Participation of Wheat and Rye Genome in Drought Induced Senescence in Winter Triticale (X Triticosecale Wittm.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biparental Population and Genetic Map
2.2. Plant Growth Conditions, Treatments, Leaf Sampling and Phenotypic Evaluation
2.3. Statistical Analysis
2.4. QTL Analysis
2.5. In Silico Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Chla | chlorophyll a |
Chlb | chlorophyll b |
Chla+b | chlorophyll a + b |
CAR | carotenoids |
SC | soluble carbohydrates |
SPh | soluble phenolics |
References
- Temel, A.; Janack, B.; Humbeck, K. Drought Stress-related physiological changes and histone modifications in barley primary leaves at HSP17 gene. Agronomy 2017, 7, 43. [Google Scholar] [CrossRef]
- Rivero, R.M.; Kojima, M.; Gepstein, A.; Sakakibara, H.; Mittler, R.; Gepstein, S.; Blumwald, E. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. USA 2007, 104, 19631–19636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baenziger, M.; Edmeades, G.O.; Lafitte, H.R. Selection for drought tolerance increases maize yields across a range of nitrogen levels. Crop Sci. 1999, 39, 1035–1040. [Google Scholar] [CrossRef]
- Benbella, M.; Paulsen, G.M. Efficacy of treatments for delaying senescence of wheat leaves: II. Senescence and grain yield under field conditions. Agron. J. 1998, 90, 332–338. [Google Scholar] [CrossRef]
- Borrell, A.K.; Hammer, G.L.; Douglas, A.C.L. Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf Growth and Senescence. Crop Sci. 2000, 40, 1026–1037. [Google Scholar] [CrossRef]
- Gelang, J.; Pleijel, H.; Sild, E.; Danielsson, H.; Younis, S.; Selldén, G. Rate and duration of grain filling in relation to flag leaf senescence and grain yield in spring wheat (Triticum aestivum) exposed to different concentrations of ozone. Physiol. Plant. 2000, 110, 366–375. [Google Scholar] [CrossRef]
- Colasuonno, P.; Marcotuli, I.; Lozito, M.L.; Simeone, R.; Blanco, A.; Gadaleta, A. Characterization of aldehyde oxidase (AO) genes involved in the accumulation of carotenoid pigments in wheat grain. Front. Plant Sci. 2017, 8, 863. [Google Scholar] [CrossRef] [PubMed]
- Rosenow, D.T.; Quisenberry, J.E.; Wendt, C.W.; Clark, L.E. Drought tolerant sorghum and cotton germplasm. Agric. Water Manag. 1983, 7, 207–222. [Google Scholar] [CrossRef]
- Kura-Hotta, M.; Satoh, K.; Katoh, S. Relationship between photosynthesis and chlorophyll content during leaf senescence of rice seedlings. Plant Cell Physiol. 1987, 28, 1321–1329. [Google Scholar]
- Duncan, R.R. The association of plant senescence with root and stalk disease in sorghum. In Sorghum Root and Stalk Diseases, a Critical Review; Mughogho, L.K., Ed.; Proceedings of the consultative group discussion of research needs and strategies for control of sorghum root and stalk diseases (Bellagio, Italy, 27 November–2 December 1983); ICRISAT: Patancheru, India, 1984; pp. 99–100. [Google Scholar]
- Thomas, H.; Smart, C.M. Crops that stay green. Ann. Appl. Biol. 1993, 123, 193–219. [Google Scholar] [CrossRef]
- Kar, M.; Mishra, D. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 1976, 57, 315–319. [Google Scholar] [CrossRef]
- Tamagnone, L.; Merida, A.; Stacey, N.; Plaskitt, K.; Parr, A.; Chang, C.F.; Lynn, D.; Dow, J.M.; Roberts, K.; Martin, C. Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. Plant Cell 1998, 10, 1801–1816. [Google Scholar] [CrossRef]
- Wingler, A.; Purdy, S.; MacLean, A.; Pourtau, N. The role of sugars in integrating environmental signals during the regulation of leaf senescence. J. Exp. Bot. 2006, 57, 391–399. [Google Scholar] [CrossRef]
- Tyrka, M.; Oleszczuk, S.; Rabiza-Swider, J.; Wos, H.; Wedzony, M.; Zimny, J.; Ponitka, A.; Ślusarkiewicz-Jarzina, A.; Metzger, R.J.; Baenziger, P.S.; et al. Populations of doubled haploids for genetic mapping in hexaploid winter triticale. Mol. Breed. 2018. [Google Scholar] [CrossRef]
- Lorenz, K.; Pomeranz, Y. The history, development, and utilization of triticale. CRC Crit. Rev. Food Technol. 1974, 5, 175–280. [Google Scholar] [CrossRef]
- Hura, T.; Dziurka, M.; Hura, K.; Ostrowska, A.; Dziurka, K. Free and cell wall-bound polyamines under long-term water stress applied at different growth stages of ×Triticosecale Wittm. PLoS ONE 2015, 10, e0135002. [Google Scholar] [CrossRef]
- Hura, T.; Hura, K.; Ostrowska, A.; Gadzinowska, J.; Grzesiak, M.T.; Dziurka, K.; Dubas, E. Rieske iron-sulfur protein of cytochrome-b6f is involved in plant recovery after drought stress. Environ. Exp. Bot. 2018, 156, 228–239. [Google Scholar] [CrossRef]
- Tyrka, M.; Tyrka, D.; Wędzony, M. Genetic map of triticale integrating microsatellite, DArT and SNP markers. PLoS ONE 2015, 10, e0145714. [Google Scholar] [CrossRef]
- Tyrka, M.; Bednarek, P.T.; Kilian, A.; Wędzony, M.; Hura, T.; Bauer, E. Genetic map of triticale compiling DArT, SSR, and AFLP markers. Genome 2011, 54, 391–401. [Google Scholar] [CrossRef]
- González, J.M.; Muñiz, L.M.; Jouve, N. Mapping of QTLs for androgenetic response based on a molecular genetic map of ×Triticosecale Wittmack. Genome 2005, 48, 999–1009. [Google Scholar] [CrossRef]
- Akbari, M.; Wenzl, P.; Caig, V.; Carling, J.; Xia, L.; Yang, S.; Uszynski, G.; Mohler, V.; Lehmensiek, A.; Kuchel, H.; et al. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor. Appl. Genet. 2006, 113, 1409–1420. [Google Scholar] [CrossRef]
- Peleg, Z.; Saranga, Y.; Suprunova, T.; Ronin, Y.; Röder, M.S.; Kilian, A.; Korol, A.B.; Fahima, T. High-density genetic map of durum wheat x wild emmer wheat based on SSR and DArT markers. Theor. Appl. Genet. 2008, 117, 103–115. [Google Scholar] [CrossRef]
- Hackauf, B.; Rudd, S.; van der Voort, J.R.; Miedaner, T.; Wehling, P. Comparative mapping of DNA sequences in rye (Secale cereale L.) in relation to the rice genome. Theor. Appl. Genet. 2009, 118, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Stojałowski, S.; Bobrowska, A.; Hanek, M.; Myśków, B. The importance of chromosomes from the sixth homeologic group in the restoration of male fertility in winter triticale with Triticum timopheevii cytoplasm. J. Appl. Genet. 2013, 54, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Foulkes, M.J.; Worland, A.J.; Sylvester-Bradley, R.; Caligari, P.D.S.; Snape, J.W. Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 2004, 135, 255–263. [Google Scholar] [CrossRef]
- Hura, T.; Tyrka, M.; Hura, K.; Ostrowska, A.; Dziurka, K. QTLs for cell wall-bound phenolics in relation to the photosynthetic apparatus activity and leaf water status under drought stress at different growth stages of triticale. Mol. Genet. Genomics 2017, 292, 415–433. [Google Scholar] [CrossRef] [PubMed]
- Bauer, E.; Schmutzer, T.; Barilar, I.; Mascher, M.; Gundlach, H.; Martis, M.M.; Twardziok, S.O.; Hackauf, B.; Gordillo, A.; Wilde, P.; et al. Towards a whole-genome sequence for rye (Secale cereale L.). Plant J. 2017, 89, 853–869. [Google Scholar] [CrossRef]
- Czyczyło-Mysza, I.; Tyrka, M.; Marcińska, I.; Skrzypek, E.; Karbarz, M.; Dziurka, M.; Hura, T.; Dziurka, K.; Quarrie, S.A. Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol. Breed. 2013, 32, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D., Sporns, P., Eds.; Wiley: New York, NY, USA, 2001; pp. F4.3.1–F4.3.8. [Google Scholar]
- Marcinska, I.; Czyczyło-Mysza, I.; Skrzypek, E.; Filek, M.; Grzesiak, S.; Grzesiak, M.T.; Janowiak, F.; Hura, T.; Dziurka, M.; Dziurka, K.; et al. Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiol. Plant. 2013, 35, 451–461. [Google Scholar] [CrossRef]
- Bach, A.; Kapczyńska, A.; Dziurka, K.; Dziurka, M. Phenolic compounds and carbohydrates in relation to bulb formation in Lachenalia ‘Ronina’ and ‘Rupert’ in vitro cultures under different lighting environments. Sci. Hortic. 2015, 188, 23–29. [Google Scholar] [CrossRef]
- Mahmud, I.; Kramer, H.I. Segregation for yield, height, and maturity following a soybean cross. Agron. J. 1951, 43, 605–609. [Google Scholar] [CrossRef]
- Wang, S.; Basten, C.J.; Zeng, Z.B. Windows QTL Cartographer 2.5; Department of Statistics, North Carolina State University: Raleigh, NC, USA, 2012. [Google Scholar]
- Salvi, S.; Tuberosa, R. To clone or not to clone plant QTLs: Present and future challenges. Trends Plant Sci. 2005, 10, 297–304. [Google Scholar] [CrossRef]
- Gawroński, P.; Pawełkowicz, M.; Tofil, K.; Uszyński, G.; Sharifova, S.; Ahluwalia, S.; Tyrka, M.; Wędzony, M.; Kilian, A.; Bolibok-Brągoszewska, H. DArT Markers effectively target gene space in the rye genome. Front. Plant Sci. 2016, 7, 1–13. [Google Scholar] [CrossRef]
- Conesa, A.; Gotz, S.; Garcia-Gomez, J.M.; Terol, J.; Talon, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef]
- Abdelkhalik, A.F.; Shishido, R.; Nomura, K.; Ikehashi, H. QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor. Appl. Genet. 2005, 110, 1226–1235. [Google Scholar] [CrossRef]
- Malosetti, M.; Visser, R.G.F.; Celis-Gamboa, C.; van Eeuwijk, F.A. QTL methodology for response curves on the basis of non-linear mixed models, with an illustration to senescence in potato. Theor. Appl. Genet. 2006, 113, 288–300. [Google Scholar] [CrossRef] [Green Version]
- Harris, K.; Subudhi, P.K.; Borrel, A.; Jordan, D.; Rosenow, D.; Nguyen, H.; Klein, P.; Klein, R.; Mullet, J. Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J. Exp. Bot. 2007, 58, 327–338. [Google Scholar] [CrossRef]
- Muchero, W.; Ehlers, J.D.; Close, T.J.; Roberts, P.A. Mapping QTL for drought stress-induced premature senescence and maturity in cowpea (Vigna unguiculata (L.) Walp.). Theor. Appl. Genet. 2009, 118, 849–863. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Fritz, A.; Paulsen, G.; Bai, G.; Pandravada, S.; Gill, B. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol. Breed. 2010, 26, 163–175. [Google Scholar] [CrossRef]
- Messmer, R.; Fracheboud, Y.; Bänziger, M.; Stamp, P.; Ribaut, J.M. Drought stress and tropical maize: QTLs for leaf greenness, plant senescence, and root capacitance. Field Crop Res. 2011, 124, 93–103. [Google Scholar] [CrossRef]
- Riasat, M.; Kiani, S.; Saed-Mouchehsi, A.; Pessarakli, M. Oxidant related biochemical traits are significant indices in triticale grain yield under drought stress condition. J. Plant Nutr. 2019, 42, 111–126. [Google Scholar] [CrossRef]
- Park, S.Y.; Yu, J.W.; Park, J.S.; Li, J.; Yoo, S.C.; Lee, N.Y.; Lee, S.K.; Jeong, S.W.; Seo, H.S.; Koh, H.J.; et al. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 2007, 19, 1649–1664. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Alegre, L. Die and let live: Leaf senescence contributes to plant survival under drought stress. Funct. Plant Biol. 2004, 31, 203–216. [Google Scholar] [CrossRef]
- Hura, T.; Hura, K.; Grzesiak, M. Soil drought applied during the vegetative growth of triticale modifies physiological and biochemical adaptation to drought during the generative development. J. Agron. Crop Sci. 2011, 197, 113–123. [Google Scholar] [CrossRef]
- Massolo, J.F.; Concellón, A.; Chaves, A.R.; Vicente, A.R. 1-Methylcyclopropene (1-MCP) delays senescence, maintains quality and reduces browning of non-climacteric eggplant (Solanum melongena L.) fruit. Postharvest Biol. Technol. 2011, 59, 10–15. [Google Scholar] [CrossRef]
- Pourtau, N.; Marès, M.; Purdy, S.; Quentin, N.; Ruël, A.; Wingler, A. Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence. Planta 2004, 219, 765–772. [Google Scholar] [CrossRef]
- Wingler, A.; Marès, M.; Pourtau, N. Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence. New Phytol. 2004, 161, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Buchanan-Wollaston, V.; Earl, S.; Harrison, E.; Mathas, E.; Navabpour, S.; Page, T.; Pink, D. The molecular analysis of plant senescence—A genomics approach. Plant Biotechnol. J. 2003, 1, 3–22. [Google Scholar] [CrossRef]
- Quirino, B.F.; Normanly, J.; Amasino, R.M. Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Mol. Biol. 1999, 40, 267–278. [Google Scholar] [CrossRef]
- Kamachi, K.; Yamaya, T.; Hayakawa, T.; Mae, T.; Ojima, K. Changes in cytosolic glutamine synthetase polypeptide and its mRNA in a leaf blade of rice plants during natural senescence. Plant Physiol. 1992, 98, 1323–1329. [Google Scholar] [CrossRef]
- Ryu, S.B.; Wang, X. Expression of phospholipase D during castor bean leaf senescence. Plant Physiol. 1995, 108, 713–719. [Google Scholar] [CrossRef]
- Marcotuli, I.; Gadaleta, A.; Mangini, G.; Signorile, A.M.; Zacheo, S.A.; Blanco, A.; Simeone, R.; Colasuonno, P. Development of a high-density SNP-based linkage map and detection of QTL for β-glucans, protein content, grain yield per spike and heading time in durum wheat. Int. J. Mol. Sci. 2017, 18, 1329. [Google Scholar] [CrossRef]
- Perez-Amador, M.A.; Abler, M.L.; De Rocher, E.J.; Thompson, D.M.; Van Hoof, A.; LeBrasseur, N.D.; Lers, A.; Green, P.J. Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis. Plant Physiol. 2000, 122, 169–180. [Google Scholar] [CrossRef]
- Himelblau, E.; Amasino, R.M. Delivering copper within plant cells. Curr. Opin. Plant Biol. 2000, 3, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Hinderhofer, K.; Zentgraf, U. Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 2001, 213, 469–473. [Google Scholar] [CrossRef]
- Hajouj, T.; Michelis, R.; Gepstein, S. Cloning and characterization of a receptor-like protein kinase gene associated with senescence. Plant Phyisol. 2000, 124, 1305–1314. [Google Scholar] [CrossRef]
- Buchanan-Wollaston, V. Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus. Plant Physiol. 1994, 105, 839–846. [Google Scholar] [CrossRef]
- He, Y.; Fukushige, H.; Hildebrande, D.F.; Gan, S. Evidence supporting a role for jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 2002, 128, 876–884. [Google Scholar] [CrossRef]
- Kohler, C.; Merkle, T.; Roby, D.; Neuhaus, G. Developmentally regulated expression of a cyclic nucleotide-gated ion channel from Arabidopsis indicates its involvement in programme cell death. Planta 2001, 213, 327–332. [Google Scholar] [CrossRef]
- Wang, T.W.; Lu, L.; Wang, D.; Thompson, J.E. Isolation and characterisation of senescence-induced cDNAs encoding deoxyhypusine synthase and eucaryotic translation initiation factor 5A from tomato. J. Biol. Chem. 2001, 276, 17541–17549. [Google Scholar] [CrossRef]
- Godiard, L.; Sauviac, L.; Dalbin, N.; Liaubet, L.; Callard, D.; Czernic, P.; Marco, Y. CYP76C2, an Arabidopsis thaliana cytochrome P450 gene expressed during hypersensitive and developmental cell death. FEBS Lett. 1998, 438, 245–249. [Google Scholar] [CrossRef]
- Marcotuli, I.; Colasuonno, P.; Blanco, A.; Gadaleta, A. Expression analysis of cellulose synthase-like genes in durum wheat. Sci. Rep. 2018, 8, 15675. [Google Scholar]
Trait | Hewo | Magnat | DH | Heritability | ||
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Min | Max | ||
Chla | 0.92 ± 0.12 | 3.24 ± 0.85 | 1.34 ± 0.82 | 0.37 | 2.99 | 0.464 |
Chlb | 0.44 ± 0.05 | 1.36 ± 0.40 | 0.58 ± 0.32 | 0.20 | 1.20 | 0.220 |
Chla + b | 1.36 ± 0.16 | 4.60 ± 1.24 | 1.92 ± 1.14 | 0.58 | 4.15 | 0.400 |
CAR | 0.41 ± 0.05 | 1.00 ± 0.20 | 0.52 ± 0.24 | 0.22 | 1.16 | 0.649 |
SC | 31.0 ± 5.3 | 59.4 ± 7.8 | 45.9 ± 15.6 | 16.6 | 83.3 | 0.817 |
SPh | 10.8 ± 1.0 | 5.4 ± 0.9 | 8.0 ± 1.43 | 5.8 | 11.4 | 0.542 |
Chromosome | Locus | Region (cM) | Trait | Flanking Markers | LOD | R2 (%) | Additive Effect a |
---|---|---|---|---|---|---|---|
2A | QSPh.2A.1 | 132.9–144.6 | SPh | 4215443 | 2.6 | 19.2 | −14.8 |
QSC.2A.2 | 146.9–153.2 | SC | 4362309 | 2.8 | 10.6 | 9.9 | |
QCSPhC.2A.3 | 169.8–184.5 | Chla | 4200640–4201257 | 2.4 | 19.6 | −13.9 | |
169.8–184.5 | Chlb | 4200640–4201257 | 2.4 | 17.1 | −11.9 | ||
168.8–185.5 | Chla + b | 4200640–4201257 | 2.5 | 17.1 | −12.0 | ||
169.8–184.5 | CAR | 4200640–4201257 | 2.4 | 17.1 | −11.9 | ||
166.9–184.3 | SC | 3047278– 4201257 | 7.9 | 30.4 | −40.2 | ||
166.3–185.5 | SPh | 4343078– 4201257 | 2.8 | 21.5 | −15.5 | ||
QSC.2A.4 | 196.2 | SC | 3048208 | 2.8 | 17.2 | −23.7 | |
1R | QCSPh.1R | 147.5–150.9 | Chla | 3607029–3603565 | 4.4 | 23.3 | −16.2 |
147.5–150.9 | Chlb | 3607029–3603565 | 4.3 | 23.3 | −16.1 | ||
147.5–150.9 | Chla + b | 3607029–3603565 | 4.4 | 23.3 | −16.3 | ||
147.5–150.9 | CAR | 3607029–3603565 | 4.3 | 23.3 | −16.1 | ||
147.5–150.9 | SPh | 3607029–3603565 | 4.2 | 23.4 | −17.5 | ||
6R | QCSPhC.6R.1 | 339.1-345.9 | Chla | 3618637–rPt–400935 | 3.5 | 14.6 | 15.9 |
339.1–344.8 | Chlb | 3618637–rPt–399948 | 3.4 | 14.3 | 15.6 | ||
338.1–345.9 | Chla + b | 3618637–rPt-400935 | 3.5 | 14.8 | 16.1 | ||
339.1–344.8 | CAR | 3618637–rPt–399948 | 3.4 | 14.3 | 15.6 | ||
340.1–344.8 | SC | 3618637–rPt–399948 | 3.0 | 11.9 | 21.8 | ||
339.1–345.9 | SPh | 3618637–rPt–505447 | 3.0 | 12.8 | 15.7 | ||
QCSPhC.6R.2 | 356.6–382.5 | Chla | 3613876–4215469 | 7.8 | 38.7 | −21.7 | |
356.6–382.5 | Chlb | 3613876–4215469 | 7.7 | 38.7 | −21.6 | ||
356.6–382.5 | Chla + b | 3613876–4215469 | 7.8 | 38.6 | −21.8 | ||
356.6–382.5 | CAR | 3613876–4215469 | 7.7 | 38.8 | −21.6 | ||
359.1–378.5 | SC | 4204839–rPt–505870 | 19.7 | 51.5 | −66.2 | ||
355.4–370.6 | SPh | 3604778–4215469 | 7.6 | 35.4 | −24.8 |
Position of QTL | Number of Genes | Description | Max Score | Ident (%) | Accession | |
---|---|---|---|---|---|---|
Genetic (cM) | Physical (Mbp) | |||||
QSPh.2A.1 | ||||||
136.7 | 504.27 | 64 | Starch branching enzyme IIa [Zea mays L.] | 100 | 98 | ONM17778.1 |
alkaline/neutral invertase E, chloroplastic isoform X1 [Prunus persica L.] | 312 | 86 | XP_007221417.1 | |||
unnamed protein product [Triticum aestivum L.] | 523 | 93 | SPT18309.1 | |||
glucan endo-1,3-beta-glucosidase 14-like isoform X1 [Aegilops tauschii Coss. subsp. tauschii] | 677 | 95 | XP_020177221.1 | |||
putative cell wall invertase c [Secale cereale L.] | 597 | 98 | AWT08285.1 | |||
QSC.2A.2 | ||||||
149.2 | 117.79 | 80 | sucrose synthase type 2-1 [Triticum polonicum L.] | 389 | 85 | AIL88516.1 |
QCSPhC.2A.3 | ||||||
168.8–171.3 | 130.36/443.64 | 67/42 | putative 6-phosphogluconolactonase 2 [Triticum urartu L.] | 318 | 99 | EMS47003.1 |
predicted protein [Hordeum vulgare L. subsp. vulgare] | 925 | 87 | BAJ94765.1 | |||
UDP-glycosyltransferase 85A3 [Triticum urartu L.] | 935 | 91 | EMS51148.1 | |||
177.7–184.5 | 103.37–105.63 | 21 | [Hordeum vulgare L. subsp. vulgare] sphinganine C4-monooxygenase 1 | 370 | 99 | BAK04950.1 |
Anthocyanidin 5,3-O-glucosyltransferase [Triticum urartu L.] | 921 | 99 | EMS62298.1 | |||
probable mannan synthase 7 [Aegilops tauschii Coss. subsp. tauschii] | 202 | 71 | XP_020168696.1 | |||
hypothetical protein TRIUR3_18345 [Triticum urartu L.] | 353 | 74 | EMS68147.1 | |||
predicted protein [Hordeum vulgare L. subsp. vulgare] | 203 | 74 | BAJ91161.1 | |||
QSC.2A.4 | ||||||
196.2 | 72.74–72.76 | 136 | L-gulonolactone oxidase 2 [Brachypodium distachyon L.] | 500 | 79 | XP_003573784.1 |
4-alpha-glucanotransferase DPE2 [Triticum urartu L.] | 297 | 72 | EMS56480.1 |
Locus | Genetic Position (cM) IPK Region | Description | e-Value | Mean Sim (%) |
---|---|---|---|---|
QCSPh.1R | 137.80–127.42 | sugar transporter ERD6-like 4 | 0.0 | 75.29 |
QCSPhC.6R.1 | 170.88–166.09 | cytokinin dehydrogenase 11 | 0.0 | 86.45 |
QCSPhC.6R.2 | 171.27–165.28 | 14-alpha-glucan-branching enzyme 2-2 chloroplastic/amyloplastic | 0.0 | 78.31 |
QCSPhC.6R.3 | 176.48–181.34 | probable inorganic phosphate transporter 1–8 | 0.0 | 93.42 |
protein FAR1-RELATED SEQUENCE 5-like | 4.71918 × 10−110 | 73.44 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostrowska, A.; Tyrka, M.; Dziurka, M.; Hura, K.; Hura, T. Participation of Wheat and Rye Genome in Drought Induced Senescence in Winter Triticale (X Triticosecale Wittm.). Agronomy 2019, 9, 195. https://doi.org/10.3390/agronomy9040195
Ostrowska A, Tyrka M, Dziurka M, Hura K, Hura T. Participation of Wheat and Rye Genome in Drought Induced Senescence in Winter Triticale (X Triticosecale Wittm.). Agronomy. 2019; 9(4):195. https://doi.org/10.3390/agronomy9040195
Chicago/Turabian StyleOstrowska, Agnieszka, Mirosław Tyrka, Michał Dziurka, Katarzyna Hura, and Tomasz Hura. 2019. "Participation of Wheat and Rye Genome in Drought Induced Senescence in Winter Triticale (X Triticosecale Wittm.)" Agronomy 9, no. 4: 195. https://doi.org/10.3390/agronomy9040195
APA StyleOstrowska, A., Tyrka, M., Dziurka, M., Hura, K., & Hura, T. (2019). Participation of Wheat and Rye Genome in Drought Induced Senescence in Winter Triticale (X Triticosecale Wittm.). Agronomy, 9(4), 195. https://doi.org/10.3390/agronomy9040195