Production, Leaf Quality and Antioxidants of Perennial Wall Rocket as Affected by Crop Cycle and Mulching Type
Abstract
:1. Introduction
2. Material and Methods
2.1. General Analytical Methods
2.2. SPAD and Leaf Colour Parameters
2.3. Dry Matter
2.4. Mineral Elements
2.5. Antioxidants
2.5.1. Phenols
2.5.2. Ascorbic Acid
2.6. Antioxidant Activity
2.7. Statistical Processing
3. Results and Discussion
3.1. Precocity, Plant Growth and Yield
3.2. Leaf Colour, SPAD Index, Quality and Chemical Composition
3.3. Leaf Antioxidants
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brusco, M.L. Rucola Della Piana del Sele a un Passo dall’IGP; FreshPlaza: Tholen, The Netherlands, 2018; Available online: www.freshplaza.it/article/99765/Rucola-della-Piana-del-Sele-a-un-passo-dallIGP (accessed on 2 April 2019).
- Caruso, G.; Parrella, G.; Giorgini, M.; Nicoletti, R. Crop systems, quality and protection of Diplotaxis tenuifolia. Agriculture 2018, 8, 55. [Google Scholar] [CrossRef]
- Jansen, M.; van den Noort, R.E.; Tan, M.; Prinsen, E.; Lagrimini, L.M.; Thorneley, R.N.F. Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiol. 2001, 126, 1012–1023. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.Y.; Kleeberger, S.R. Nrf2 Protects against airway disorders. Toxicol. Appl. Pharmacol. 2010, 244, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Conti, S.; La Rocca, G. Influence of crop cycle and nitrogen fertilizer form on yield and nitrate content in different species of vegetables. Adv. Hortic. Sci. 2011, 25, 81–89. [Google Scholar]
- Amalfitano, C.; Del Vacchio, L.; Somma, S.; Cuciniello, A.; Caruso, G. Effects of cultural cycle and nutrient solution electrical conductivity on plant growth, yield and fruit quality of “Friariello” pepper grown in hydroponics. Hortic. Sci. 2017, 44, 91–98. [Google Scholar] [CrossRef]
- Amalfitano, C.; Gomez, L.D.; Frendo, P.; De Pascale, S.; Pepe, O.; Simister, R.; Ventorino, V.; Agrelli, D.; Borrelli, C.; McQueen-Mason, S.J.; et al. Plant–Rhizobium symbiosis, seed nutraceuticals, and waste quality for energy production of Vicia faba L. as affected by crop management. Chem. Biol. Technol. Agric. 2018, 5, 15. [Google Scholar] [CrossRef]
- Conti, S.; Villari, G.; Amico, E.; Caruso, G. Effects of production system and transplanting time on yield, quality and antioxidant content of organic winter squash (Cucurbita moschata Duch.). Sci. Hortic. 2015, 183, 136–143. [Google Scholar] [CrossRef]
- European Commission. Brussels, Belgium, 16 January 2018. Available online: ec.europa.eu/environment/circular.../plastics-strategy-swd.pdf (accessed on 2 April 2019).
- Lanorte, A.; De Santis, F.; Nolè, G.; Blanco, I.; Loisi, R.V.; Schettini, E.; Vox, G. Agricultural plastic waste spatial estimation by Landsat 8 satellite images. Comput. Electron. Agric. 2017, 141, 35–45. [Google Scholar] [CrossRef]
- Scarascia-Mugnozza, G.; Sica, C.; Picuno, P. The optimisation of the management of agricultural plastic waste in Italy using a geographical information system. Acta Hortic. 2008, 801, 219–226. [Google Scholar] [CrossRef]
- Blanco, I.; Loisi, R.V.; Sica, C.; Schettini, E.; Vox, G. Agricultural plastic waste mapping using GIS. A case study in Italy. Resour. Conserv. Recycl. 2018, 137, 229–242. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Briassoulis, D.; Giannoulis, A. Evaluation of the functionality of bio-based plastic mulching films. Polym. Test. 2018, 67, 99–109. [Google Scholar] [CrossRef]
- Briassoulis, D.; Mistriotis, A. Key parameters in testing biodegradation of bio-based materials in soil. Chemosphere 2018, 207, 18–26. [Google Scholar] [CrossRef]
- Kapanen, A.; Schettini, E.; Vox, G.; Itavaara, M. Performance and environmental impact of biodegradable films in agriculture: A field study on protected cultivation. J. Polym. Environ. 2008, 16, 109–122. [Google Scholar] [CrossRef]
- Tachibana, Y.; Maeda, T.; Ito, O.; Maeda, Y.; Kunioka, M. Utilization of a biodegradable mulch sheet produced from poly (lactic acid)/Ecoflex/modified starch in mandarin orange groves. Int. J. Mol. Sci. 2009, 10, 3599–3615. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Li, G.; Ning, T.Y.; Zhang, Z.M.; Mi, Q.H.; Lal, R. Suitability of mulching with biodegradable film to moderate soil temperature and moisture and to increase photosynthesis and yield in peanut. Agric. Water Manag. 2018, 208, 214–223. [Google Scholar] [CrossRef]
- Bastioli, C.; Bellotti, V.; Gilli, G. The Use of agricultural commodities as a source of new plastic materials. In Proceedings of the Biodegradable Packagings and Agricultural Films, Paris, France, 10–11 May 1990; pp. 1–36. [Google Scholar]
- Martín-Closas, L.; Bach, M.A.; Pelacho, A.M. Biodegradable mulching in an organic tomato production system. Acta Hortic. 2008, 767, 267–274. [Google Scholar] [CrossRef]
- Schiattone, M.I.; Viggiani, R.; Di Venere, D.; Sergio, L.; Cantore, V.; Todorovic, M.; Perniola, M.; Candido, V. Impact of irrigation regime and nitrogen rate on yield, quality and water use efficiency of wild rocket under greenhouse conditions. Sci. Hortic. 2018, 229, 182–192. [Google Scholar] [CrossRef]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.C.; Bonini, P.; Colla, G. Plant- and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Kampfenkel, K.; Van Montagu, M.; Inzé, D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 1995, 225, 165–167. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Bonasia, A.; Lazzizera, C.; Elia, A.; Conversa, G. Nutritional, biophysical and physiological characteristics of wild rocket genotypes as affected by soilless cultivation system, salinity level of nutrient solution and growing period. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef]
- Ibarra, L.; Zermeño, A.; Munguía, J.; Quezada, M.A.R.; de la Rosa, M. Photosynthesis, soil temperature and yield of cucumber as affected by colored plastic mulch. Acta Agric. Scand. 2008, 58, 372–378. [Google Scholar] [CrossRef]
- Cirujeda, A.; Aibar, J.; Anzalone, A.; Martín-Closas, L.; Meco, R.; Moreno, M.M.; Pardo, A.; Pelacho, A.M.; Rojo, F.; Royo-Esnal, A.; et al. Biodegradable mulch instead of polyethylene for weed control of processing tomato production. Agron. Sustain. Dev. 2012, 32, 889–897. [Google Scholar] [CrossRef] [Green Version]
- Moreno, M.M.; Cirujeda, A.; Aibar, J.; Moreno, C. Soil thermal and productive responses of biodegradable mulch materials in a processing tomato (Lycopersicon esculentum Mill.) crop. Soil Res. 2016, 54, 207–215. [Google Scholar] [CrossRef]
- Brault, D.; Stewart, K.A.; Jenni, S. Growth, development, and yield of head lettuce cultivated on paper and polyethylene mulch. HortScience 2002, 37, 92–94. [Google Scholar] [CrossRef]
- Zhao, H.; Xiong, Y.C.; Li, F.M.; Wang, R.Y.; Qiang, S.C.; Yao, T.F.; Mo, F. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agric. Water Manag. 2012, 104, 68–78. [Google Scholar] [CrossRef]
- Ngouajio, M.; Auras, R.; Fernandez, R.T.; Rubino, M.; Counts, J.W.; Kijchavengkul, T. Field performance of aliphatic–aromatic copolyester biodegradable mulch films in a fresh market tomato production system. HortTechnology 2008, 18, 605–610. [Google Scholar] [CrossRef]
- Rangarajan, A.; Ingall, B. Biodegradable Mulch Product Testing; Research Report; Cornell University, Department of Horticulture: Ithaca, NY, USA, 2006. [Google Scholar]
- Moreno, M.M.; Moreno, A. Effect of different biodegradable and polyethylene mulches on productivity and soil thermal and biological properties in a tomato crop. Sci. Hortic. 2008, 116, 256–263. [Google Scholar] [CrossRef]
- Ham, J.M.; Huitenberg, G.J.; Lamont, W.J. Optical properties of plastic mulches affect the field temperature regime. J. Am. Soc. Hortic. Sci. 1993, 118, 188–193. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Abdul-Baki, A.A. Soil temperature and tomato growth associated with black polyethylene and hairy vetch mulches. J. Am. Soc. Hortic. Sci. 1995, 120, 848–853. [Google Scholar] [CrossRef]
- Bristow, K.L. The role of mulch and its architecture in modifying soil temperature. Aust. J. Soil Res. 1988, 26, 269–280. [Google Scholar] [CrossRef]
- Chandra, R.; Rustgi, R. Biodegradable polymers. Progr. Polym. Sci. 1998, 23, 1273–1335. [Google Scholar] [CrossRef]
- Gu, X.B.; Li, Y.N.; Du, Y.D. Biodegradable film mulching improves soil temperature, moisture and seed yield of winter oilseed rape (Brassica napus L.). Soil Tillage Res. 2017, 171, 42–50. [Google Scholar] [CrossRef]
- Sartore, L.; Schettini, E.; de Palma, L.; Brunetti, G.; Cocozza, C.; Vox, G. Effect of hydrolyzed protein-based mulching coatings on the soil properties and productivity in a tunnel greenhouse crop system. Sci. Total Environ. 2018, 645, 1221–1229. [Google Scholar] [CrossRef]
- Waterer, D. Evaluation of biodegradable mulches for production of warm-season vegetable crops. Can. J. Plant Sci. 2010, 90, 737–743. [Google Scholar] [CrossRef] [Green Version]
- Ertani, A.; Schiavon, M.; Nardi, S. Transcriptome-wide identification of differentially expressed genes in Solanum lycopersicum L. in response to an alfalfa-protein hydrolysate using microarrays. Front. Plant Sci. 2017, 8, 1159. [Google Scholar] [CrossRef] [PubMed]
- León, A.S.; Viňa, S.Z.; Frezza, D.; Chavaz, A.; Chiesa, A. Estimation of chlorophyll contents by correlations between SPAD-502 meter and chroma meter in butterhead lettuce. Commun. Soil Sci. Plant Anal. 2001, 38, 2877–2885. [Google Scholar] [CrossRef]
- Verdial, M.F.; Santos de Lima, M.; Morgor, A.F.; Goto, R. Production of iceberg lettuce using mulching. Sci. Agric. 2001, 58, 737–740. [Google Scholar] [CrossRef]
- National Research Council (US). Recommended Dietary Allowances, 10th ed.; National Academies Press: Washington, DC, USA, 1989; p. 285. [Google Scholar]
- Morra, L.; Bilotto, M.; Cerrato, D.; Coppola, R.; Leone, V.; Mignoli, E.; Pasquariello, M.S.; Petriccione, M.; Cozzolino, E. The Mater-Bi® biodegradable film for strawberry (Fragaria × ananassa Duch.) mulching: Effects on fruit yield and quality. Ital. J. Agron. 2016, 11, 731. [Google Scholar] [CrossRef]
- Chaieb, N.; Gonzalez, J.L.; Lopez-Mesas, M.; Bouslama, M.; Valiente, M. Polyphenols content and antioxidant capacity of thirteen faba bean (Vicia faba L.) genotypes cultivated in Tunisia. Food Res. Int. 2011, 44, 970–977. [Google Scholar] [CrossRef]
- Rivero, R.M.; Ruiz, J.M.; Garcia, P.C.; López-Lefebre, L.R.; Sánchez, E.; Romero, L. Resistance to cold and heat stress: Accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001, 160, 315–321. [Google Scholar] [CrossRef]
- Boo, H.O.; Heo, B.G.; Gorinstein, S.; Chon, S.U. Positive effects of temperature and growth conditions on enzymatic and antioxidant status in lettuce plants. Plant Sci. 2011, 181, 479–484. [Google Scholar] [CrossRef]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Leyva, A.; Jarillo, J.A.; Salinas, J.; Martinez-Zapater, J.M. Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase messenger-RNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiol. 1995, 108, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Téllez, M.A.; Lafuente, M.T. Effect of high temperature conditioning on ethylene, phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase activities in flavedo of chilled ‹Fortune› mandarin fruit. J. Plant Physiol. 1997, 150, 674–678. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zheng, W.; Galletta, G.J. Cultural system affects fruit quality and antioxidant capacity in strawberries. J. Agric. Food Chem. 2002, 50, 6534–6542. [Google Scholar] [CrossRef] [PubMed]
- Altunkaya, A.; Gӧkmen, V. Effect of various anti-browning agents on phenolic compounds profile of fresh lettuce (L. sativa). Food Chem. 2009, 117, 122–126. [Google Scholar] [CrossRef]
- Barth, C.; De Tullio, M.; Conklin, P.L. The role of ascorbic acid in the control of flowering time and the onset of senescence. J. Exp. Bot. 2006, 57, 1657–1665. [Google Scholar] [CrossRef] [Green Version]
Experimental Treatment | Crop Cycle Duration | Leaf Area Index (LAI) | Plant Dry Matter | Marketable Leaves | ||
---|---|---|---|---|---|---|
days | m2·m−2 | g·m−2 | Yield t·ha−1 | Number Per Alveolus | Mean Weight g | |
Crop cycle | ||||||
Autumn-winter | 73 a | 1.36 b | 105.8 b | 11.9 b | 140.7 b | 0.61 b |
Winter | 44 b | 1.30 b | 101.0 b | 11.0 b | 155.3 a | 0.51 c |
Spring | 35 c | 1.48 a | 114.2 a | 13.2 a | 119.0 c | 0.80 a |
Mulch treatment | ||||||
Biodegradable | 50 b | 1.41 a | 118.3 a | 12.5 a | 140.9 a | 0.67 |
Photoselective LDPE | 49 b | 1.45 a | 112.4 ab | 12.2 a | 144.0 a | 0.63 |
Standard LDPE | 48 b | 1.41 a | 105.8 b | 12.5 a | 143.2 a | 0.64 |
Non-mulched control | 55 a | 1.24 c | 91.6 c | 11.0 b | 126.5 b | 0.63 |
n.s. |
SPAD | L* | a* | b* | |
---|---|---|---|---|
Crop cycle | ||||
Winter | 35.9 | 38.4 | −13.5 | 18.1 |
Spring | 38.1 | 40.1 | −21.1 | 20.4 |
n.s. | n.s. | * | * | |
Mulch treatment | ||||
Biodegradable | 39.1 a | 40.5 a | −30.8 a | 20.6 a |
Photoselective LDPE | 38.7 a | 33.5 b | −11.2 b | 16.7 b |
Standard LDPE | 37.5 a | 32.0 b | −11.1 b | 15.3 b |
Non-mulched | 32.7 b | 31.6 b | −10.7 b | 14.8 b |
Organic Acids | |||||
---|---|---|---|---|---|
Dry Residue | Malate | Oxalate | Citrate | Isocitrate | |
% | g·kg−1 d.w. | ||||
Crop cycle | |||||
Winter | 9.13 | 26.4 | 0.88 | 20.7 | 0.64 |
Spring | 8.57 | 25.9 | 0.80 | 21.1 | 0.58 |
* | n.s. | * | n.s. | * | |
Mulch treatment | |||||
Biodegradable | 9.42 a | 28.8 a | 0.91 a | 22.1 a | 0.67 a |
Photoselective LDPE | 9.19 a | 24.4 b | 0.81 b | 19.7 b | 0.58 b |
Standard LDPE | 8.47 b | 24.3 b | 0.81 b | 20.0 b | 0.57 b |
Non-mulched | 8.32 b | 26.9 a | 0.84 ab | 21.7 a | 0.63 ab |
K | Ca | Mg | Na | P | S | NO3 | Cl | |
---|---|---|---|---|---|---|---|---|
g·kg−1 d.w. | ||||||||
Crop cycle | ||||||||
Winter | 50.8 | 27.5 | 3.46 | 3.27 | 2.74 | 7.91 | 68.1 | 11.6 |
Spring | 55.0 | 25.9 | 3.25 | 3.58 | 2.68 | 8.84 | 59.5 | 15.5 |
* | n.s. | n.s. | n.s. | n.s. | n.s. | * | * | |
Mulch treatment | ||||||||
Biodegradable | 52.7 | 26.9 | 3.68 a | 4.04 a | 2.87 a | 8.22 | 68.8 a | 13.1 |
Photoselective LDPE | 54.5 | 26.9 | 3.18 b | 3.07 c | 2.66 b | 8.67 | 64.5 a | 13.9 |
Standard LDPE | 52.5 | 26.7 | 3.29 b | 3.57 b | 2.64 b | 8.38 | 67.9 a | 12.6 |
Non-mulched | 52.0 | 26.4 | 3.25 b | 3.02 c | 2.66 b | 8.21 | 53.9 b | 14.7 |
n.s. | n.s. | n.s. | n.s. |
Polyphenols mg gallic acid·100 g−1 d.w. | Ascorbic Acid mg·100 g−1 f.w. | Lipophilic Antioxidant Activity mmol trolox eq·100 g−1 d.w. | Hydrophilic Antioxidant Activity mmol ascorbic acid eq·100 g−1 d.w. | |
---|---|---|---|---|
Crop cycle | ||||
Winter | 175 | 17.0 | 6.2 | 6.2 |
Spring | 408 | 56.4 | 20.0 | 8.0 |
* | * | * | * | |
Mulch treatment | ||||
Biodegradable | 316 a | 43.9 a | 14.5 a | 8.1 a |
Photoselective LDPE | 303 ab | 40.0 a | 13.7 ab | 7.7 a |
Standard LDPE | 290 b | 32.5 b | 13.0 b | 6.4 b |
Non-mulched | 258 c | 30.4 b | 11.2 c | 6.2 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruso, G.; Stoleru, V.; De Pascale, S.; Cozzolino, E.; Pannico, A.; Giordano, M.; Teliban, G.; Cuciniello, A.; Rouphael, Y. Production, Leaf Quality and Antioxidants of Perennial Wall Rocket as Affected by Crop Cycle and Mulching Type. Agronomy 2019, 9, 194. https://doi.org/10.3390/agronomy9040194
Caruso G, Stoleru V, De Pascale S, Cozzolino E, Pannico A, Giordano M, Teliban G, Cuciniello A, Rouphael Y. Production, Leaf Quality and Antioxidants of Perennial Wall Rocket as Affected by Crop Cycle and Mulching Type. Agronomy. 2019; 9(4):194. https://doi.org/10.3390/agronomy9040194
Chicago/Turabian StyleCaruso, Gianluca, Vasile Stoleru, Stefania De Pascale, Eugenio Cozzolino, Antonio Pannico, Maria Giordano, Gabriel Teliban, Antonio Cuciniello, and Youssef Rouphael. 2019. "Production, Leaf Quality and Antioxidants of Perennial Wall Rocket as Affected by Crop Cycle and Mulching Type" Agronomy 9, no. 4: 194. https://doi.org/10.3390/agronomy9040194
APA StyleCaruso, G., Stoleru, V., De Pascale, S., Cozzolino, E., Pannico, A., Giordano, M., Teliban, G., Cuciniello, A., & Rouphael, Y. (2019). Production, Leaf Quality and Antioxidants of Perennial Wall Rocket as Affected by Crop Cycle and Mulching Type. Agronomy, 9(4), 194. https://doi.org/10.3390/agronomy9040194