002) | 3.6 (2-year average) 3 (2001) 3.4 (2002) | [7] |
1 | RBG2 | Kele | 110 Backcrossed inbred lines from a cross of Kele (R) and Hitomebore (S) | P0684 | 25.7 (ratio of diseased spikelets) 12.1 (ratio of diseased spikelets area) | [13,199] |
2 | qBPB-2-1 | Lemont | 300 Recombinant inbred lines from a cross of TeQing (R) and Lemont (S) | C624x–RG139 (2001) | 2.5 (2001) | [7] |
2 | qBPB-2-2 | TeQing | 300 Recombinant inbred lines from a cross of TeQing (R) and Lemont (S) | on end at RG520 (2002) | 2.1 (2002) | [7] |
3 | qBPB-3-1 | TeQing | 300 Recombinant inbred lines from a cross of TeQing (R) and Lemont (S) | C515–RG348x (2-year average) C515–RG348x (2001) C515–RG348x (2002) | 13.8 (2-year average) 12.7 (2001) 9.8 (2002) | [7] |
3 | qBPB-3-2 | Lemont | 300 Recombinant inbred lines from a cross of TeQing (R) and Lemont (S) | G249–RG418 (2-year average) G249–RG418 (2001) G249–RG418 (2002) | 3.6 (2-year average) 3.5 (2001) 3.2 (2002) | [7] |
7 | qBPB-7 | TeQing | 300 Recombinant inbred lines from a cross of TeQing (R) and Lemont (S) | BCD855–CDO497 (2001) | 2.8 (2001) | [7] |
8 | qBPB-8-1 | TeQing | 300 Recombinant inbred lines from a cross of TeQing (R) and Lemont (S) | on end at C424x (2-year average) | 2.9 (2-year average) | [7] |
8 | qBPB-8-2 | Lemont | 300 Recombinant inbred lines from a cross of TeQing (R) and Lemont (S) | C825x–G104 (2-year average) C825x–G104 (2002) | 3.8 (2-year average) 2.8 (2002) | [7] |
10 | qBPB-10 | TeQing | 300 Recombinant inbred lines from a cross of TeQing (R) and Lemont (S) | RG214x–CDO98 (2-year average) CDO98–Y1065La (2001) | 3.6 (2-year average) 5.7 (2001) | [7] |
10 | RBG1 (qRBS1) | Nona Bokra | 44 Chromosome segment substitution lines from a cross of Nona Bokra (R) and Koshihi-kari (S) | RM474-RM7361 | 22 | [14] |
11 | qBPB-11 | TeQing | 300 Recombinant inbred lines from a cross of TeQing (R) and Lemont (S) | RZ900–G44 (2-year average) RZ900–G44 (2002) | 2.9 (2-year average) 4.6 (2002) | [7] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarbafi, S.S.; Ham, J.H. An Overview of Rice QTLs Associated with Disease Resistance to Three Major Rice Diseases: Blast, Sheath Blight, and Bacterial Panicle Blight. Agronomy 2019, 9, 177. https://doi.org/10.3390/agronomy9040177
Zarbafi SS, Ham JH. An Overview of Rice QTLs Associated with Disease Resistance to Three Major Rice Diseases: Blast, Sheath Blight, and Bacterial Panicle Blight. Agronomy. 2019; 9(4):177. https://doi.org/10.3390/agronomy9040177
Chicago/Turabian StyleZarbafi, Seyedeh Soheila, and Jong Hyun Ham. 2019. "An Overview of Rice QTLs Associated with Disease Resistance to Three Major Rice Diseases: Blast, Sheath Blight, and Bacterial Panicle Blight" Agronomy 9, no. 4: 177. https://doi.org/10.3390/agronomy9040177
APA StyleZarbafi, S. S., & Ham, J. H. (2019). An Overview of Rice QTLs Associated with Disease Resistance to Three Major Rice Diseases: Blast, Sheath Blight, and Bacterial Panicle Blight. Agronomy, 9(4), 177. https://doi.org/10.3390/agronomy9040177