Prospects for Durable Resistance Against an Old Soybean Enemy: A Four-Decade Journey from Rpp1 (Resistance to Phakopsora pachyrhizi) to Rpp7
Abstract
:1. Introduction
2. Soybean Rust: Causal Pathogen
3. Symptoms, Disease Development and Host Range
4. Soybean Rust: Geographical Footprints
5. Pathogenic Variation and Population Structure of Phakopsora Fungi
6. Expression of Host Resistance to Phakopsora Infection
7. Genetics of Resistance to SBR Resistance
8. Molecular Investigations of Soybean Resistance to P. pachyrhizi
9. SBR Management Through Genetic Strategies
9.1. Single Gene Deployment and Their Continuous Replacement
9.2. Gene Pyramiding
9.3. Non-Host Resistance
10. Strategies for Achieving Higher Durability of SBR Management
10.1. Genetic Approach
10.2. Crop Management Practices
10.3. Biological and Chemical Control
11. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hymowitz, T. The history of the soybean. In Soybeans: Chemistry, Production, Processing, and Utilization; Johnson, L.A., White, P.J., Galloway, R., Eds.; AOCS Press: Urbana, IL, USA, 2008; pp. 1–31. [Google Scholar]
- Hartman, G.L.; Sinclair, J.B.; Rupe, J.C. Compendium of Soybean Diseases, 4th ed.; American Phytopathological Society Press: St Paul, MN, USA, 1999. [Google Scholar]
- Oerke, E.C. Crop losses to pests. J. Agric Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Hartman, G.L.; West, E.D.; Herman, T.K. Crops that feed the World 2. Soybean—Worldwide production, use, and constraints caused by pathogens and pests. Food Secur. 2011, 3, 5–17. [Google Scholar] [CrossRef]
- Li, X.; Esker, P.D.; Pan, Z.; Dias, A.P.; Xue, L.; Yang, X.B. The uniqueness of the soybean rust pathosystem: An improved understanding of the risk in different regions of the world. Plant Dis. 2010, 94, 796–806. [Google Scholar] [CrossRef] [PubMed]
- Isard, S.A.; Gage, S.H.; Comtois, P.; Russo, J.M. Principles of the atmospheric pathway for invasive species applied to soybean rust. BioScience 2005, 55, 851–861. [Google Scholar] [CrossRef]
- Goellner, K.; Loehrer, M.; Langenbach, C.; Conrath, U.W.E.; Koch, E.; Schaffrath, U. Phakopsora pachyrhizi, the causal agent of Asian soybean rust. Mol Plant Pathol. 2010, 11, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Hartman, G.L.; Wang, T.C.; Tschanz, A.T. Soybean rust development and the quantitative relationship between rust severity and soybean yield. Plant Dis. 1991, 75, 596–600. [Google Scholar] [CrossRef]
- Miles, M.R.; Frederick, R.D.; Hartman, G. Soybean rust: Is the U.S. soybean crop at risk. In APSnet Feature; American Phytopathological Society: St. Paul, MN, USA, 2003. [Google Scholar] [CrossRef]
- Hartman, G.L.; Miles, M.R.; Frederick, R.D. Historical viewpoint and soybean resistance to soybean rust. In Proceedings of the 2005 Illinois Crop Protection Conference, Urbana, IL, USA, 5–6 January 2005; pp. 16–20. [Google Scholar]
- Desborough, P.J. Selection of soybean cultivar and sowing date as a strategy for avoidance of rust (Phakopsora pachyrhizi Syd.) losses in coastal New South Wales. Aust. J. Exp. Agric. 1984, 24, 433–439. [Google Scholar] [CrossRef]
- Twizeyimana, M.; Ojiambo, P.S.; Hartman, G.L.; Bandyopadhyay, R. Dynamics of soybean rust epidemics in sequential plantings of soybean cultivars in Nigeria. Plant Dis. 2011, 95, 43–50. [Google Scholar] [CrossRef]
- Godoy, C.V.; Seixas, C.D.S.; Soares, R.M.; Marcelino-Guimarães, F.C.; Meyer, M.C.; Costamilan, L.M. Asian soybean rust in Brazil: Past, present, and future. Pesquisa Agropecuária Brasileira 2016, 51, 407–421. [Google Scholar] [CrossRef]
- Aime, M.C.; McTaggart, A.R.; Mondo, S.J.; Duplessis, S. Phylogenetics and phylogenomics of rust fungi. Adv. Genet. 2017, 100, 267–307. [Google Scholar]
- Lorrain, C.; Gonçalves dos Santos, K.C.; Germain, H.; Hecker, A.; Duplessis, S. Advances in understanding obligate biotrophy in rust fungi. New Phytol. 2019, 222, 1190–1206. [Google Scholar] [CrossRef] [PubMed]
- Bromfield, K.R. Soybean Rust; American Phytopathological Society: St. Paul, MN, USA, 1984. [Google Scholar]
- Hennings, P. Einige neue japanische Uredinales (in German). Hedwigia 1903, IV, 107–108. [Google Scholar]
- Sydow, H.; Sydow, P. A contribution to knowledge of the parasitic fungi on the island of Formosa. Ann. Mycol. 1914, 12, 105–112. [Google Scholar]
- Vakili, N.G.; Bromfield, K.R. Phakopsora rust on soybean and other legumes in Puerto-Rico. Plant Dis. Rep. 1976, 60, 995–999. [Google Scholar]
- Bonde, M.R.; Peterson, G.L.; Dowler, W.M. A comparison of isozymes of Phakopsora pachyrhizi from the Eastern Hemisphere and the New World. Phytopathology 1988, 78, 1491–1494. [Google Scholar] [CrossRef]
- Ono, Y.; Buritica, P.; Hennen, J.F. Delimitation of Phakopsora, Physopella and Cerotelium and their species on Leguminosae. Mycol. Res. 1992, 96, 825–850. [Google Scholar] [CrossRef]
- Frederick, R.D.; Snyder, C.L.; Peterson, G.L.; Bonde, M.R. Polymerase chain reaction assays for the detection and discrimination of the soybean rust pathogens Phakopsora pachyrhizi and P. meibomiae. Phytopathology 2002, 92, 217–227. [Google Scholar] [CrossRef]
- Levy, C. Epidemiology and chemical control of soybean rust in southern Africa. Plant Dis. 2005, 89, 669–674. [Google Scholar] [CrossRef]
- Hartman, G.L.; Hill, C.B.; Twizeyimana, M.; Miles, M.R.; Bandyopadhyay, R. Interaction of soybean and Phakopsora pachyrhizi, the cause of soybean rust. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2011, 6, 59–71. [Google Scholar] [CrossRef]
- Killgore, E.; Heu, R.; Gardner, D.E. First report of soybean rust in Hawaii. Plant Dis. 1994, 78, 1216. [Google Scholar] [CrossRef]
- Freire, M.C.M.; de Oliveira, L.O.; de Almeida, A.M.R.; Schuster, I.; Moreira, M.A.; Liebenberg, M.M.; Mienie, C.M.S. Evolutionary history of Phakopsora pachyrhizi (the Asian soybean rust) in Brazil based on nucleotide sequences of the internal transcribed spacer region of the nuclear ribosomal DNA. Genet. Mol. Biol. 2008, 31, 920–931. [Google Scholar] [CrossRef]
- Stokstad, E. Agriculture—Plant pathologists gear up for battle with dread fungus. Science 2004, 306, 1672–1673. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.W.; Hollier, C.A.; Whitam, H.K.; Palm, M.E.; McKemy, J.M.; Hernández, J.R.; Levy, L.; DeVries-Paterson, R. First report of soybean rust caused by Phakopsora pachyrhizi in the continental United States. Plant Dis. 2005, 89, 774. [Google Scholar] [CrossRef] [PubMed]
- Bonde, M.R.; Nester, S.E.; Austin, C.N.; Stone, C.L.; Frederick, R.D.; Hartman, G.L.; Miles, M.R. Evaluation of virulence of Phakopsora pachyrhizi and P. meibomiae isolates. Plant Dis. 2006, 90, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Barrus, M.R. Variation of varieties of beans in their susceptibility to anthracnose. Phytopathology 1911, 1, 190–195. [Google Scholar]
- Shaner, G.; Stromberg, E.L.; Lacy, G.H.; Barker, K.R.; Pirone, T.P. Nomenclature and concepts of pathogenicity and virulence. Annu. Rev. Phytopathol. 1992, 30, 47–66. [Google Scholar] [CrossRef] [PubMed]
- Bos, L.; Parlevliet, J.E. Concepts and terminology on plant/pest relationships: Toward consensus in plant pathology and crop protection. Annu. Rev. Phytopathol. 1995, 33, 69–102. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; McDonald, B.A. Experimental measures of pathogen competition and relative fitness. Annu. Rev. Phytopathol. 2013, 51, 131–153. [Google Scholar] [CrossRef] [PubMed]
- Mundt, C.C. Pyramiding for resistance durability: Theory and practice. Phytopathology 2018, 108, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Y. Studies on the physiologic races of soybean rust fungus, Phakopsora pachyrhizi Syd. J. Taiwan Agric. Res. 1966, 15, 24–28. [Google Scholar]
- McLean, R.; Byth, D.E. Resistance of soybean to rust in Australia. APPS Newsl. 1976, 5, 34–36. [Google Scholar] [CrossRef]
- McLean, R.J.; Byth, D.E. Inheritance of resistance to rust (Phakopsora pachyrhizi) in soybeans. Aust. J. Agric. Res. 1980, 31, 951–956. [Google Scholar] [CrossRef]
- Burdon, J.J.; Silk, J. Sources and patterns of diversity in plant-pathogenic fungi. Phytopathology 1997, 87, 664–669. [Google Scholar] [CrossRef]
- Wang, X.; McCallum, B. Fusion body formation, germ tube anastomosis, and nuclear migration during the germination of urediniospores of the wheat leaf rust fungus, Puccinia triticina. Phytopathology 2009, 99, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Vittal, R.; Yang, H.C.; Hartman, G.L. Anastomosis of germ tubes and migration of nuclei in germ tube networks of the soybean rust pathogen, Phakopsora pachyrhizi. Eur. J. Plant Pathol. 2012, 132, 163–167. [Google Scholar] [CrossRef]
- McDonald, B.A.; Stukenbrock, E.H. Rapid emergence of pathogens in agro-ecosystems: Global threats to agricultural sustainability and food security. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20160026. [Google Scholar] [CrossRef]
- Yamaoka, Y.; Fujiwara, Y.; Kakishima, M.; Katsuya, K.; Yamada, K.; Hagiwara, H. Pathogenic races of Phakopsora pachyrhizi on soybean and wild host plants collected in Japan. J. Gen. Plant Pathol. 2002, 68, 52–56. [Google Scholar] [CrossRef]
- Yamaoka, Y.; Yamanaka, N.; Akamatsu, H.; Suenaga, K. Pathogenic races of soybean rust Phakopsora pachyrhizi collected in Tsukuba and vicinity in Ibaraki, Japan. J. Gen. Plant Pathol. 2014, 80, 184–188. [Google Scholar] [CrossRef]
- Akamatsu, H.; Yamanaka, N.; Yamaoka, Y.; Soares, R.M.; Morel, W.; Ivancovich, A.J.G.; Bogado, A.N.; Kato, M.; Yorinori, J.T.; Suenaga, K. Pathogenic diversity of soybean rust in Argentina, Brazil, and Paraguay. J. Gen. Plant Pathol. 2013, 79, 28–40. [Google Scholar] [CrossRef]
- García-Rodríguez, J.C.; Morishita, M.; Kato, M.; Yamanaka, N. Pathogenic characteristics of the Asian soybean rust (Phakopsora pachyrhizi) in Mexico. Revista Mexicana de Fitopatología 2017, 35, 338–349. [Google Scholar]
- Twizeyimana, M.; Ojiambo, S.; Sonder, K.; Ikotun, T.; Hartman, G.L.; Bandyopadhyay, R. Pathogenic variation of Phakopsora pachyrhizi infecting soybean in Nigeria. Phytopathology 2009, 99, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Murithi, H.M.; Haudenshield, J.S.; Beed, F.; Mahuku, G.; Joosten, M.H.A.J.; Hartman, G.L. Virulence diversity of Phakopsora pachyrhizi isolates from East Africa compared to a geographically diverse collection. Plant Dis. 2017, 101, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.M.; Yamanaka, N. Pathogenic variation of Asian soybean rust pathogen in Bangladesh. J. Gen. Plant Pathol. 2019, 85, 90–100. [Google Scholar] [CrossRef]
- Bromfield, K.R.; Hartwig, E.E. Resistance to soybean rust [Phakopsora pachyrhizi] and mode of inheritance. Crop Sci. 1980, 20, 254–255. [Google Scholar]
- Hartwig, E.E.; Bromfield, K.R. Relationships among three genes conferring specific resistance to rust in soybeans. Crop Sci. 1983, 23, 237–239. [Google Scholar] [CrossRef]
- Hyten, D.L.; Smith, J.R.; Frederick, R.D.; Tucker, M.L.; Song, Q.; Cregan, P.B. Bulked segregant analysis using the GoldenGate assay to locate the locus that confers resistance to soybean rust in soybean. Crop Sci. 2009, 49, 265–271. [Google Scholar] [CrossRef]
- Ray, J.D.; Morel, W.; Smith, J.R.; Frederick, R.D.; Miles, M.R. Genetics and mapping of adult plant rust resistance in soybean PI 587886 and PI 587880A. Theor. Appl. Genet. 2009, 119, 271–280. [Google Scholar] [CrossRef]
- Kendrick, M.D.; Harris, D.K.; Ha, B.K.; Hyten, D.L.; Cregan, P.B.; Frederick, R.D.; Boerma, H.R.; Pedley, K.F. Identification of a second Asian soybean rust resistance gene in Hyuuga soybean. Phytopathology 2011, 101, 535–543. [Google Scholar] [CrossRef]
- Harris, D.K.; Kendrick, M.D.; King, Z.R.; Pedley, K.F.; Walker, D.R.; Cregan, P.B.; Buck, J.W.; Phillips, D.V.; Li, Z.; Boerma, H.R. Identification of unique genetic sources of soybean rust resistance from the USDA soybean germplasm collection. Crop Sci. 2015, 55, 2161–2176. [Google Scholar] [CrossRef]
- Paul, C.; Frederick, R.D.; Hill, C.B.; Hartman, G.L.; Walker, D.R. Comparison of pathogenic variation among Phakopsora pachyrhizi isolates collected from the United States and international locations, and identification of soybean genotypes resistant to the US isolates. Plant Dis. 2015, 99, 1059–1069. [Google Scholar] [CrossRef]
- King, Z.R.; Childs, S.P.; Harris, D.K.; Pedley, K.F.; Buck, J.W.; Boerma, H.R.; Li, Z. A new soybean rust resistance allele from PI 423972 at the Rpp4 locus. Mol. Breed. 2017, 37, 62. [Google Scholar] [CrossRef]
- Childs, S.P.; King, Z.R.; Walker, D.R.; Harris, D.K.; Pedley, K.F.; Buck, J.W.; Boerma, H.R.; Li, Z. Discovery of a seventh Rpp soybean rust resistance locus in soybean accession PI 605823. Theor. Appl. Genet. 2018, 131, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, N.; Yamaoka, Y.; Kato, M.; Lemos, N.G.; Passianotto, A.L.D.L.; dos Santos, J.V.; Benitez, E.R.; Abdelnoor, R.V.; Soares, R.M.; Suenaga, K. Development of classification criteria for resistance to soybean rust and differences in virulence among Japanese and Brazilian rust populations. Trop. Plant Pathol. 2010, 35, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.A.; Miles, M.R.; Frederick, R.D.; Hill, C.B.; Hartman, G.L. Differential responses of resistant soybean entries to isolates of Phakopsora pachyrhizi. Plant Dis. 2009, 93, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Smith, J.R.; Ray, J.D.; Frederick, R.D. Identification of a new soybean rust resistance gene in PI 567102B. Theor. Appl. Genet. 2012, 125, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Hyten, D.L.; Hartman, G.L.; Nelson, R.L.; Frederick, R.D.; Concibido, V.C.; Narvel, J.M.; Cregan, P.B. Map location of the locus that confers resistance to soybean rust in soybean. Crop Sci. 2007, 47, 837–840. [Google Scholar] [CrossRef]
- Chakraborty, N.; Curley, J.; Frederick, R.; Hyten, D.; Nelson, R.; Hartman, G.; Diers, B. Mapping and confirmation of a new allele at Rpp1 from soybean PI 594538A conferring RB lesion-type resistance to soybean rust. Crop Sci. 2009, 49, 783–790. [Google Scholar] [CrossRef]
- Garcia, A.; Calvo, É.S.; de Souza Kiihl, R.A.; Souto, E.R.D. Evidence of a susceptible allele inverting the dominance of rust resistance in soybean. Crop Sci. 2011, 51, 32–40. [Google Scholar] [CrossRef]
- Kim, K.S.; Unfried, J.R.; Hyten, D.L.; Frederick, R.D.; Hartman, G.L.; Nelson, R.L.; Song, Q.; Diers, B.W. Molecular mapping of soybean rust resistance in soybean accession PI 561356 and SNP haplotype analysis of the Rpp1 region in diverse germplasm. Theor. Appl. Genet. 2012, 125, 1339–1352. [Google Scholar] [CrossRef]
- Hossain, M.M.; Akamatsu, H.; Morishita, M.; Mori, T.; Yamaoka, Y.; Suenaga, K.; Soares, R.M.; Bogado, A.N.; Ivancovich, A.J.G.; Yamanaka, N. Molecular mapping of Asian soybean rust resistance in soybean landraces PI 594767A, PI 587905 and PI 416764. Plant Pathol. 2015, 64, 147–156. [Google Scholar] [CrossRef]
- Bhor, T.J.; Chimote, V.P.; Deshmukh, M.P. Molecular tagging of Asiatic soybean rust resistance in exotic genotype EC 241780 reveals complementation of two genes. Plant Breed. 2015, 134, 70–77. [Google Scholar] [CrossRef]
- Yamanaka, N.; Hossain, M.M.; Yamaoka, Y. Molecular mapping of Asian soybean rust resistance in Chinese and Japanese soybean lines, Xiao Jing Huang, Himeshirazu, and Iyodaizu, B. Euphytica 2015, 205, 311–324. [Google Scholar] [CrossRef]
- Yamanaka, N.; Morishita, M.; Mori, T.; Lemos, N.G.; Hossain, M.M.; Akamatsu, H.; Kato, M.; Yamaoka, Y. Multiple Rpp-gene pyramiding confers resistance to Asian soybean rust isolates that are virulent on each of the pyramided genes. Trop. Plant Pathol. 2015, 40, 283–290. [Google Scholar] [CrossRef]
- Rocha, G.A.F.; Alves, D.P.; Oliveira, J.C.; Brommonschenkel, S.H. Identification and mapping of resistance genes to Phakopsora pachyrhizi in soybean (Glycine max L.) accession PI 594767-A. Genet. Mol. Res. 2016, 15, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Calvo, É.S.; Kiihl, R.A.; Garcia, A.; Harada, A.; Hiromoto, D.M. Two major recessive soybean genes conferring soybean rust resistance. Crop Sci. 2008, 48, 1350–1354. [Google Scholar] [CrossRef]
- Garcia, A.; Calvo, E.S.; de Souza Kiihl, R.A.; Harada, A.; Hiromoto, D.M.; Vieira, L.G.E. Molecular mapping of soybean rust (Phakopsora pachyrhizi) resistance genes: Discovery of a novel locus and alleles. Theor. Appl. Genet. 2008, 117, 545–553. [Google Scholar] [CrossRef]
- Silva, D.C.; Yamanaka, N.; Brogin, R.L.; Arias, C.A.; Nepomuceno, A.L.; Di-Mauro, A.O.; Pereira, S.S.; Nogueira, L.M.; Passianotto, A.L.; Abdelnoor, R.V. Molecular mapping of two loci that confer resistance to Asian rust in soybean. Theor. Appl. Genet. 2008, 117, 57–63. [Google Scholar] [CrossRef]
- Lemos, N.G.; e Braccini, A.D.L.; Abdelnoor, R.V.; de Oliveira, M.C.N.; Suenaga, K.; Yamanaka, N. Characterization of genes Rpp2, Rpp4, and Rpp5 for resistance to soybean rust. Euphytica 2011, 182, 53–64. [Google Scholar] [CrossRef]
- Yu, N.; Kim, M.; King, Z.R.; Harris, D.K.; Buck, J.W.; Li, Z.; Diers, B.W. Fine mapping of the Asian soybean rust resistance gene Rpp2 from soybean PI 230970. Theor. Appl. Genet. 2015, 128, 387–396. [Google Scholar] [CrossRef]
- Brogin, R.L. Mapeamento de genes de resistência à ferrugem e de QTLs envolvidos na resistência à septoriose em soja. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2005. (In Portuguese). [Google Scholar]
- Monteros, M.J.; Missaoui, A.M.; Phillips, D.V.; Walker, D.R.; Boerma, H.R. Mapping and confirmation of the ‘Hyuuga’ red-brown lesion resistance gene for Asian soybean rust. Crop Sci. 2007, 47, 829–834. [Google Scholar] [CrossRef]
- Ray, J.D.; Smith, J.R.; Morel, W.; Bogado, N.; Walker, D.R. Genetic resistance to soybean rust in PI 567099A in at or near the Rpp3 locus. J. Crop Improv. 2011, 25, 219–231. [Google Scholar] [CrossRef]
- Vuong, T.D.; Walker, D.R.; Nguyen, B.T.; Nguyen, T.T.; Dinh, H.X.; Hyten, D.L.; Cregan, P.B.; Sleper, D.A.; Lee, J.D.; Shannon, J.G.; et al. Molecular characterization of resistance to soybean rust (Phakopsora pachyrhizi Syd. & Syd.) in soybean cultivar DT 2000 (PI 635999). PLoS ONE 2016, 11, e0164493. [Google Scholar]
- Hartwig, E.E. Identification of a fourth major gene conferring resistance to soybean rust. Crop Sci. 1986, 26, 1135–1136. [Google Scholar] [CrossRef]
- Meyer, J.D.; Silva, D.C.; Yang, C.; Pedley, K.F.; Zhang, C.; van de Mortel, M.; Hill, J.H.; Shoemaker, R.C.; Abdelnoor, R.V.; Whitham, S.A.; et al. Identification and analyses of candidate genes for Rpp4-mediated resistance to Asian soybean rust in soybean. Plant Physiol. 2009, 150, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, É.; Sediyama, T.; Brommonschenkel, S.H.; Cruz, C.D. Inheritance and genetic mapping of resistance to Asian soybean rust in cultivar TMG 803. Crop Breed. Appl. Biotechnol. 2014, 14, 209–215. [Google Scholar] [CrossRef] [Green Version]
- King, Z.R.; Harris, D.K.; Pedley, K.F.; Song, Q.; Wang, D.; Wen, Z.; Buck, J.W.; Li, Z.; Boerma, H.R. A novel Phakopsora pachyrhizi resistance allele (Rpp) contributed by PI 567068A. Theor. Appl. Genet. 2015, 129, 517–534. [Google Scholar] [CrossRef]
- Liu, M.; Li, S.; Swaminathan, S.; Sahu, B.B.; Leandro, L.F.; Cardinal, A.J.; Bhattacharyya, M.K.; Song, Q.; Walker, D.R.; Cianzio, S.R. Identification of a soybean rust resistance gene in PI 567104B. Theor. Appl. Genet. 2016, 129, 863–877. [Google Scholar] [CrossRef] [PubMed]
- Hovmoller, M.S.; Sorensen, C.K.; Walter, S.; Justesen, A.F. Diversity of Puccinia striiformis on cereals and grasses. Annu. Rev. Phytopathol. 2011, 49, 197–217. [Google Scholar] [CrossRef]
- Yamaoka, Y. Recent outbreaks of rust diseases and the importance of basic biological research for controlling rusts. J. Gen. Plant Pathol. 2014, 80, 375–388. [Google Scholar] [CrossRef]
- Twizeyimana, M.; Ojiambo, P.S.; Haudenshield, J.S.; Caetano-Anollés, G.; Pedley, K.F.; Bandyopadhyay, R.; Hartman, G.L. Genetic structure and diversity of Phakopsora pachyrhizi isolates from soybean. Plant Pathol. 2011, 60, 719–729. [Google Scholar] [CrossRef]
- Zhang, X.C.; Freire, M.C.M.; Le, M.H.; De Oliveira, L.O.; Pitkin, J.W.; Segers, G.; Concibido, V.C.; Baley, G.J.; Hartman, G.L.; Upchurch, G.; et al. Genetic diversity and origins of Phakopsora pachyrhizi isolates in the United States. Asian J. Plant Pathol. 2012, 6, 52–65. [Google Scholar]
- Freire, M.C.M.; da Silva, M.R.; Zhang, X.; Almeida, Á.M.R.; Stacey, G.; de Oliveira, L.O. Nucleotide polymorphism in the 5.8 S nrDNA gene and internal transcribed spacers in Phakopsora pachyrhizi viewed from structural models. Fungal Genet. Biol. 2012, 49, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Jorge, V.R.; Silva, M.R.; Guillin, E.A.; Freire, M.C.M.; Schuster, I.; Almeida, A.M.R.; Oliveira, L.O. The origin and genetic diversity of the causal agent of Asian soybean rust, Phakopsora pachyrhizi, in South America. Plant Pathol. 2015, 64, 729–737. [Google Scholar] [CrossRef]
- Yamanaka, N.; Silva, D.C.G.; Passianotto, A.L.L.; Nogueira, L.M.; Polizel, A.M.; Pereira, S.S.; Santos, J.V.M.; Brogin, R.L.; Arias, C.A.A.; Hoffmann-Campo, C.B.; et al. Identification of DNA markers and characterization of the genes for resistance against Asian soybean rust. In JIRCAS Working Report No. 58; Kudo, H., Suenaga, K., Soares, R.M., Toledo, A., Eds.; JIRCAS: Tsukuba, Japan, 2008; pp. 99–107. [Google Scholar]
- Kato, M.; Yorinori, J.T. A study on a race composition of Phakopsora pachyrhizi in Brazil: A difficulty of race identification. In JIRCAS Working Report No. 58; Kudo, H., Suenaga, K., Soares, R.M., Toledo, A., Eds.; JIRCAS: Tsukuba, Japan, 2008; pp. 94–98. [Google Scholar]
- Singh, B.B.; Thapliyal, P.N. Breeding for resistance to soybean rust in India. In Rust of Soybean- the Problem and Research Needs; Ford, R.E., Sinclair, J.B., Eds.; INTSOY Series No. 12; University of Illinois: Urbana, IL, USA, 1977. [Google Scholar]
- Ribeiro, A.S.; Moreira, J.U.V.; Pierozzi, P.H.B.; Rachid, B.F.; de Toledo, J.F.F.; Arias, C.A.A.; Soares, R.M.; Godoy, C.V. Genetic control of Asian rust in soybean. Euphytica 2007, 157, 15–25. [Google Scholar] [CrossRef]
- Miles, M.R.; Frederick, R.D.; Hartman, G.L. Evaluation of soybean germplasm for resistance to Phakopsora pachyrhizi. Plant Health Prog. 2006, 7, 33. [Google Scholar] [CrossRef]
- Walker, D.R.; Boerma, H.R.; Phillips, D.V.; Schneider, R.W.; Buckley, J.B.; Shipe, E.R.; Mueller, J.D.; Weaver, D.B.; Sikora, E.J.; Moore, S.H.; et al. Evaluation of USDA soybean germplasm accessions for resistance to soybean rust in the southern United States. Crop Sci. 2011, 51, 678–693. [Google Scholar] [CrossRef]
- Walker, D.R.; Harris, D.K.; King, Z.R.; Li, Z.; Phillips, D.V.; Buck, J.W.; Nelson, R.L.; Boerma, H.R. Soybean germplasm accession seedling reactions to soybean rust isolates from Georgia. Crop Sci. 2014, 54, 1433–1447. [Google Scholar] [CrossRef]
- Miles, M.R.; Morel, W.; Ray, J.D.; Smith, J.R.; Frederick, R.D.; Hartman, G.L. Adult plant evaluation of soybean accessions for resistance to Phakopsora pachyrhizi in the field and greenhouse in Paraguay. Plant Dis. 2008, 92, 96–105. [Google Scholar] [CrossRef]
- Li, S. Reaction of soybean rust-resistant lines identified in Paraguay to Mississippi isolates of Phakopsora pachyrhizi. Crop Sci. 2009, 49, 887–894. [Google Scholar] [CrossRef]
- Whitham, S.A.; Qi, M.; Innes, R.W.; Ma, W.; Lopes-Caitar, V.; Hewezi, T. Molecular soybean-pathogen interactions. Annu. Rev. Phytopathol. 2016, 54, 443–468. [Google Scholar] [CrossRef]
- Pedley, K.F.; Pandey, A.K.; Ruck, A.; Lincoln, L.M.; Whitham, S.A.; Graham, M.A. Rpp1 encodes a ULP1-NBS-LRR protein that controls immunity to Phakopsora pachyrhizi in soybean. Mol. Plant Microbe Interact. 2018, 32, 120–133. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Z.; Graham, M.A.; Pedley, K.F.; Whitham, S.A. Gaining insight into soybean defense responses using functional genomics approaches. Brief Funct. Genomics 2015, 14, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Van de Mortel, M.; Recknor, J.C.; Graham, M.A.; Nettleton, D.; Dittman, J.D.; Nelson, R.T.; Godoy, C.V.; Abdelnoor, R.V.; Almeida, A.M.R.; Baum, T.J.; et al. Distinct biphasic mRNA changes in response to Asian soybean rust infection. Mol. Plant Microbe Interact. 2007, 20, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K.T.; van de Mortel, M.; Bancroft, T.J.; Braun, E.; Nettleton, D.; Nelson, R.T.; Frederick, R.D.; Baum, T.J.; Graham, M.A.; Whitham, S.A. Biphasic gene expression changes elicited by Phakopsora pachyrhizi in soybean correlate with fungal penetration and haustoria formation. Plant Physiol. 2011, 157, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Yang, C.; Zhang, C.; Graham, M.A.; Horstman, H.D.; Lee, Y.; Zabotina, O.A.; Hill, J.H.; Pedley, K.F.; Whitham, S.A. Functional analysis of the Asian soybean rust resistance pathway mediated by Rpp2. Mol. Plant Microbe Interact. 2011, 24, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.M.A.P.; O’Rourke, J.A.; van de Mortel, M.; Scheider, K.T.; Bancroft, T.J.; Borém, A.; Nelson, R.T.; Nettleton, D.; Baum, T.J.; Shoemaker, R.C.; et al. Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4-mediated Asian soybean rust resistance pathway. Funct. Plant Biol. 2013, 40, 1029–1047. [Google Scholar] [CrossRef]
- Ishiga, Y.; Uppalapati, S.R.; Gill, U.S.; Huhman, D.; Tang, Y.; Mysore, K.S. Transcriptomic and metabolomic analyses identify a role for chlorophyll catabolism and phytoalexin during Medicago nonhost resistance against Asian soybean rust. Sci. Rep. 2015, 5, 13061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, M.Z.; Ishiga, Y.; Yamanaka, N.; Ogiso-Tanaka, E.; Yamaoka, Y. Soybean leaves transcriptomic data dissects the phenylpropanoid pathway genes as a defence response against Phakopsora pachyrhizi. Plant Physiol. Biochem. 2018, 132, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.K.; Sanchez, A.; Angeles, E.; Singh, S.; Domingo, J.; Huang, N.; Khush, G.S. Are the dominant and recessive plant disease resistance genes similar? A case study of rice R genes and Xanthomonas oryzae pv. oryzae races. Genetics 2001, 159, 757–765. [Google Scholar]
- Yamanaka, N.; Lemos, N.G.; Akamatsu, H.; Yamaoka, Y.; Silva, D.C.; Abdelnoor, R.V.; Soares, R.M.; Suenaga, K. Soybean breeding materials useful for resistance to soybean rust in Brazil. Jpn. Agric. Res. Q. 2011, 45, 385–395. [Google Scholar] [CrossRef]
- Martins, J.A.S.; Juliatti, F.C. Genetic control of partial resistance to Asian soybean rust. Acta Sci. Agron. 2014, 36, 11–17. [Google Scholar] [CrossRef]
- Burdon, J.J.; Barrett, L.G.; Rebetzke, G.; Thrall, P.H. Guiding deployment of resistance in cereals using evolutionary principles. Evol. Appl. 2014, 7, 609–624. [Google Scholar] [CrossRef] [PubMed]
- Yorinori, J.T. Soybean germplasms with resistance and tolerance to Asian rust and screening methods. In JIRCAS Working Report No. 58: Facing the challenge of soybean rust in South America; Kudo, H., Suenaga, K., Soares, R.M., Toledo, A., Eds.; JIRCAS: Tsukuba, Japan, 2008; pp. 70–87. [Google Scholar]
- Manwan, I.; Sama, S.; Rizvi, S.A. Use of varietal rotation in the management of rice tungro disease in Indonesia. Res. Dev. J. 1985, 7, 43–48. [Google Scholar]
- Crill, P.; Ham, Y.S.; Beachell, H.M. The rice blast disease in Korea and its control with race prediction and gene rotation. Korean J. Breed. 1981, 13, 106–114. [Google Scholar]
- Pedersen, W.L. Pyramiding major genes for resistance to maintain residual effects. Ann. Rev. Phytopathol. 1988, 26, 369–378. [Google Scholar] [CrossRef]
- Yamanaka, N.; Lemos, N.G.; Uno, M.; Akamatsu, H.; Yamaoka, Y.; Abdelnoor, R.V.; Braccini, A.L.; Suenaga, K. Resistance to Asian soybean rust in soybean lines with the pyramided three Rpp genes. Crop Breed. Appl. Biotechnol. 2013, 13, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Maphosa, M.; Talwana, H.; Tukamuhabwa, P. Enhancing soybean rust resistance through Rpp2, Rpp3 and Rpp4 pairwise gene pyramiding. Afr. J. Agric. Res. 2012, 7, 4271–4277. [Google Scholar] [CrossRef]
- Boutrot, F.; Zipfel, C. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 2017, 55, 257–286. [Google Scholar] [CrossRef] [PubMed]
- Nuernberger, T.; Lipka, V. Non-host resistance in plants: New insights into an old phenomenon. Mol. Plant Pathol. 2005, 6, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, J.P.; Mysore, K.S. Genes involved in nonhost disease resistance as a key to engineer durable resistance in crops. Plant Sci. 2019, 279, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Langenbach, C.; Campe, R.; Schaffrath, U.; Goellner, K.; Conrath, U. UDP-glucosyltransferase UGT84A2/ BRT1 is required for Arabidopsis nonhost resistance to the Asian soybean rust pathogen Phakopsora pachyrhizi. New Phytol. 2013, 198, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Langenbach, C.; Schultheiss, H.; Rosendahl, M.; Tresch, N.; Conrath, U.; Goellner, K. Interspecies gene transfer provides soybean resistance to a fungal pathogen. Plant Biotech. J. 2016, 14, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, C.G.; Guimarães, G.A.; Nogueira, S.R.; MacLean, D.; Cook, D.R.; Steuernagel, B.; Baek, J.; Bouyioukos, C.; do Va Melo, B.; Tristão, G.; et al. A pigeonpea gene confers resistance to Asian soybean rust in soybean. Nat. Biotechnol. 2016, 34, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R. Letter to the editor: The concept of durable resistance. Phytopathology 1979, 69, 198–199. [Google Scholar] [CrossRef]
- Flor, H.H. Inheritance of pathogenicity in Melampsora lini. Phytopathology 1942, 32, 653–669. [Google Scholar]
- Hartman, G.L.; Wang, T.C.; Hymowitz, T. Sources of resistance to soybean rust in perennial Glycine species. Plant Dis. 1992, 76, 396–399. [Google Scholar] [CrossRef]
- Sherman-Broyles, S.; Bombarely, A.; Powell, A.F.; Doyle, J.L.; Egan, A.N.; Coate, J.E.; Doyle, J.J. The wild side of a major crop: Soybean’s perennial cousins from Down Under. Am. J. Bot. 2014, 101, 1651–1665. [Google Scholar] [CrossRef] [PubMed]
- Mammadov, J.; Buyyarapu, R.; Guttikonda, S.K.; Parliament, K.; Abdurakhmonov, I.; Kumpatla, S.P. Wild relatives of maize, rice, cotton, and soybean: Treasure troves for tolerance to biotic and abiotic stresses. Front. Plant Sci. 2018, 9, 886. [Google Scholar] [CrossRef]
- REX Consortium. Combining selective pressures to enhance the durability of disease resistance genes. Front. Plant Sci. 2016, 7, 1916. [Google Scholar]
- Watkinson-Powell, B.; Gilligan, C.A.; Cunniffe, N.J. When does spatial diversification usefully maximise the durability of crop disease resistance? BioRxiv 2019, 540013. [Google Scholar] [CrossRef] [Green Version]
- Mendgen, K.; Wirsel, S.G.R.; Jux, A.; Hoffmann, J.; Boland, W. Volatiles modulate the development of plant pathogenic rust fungi. Planta 2006, 224, 1353–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Cruz, M.F.A.; Rodrigues, F.A.; Polanco, L.R.; da Silva Curvelo, C.R.; Nascimento, K.J.T.; Moreira, M.A.; Barros, E.G. Inducers of resistance and silicon on the activity of defense enzymes in the soybean-Phakopsora pachyrhizi interaction. Bragantia 2013, 72, 162–172. [Google Scholar] [CrossRef]
- Da Silva, A.C.; de Souza, P.E.; Amaral, D.C.; Zeviani, W.M.; Pinto, J.E.B.P. Essential oils from Hyptis marrubioides, Aloysia gratissima and Cordia verbenacea reduce the progress of Asian soybean rust. Acta Sci. Agron. 2014, 36, 159–166. [Google Scholar] [CrossRef]
- Dorighello, D.V.; Bettiol, W.; Maia, N.B.; de Campos Leite, R.M.V.B. Controlling Asian soybean rust (Phakopsora pachyrhizi) with Bacillus spp. and coffee oil. Crop Prot. 2015, 67, 59–65. [Google Scholar] [CrossRef]
- Mehta, Y.R.; Marangoni, M.S.; Matos, J.N.; Mandarino, J.M.G.; Galbieri, R. Systemic acquired resistance of soybean to soybean rust induced by shale water. Am. J. Plant Sci. 2015, 6, 2249–2256. [Google Scholar] [CrossRef]
- Srivastava, P.; George, S.; Marois, J.J.; Wright, D.L.; Walker, D.R. Saccharin-induced systemic acquired resistance against rust (Phakopsora pachyrhizi) infection in soybean: Effects on growth and development. Crop Prot. 2011, 30, 726–732. [Google Scholar] [CrossRef]
- Liang, Y.; Nikolic, M.; Bélanger, R.; Gong, H.; Song, A. Silicon in Agriculture: From Theory to Practice; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Rodrigues, F.A.; Duarte, H.S.S.; Domiciano, G.P.; Souza, C.A.; Korndorfer, G.H.; Zambolim, L. Foliar application of potassium silicate reduces the intensity of soybean rust. Australas. Plant Pathol. 2009, 38, 366–372. [Google Scholar] [CrossRef]
- Lemes, E.M.; Mackowiak, C.L.; Blount, A.; Marois, J.J.; Wright, D.L.; Coelho, L.; Datnoff, L.E. Effects of silicon applications on soybean rust development under greenhouse and field conditions. Plant Dis. 2011, 95, 317–324. [Google Scholar] [CrossRef]
- Arsenault-Labrecque, G.; Menzies, J.G.; Belanger, R.R. Effect of silicon absorption on soybean resistance to Phakopsora pachyrhizi in different cultivars. Plant Dis. 2012, 96, 37–42. [Google Scholar] [CrossRef]
- Kumar, S.; Jha, D.K. Trichotheciumroseum: A potential agent for the biological control of soybean rust. Indian Phytopathol. 2002, 55, 232–234. [Google Scholar]
- Ward, N.A.; Robertson, C.L.; Chanda, A.K.; Schneider, R.W. Effects of Simplicillium lanosoniveum on Phakopsora pachyrhizi, the soybean rust pathogen, and its use as a biological control agent. Phytopathology 2012, 102, 749–760. [Google Scholar] [CrossRef] [PubMed]
Phakopsora Species | Country | Pathotype/Isolate | Soybean Differential Hosts with Rust Resistant Genes/Loci (Resistance to Phakopsora pachyrhizi) | References | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rpp1 | Rpp2 | Rpp3 | Rpp4 | Rpp5 | Rpp6 | Rpp7 | ||||||||||||||||||||||||||||||||
P. pachyrhizi | Bangladesh | BdRP-1 | [48] | |||||||||||||||||||||||||||||||||||
BdRP-2,5,8,11,12,14,22 | ||||||||||||||||||||||||||||||||||||||
BdRP-3 | ||||||||||||||||||||||||||||||||||||||
BdRP-7 | ||||||||||||||||||||||||||||||||||||||
BdRP-9 | ||||||||||||||||||||||||||||||||||||||
BdRP-17 | ||||||||||||||||||||||||||||||||||||||
BdRP-18 | ||||||||||||||||||||||||||||||||||||||
India | IN 73-1 | [29,49,50,51,52,53,54,55,56,57] | ||||||||||||||||||||||||||||||||||||
Japan | JRP | [58] | ||||||||||||||||||||||||||||||||||||
Philippines | PH 77-1 | [25,43] | ||||||||||||||||||||||||||||||||||||
Taiwan | TW 72-1 | [29,49,50,51,52,53,54,56,57] | ||||||||||||||||||||||||||||||||||||
TW 80-1 | ||||||||||||||||||||||||||||||||||||||
TW 80-2 | ||||||||||||||||||||||||||||||||||||||
Thailand | TH 01-1 | [29] | ||||||||||||||||||||||||||||||||||||
Vietnam | VT 05-1 | [53,54,57] | ||||||||||||||||||||||||||||||||||||
Australia | AU 72-1 | [29,49,51,52,57] | ||||||||||||||||||||||||||||||||||||
AU 79-1 | ||||||||||||||||||||||||||||||||||||||
Argentina | ARG-14-01 | [47] | ||||||||||||||||||||||||||||||||||||
ARG-14-02 to -04 | ||||||||||||||||||||||||||||||||||||||
Brazil | BZ 01-1 | [29,51,58,59] | ||||||||||||||||||||||||||||||||||||
BRP-1 | ||||||||||||||||||||||||||||||||||||||
BRP-2 | ||||||||||||||||||||||||||||||||||||||
Columbia | CO 04-2 | [53,54,57] | ||||||||||||||||||||||||||||||||||||
Paraguay | PG 01-2/PG 01-2b | [29,51] | ||||||||||||||||||||||||||||||||||||
Mexico | MRP-4 | [45] | ||||||||||||||||||||||||||||||||||||
MRP-13 | ||||||||||||||||||||||||||||||||||||||
MRP-16 | ||||||||||||||||||||||||||||||||||||||
MRP-19 | ||||||||||||||||||||||||||||||||||||||
USA | AL 04-1 | [29,51,52,53,54,57,59,60] | ||||||||||||||||||||||||||||||||||||
AL 04-3 | ||||||||||||||||||||||||||||||||||||||
LA 04-1 | ||||||||||||||||||||||||||||||||||||||
LA 04-3 | ||||||||||||||||||||||||||||||||||||||
GA 12-1 | ||||||||||||||||||||||||||||||||||||||
HW 98-1 | ||||||||||||||||||||||||||||||||||||||
HW 94-1 | ||||||||||||||||||||||||||||||||||||||
South Africa | SA 01-1 | [29,47,51,53,54,55] | ||||||||||||||||||||||||||||||||||||
SA-14-1 | ||||||||||||||||||||||||||||||||||||||
Zimbabwe | ZM 01-1 | [29,52,53,54,55,57] | ||||||||||||||||||||||||||||||||||||
Nigeria | NIG-05-06 | [45] | ||||||||||||||||||||||||||||||||||||
Kenya | KE-12-01 | [47] | ||||||||||||||||||||||||||||||||||||
Malawi | MAL-14-01, -2 | [47] | ||||||||||||||||||||||||||||||||||||
MAL-14-03 | ||||||||||||||||||||||||||||||||||||||
Tanzania | TZ-14-01 to -06 | [47] | ||||||||||||||||||||||||||||||||||||
TZ-14-07 | ||||||||||||||||||||||||||||||||||||||
TZ-14-08 | ||||||||||||||||||||||||||||||||||||||
TZ-14-09 to -12 | ||||||||||||||||||||||||||||||||||||||
P. meibomiae | Brazil | BZ 82-1 | [29] | |||||||||||||||||||||||||||||||||||
Puerto Rico | PR 76 |
Gene locus | Chr. | Physical Position | Nearest Molecular Markers | Original Genotype [Accession (cultivar)] | Source of Origin | Description of Mapping Population | P. pachyrhizi Isolate and Its Reaction to Resistant Parent | Soybean Sources other than Original Genotype with Similar Resistant Gene/Locusǂ | References |
---|---|---|---|---|---|---|---|---|---|
Rpp1 | 18 (G) | 56,182,523–56,797,174 | Sct-187, Satt191, Sat-064 | PI 200492 (Komata) | Shikoku, Japan | 126 BC6F2 lines derived from Williams 82’ x PI 200492 | IR against IN73-1 | PI 594538A, PI 587886, PI 587880A, PI 594760B, PI 561356, PI 594767A, PI 587905, PI 594177, PI 587855, EC 241780, UG-5*, Xiao Jing Huang and Himeshirazu | [37,52,55,61,62,63,64,65,66,67,68,69] |
Rpp2 | 16 (J) | 27,937,049–30,478,472 | Satt183, Sat-255, Satt620, Sct-01 | PI 230970 | Japan | 130 F2:3 families derived from BRS 184’ × PI 230970 | RB against isolate (mixture) maintained on BRSMS Bacuri cultivar | PI 230970, PI 224270, PI 417125, An-76*, EC 241780* and Iyodaizu B | [49,50,66,67,70,71,72,73,74] |
Rpp3 | 6 (C2) | 44,049,891–45,995,029 | Satt658, Sat-263, Satt460, Satt307 | PI 462312 (Ankur) | Pant Nagar, India | 110 F2:3 families derived from Williams 82’ × PI 462312 | RB against IN73-1 | PI 462312, UG-5*, PI 506764*, PI 628932, PI 567099A, PI 416764, PI 635999* | [50,51,53,65,75,76,77,78] |
Rpp4 | 18 (G) | 51,397,064–51,584,617 | Satt288, Satt612, AF162283, | PI 459025B (Bing nan) | Fujian, China | 80 F2:3 families derived from BRS 184’ × PI 459025 | RB against isolate (mixture) maintained on BRSMS Bacuri cultivar | PI 459025B, PI 423972, An-76*, PI 635999* | [56,71,72,73,78,79,80,81] |
rpp5 | 3 (N) | 29,862,641–32,670,690 | Sat-166, Sat-275, Sat-280 | PI 200456 (Awashima Zairai) | Shikoku, Japan | 173, 174 & 177 F2 individuals from cross of CD 208 with resistant lines PI 200456, PI 471904 & PI 200526, respectively. | RB against isolate (mixture) maintained on BRSMS Bacuri cultivar | PI 200526, PI 200526, PI 200487, PI 471904, PI 506764*, Kinoshita | [53,70,71,73] |
Rpp6 | 18 (G) | 5,953,237– 6,898,528 | Satt324, Satt394 | PI 567102B | East Java, Indonesia | 273 F2 and 104 F2:3 families derived from DS-880 × PI 567102B | IR to RB against MS06-1 and RB against LA04-1 | PI 567102B, PI 567068A, PI 567104B | [60,82,83] |
Rpp7 | 19 (L) | 39,462,291–39,616,643 | GSM0547, GSM0548 | PI 605823 (SAMPLE 87) | Ha Giang, Vietnam | 87 F2:3 families derived from Williams 82’ × PI 605823 & 84 F4:5 RILs from ‘5601T’ × PI 605823 | RB against GA12 | - | [57] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chander, S.; Ortega-Beltran, A.; Bandyopadhyay, R.; Sheoran, P.; Ige, G.O.; Vasconcelos, M.W.; Garcia-Oliveira, A.L. Prospects for Durable Resistance Against an Old Soybean Enemy: A Four-Decade Journey from Rpp1 (Resistance to Phakopsora pachyrhizi) to Rpp7. Agronomy 2019, 9, 348. https://doi.org/10.3390/agronomy9070348
Chander S, Ortega-Beltran A, Bandyopadhyay R, Sheoran P, Ige GO, Vasconcelos MW, Garcia-Oliveira AL. Prospects for Durable Resistance Against an Old Soybean Enemy: A Four-Decade Journey from Rpp1 (Resistance to Phakopsora pachyrhizi) to Rpp7. Agronomy. 2019; 9(7):348. https://doi.org/10.3390/agronomy9070348
Chicago/Turabian StyleChander, Subhash, Alejandro Ortega-Beltran, Ranajit Bandyopadhyay, Parvender Sheoran, Gbemisola Oluwayemisi Ige, Marta W. Vasconcelos, and Ana Luisa Garcia-Oliveira. 2019. "Prospects for Durable Resistance Against an Old Soybean Enemy: A Four-Decade Journey from Rpp1 (Resistance to Phakopsora pachyrhizi) to Rpp7" Agronomy 9, no. 7: 348. https://doi.org/10.3390/agronomy9070348
APA StyleChander, S., Ortega-Beltran, A., Bandyopadhyay, R., Sheoran, P., Ige, G. O., Vasconcelos, M. W., & Garcia-Oliveira, A. L. (2019). Prospects for Durable Resistance Against an Old Soybean Enemy: A Four-Decade Journey from Rpp1 (Resistance to Phakopsora pachyrhizi) to Rpp7. Agronomy, 9(7), 348. https://doi.org/10.3390/agronomy9070348