How to Generate Yield in the First Year—A Three-Year Experiment on Miscanthus (Miscanthus × giganteus (Greef et Deuter)) Establishment under Maize (Zea mays L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Weather Conditions and Soil Characteristics
2.2. Miscanthus Planting Procedures and Maize Sowing
2.3. Harvest Management
2.4. Statistical Analyses
3. Results
3.1. Dry Matter Yield and Dry Matter Content of Maize
3.2. Dry Matter Yield and Dry Matter Content of Miscanthus
3.3. Accumulated Per Hectare Yield over Three Years
3.4. Plant Performance of Miscanthus
4. Discussion
4.1. First Findings on Establishing Miscanthus under Maize
4.2. Recommendations for Agricultural Practice and Further Research
4.2.1. Sowing Density of Maize
4.2.2. Planting Geometry
4.2.3. Planting Material of Miscanthus
4.2.4. Risk of Winter Frosts and Plant Losses
4.2.5. Harvest Determination
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
DMY (kg ha−1) | ||
---|---|---|
Species | MUM | REF |
Tanacetum vulgare L. | 305 | 0 |
Centaurea nigra L. | 50 | 0 |
Artemisia vulgaris L. | 36 | 70 |
Cirsium arvense L. Scop. | 20 | 22 |
Dipsacus fullonum L. | 77 | 0 |
Melilotus officinalis L. Pall. | 33 | 0 |
Epilobium L. | 27 | 0 |
Total | 549 | 92 |
References
- Anderson, E.; Arundale, R.; Maughan, M.; Oladeinde, A.; Wycislo, A.; Voigt, T. Growth and agronomy of Miscanthus × giganteus for biomass production. Biofuels 2011, 2, 71–87. [Google Scholar] [CrossRef]
- Clifton-Brown, J.C.; Lewandowski, I. Water Use Efficiency and Biomass Partitioning of Three Different Miscanthus Genotypes with Limited and Unlimited Water Supply. Ann. Bot. 2000, 86, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Heaton, E. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenerg. 2004, 27, 21–30. [Google Scholar] [CrossRef]
- Iqbal, Y.; Gauder, M.; Claupein, W.; Graeff-Hönninger, S.; Lewandowski, I. Yield and quality development comparison between miscanthus and switchgrass over a period of 10 years. Energy 2015, 89, 268–276. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Elbersen, H.W.; Cosentino, S.L.; Zatta, A.; Alexopoulou, E.; Monti, A. Agronomic aspects of future energy crops in Europe. Biofuels, Bioprod. Bior. 2010, 4, 674–691. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Scordia, D.; Testa, G.; Monti, A.; Alexopoulou, E.; Christou, M. The Importance of Perennial Grasses as a Feedstock for Bioenergy and Bioproducts. In Perennial Grasses for Bioenergy and Bioproducts; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–33. [Google Scholar]
- Heaton, E.A.; Dohleman, F.G.; Long, S.P. Meeting US biofuel goals with less land: the potential of Miscanthus. Chang. Boil. 2008, 14, 2000–2014. [Google Scholar] [CrossRef]
- Lewandowski, I.; Schmidt, U. Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agric. Ecosyst. 2006, 112, 335–346. [Google Scholar] [CrossRef] [Green Version]
- McCalmont, J.P.; Hastings, A.; McNamara, N.P.; Richter, G.M.; Robson, P.; Donnison, I.S.; Clifton-Brown, J. Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. GCB Bioenerg. 2017, 9, 489–507. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, S.L.; Copani, V.; Scalici, G.; Scordia, D.; Testa, G. Soil erosion mitigation by perennial species under mediterranean environment. Bioenerg. Res. 2015, 8, 1538–1547. [Google Scholar] [CrossRef]
- Galatsidas, S.; Gounaris, N.; Vlachaki, D.; Dimitriadis, E.; Kiourtsis, F.; Keramitzis, D.; Gerwin, W.; Repmann, F.; Rettenmaier, N.; Reinhardt, G. Revealing Bioenergy Potentials: Mapping Marginal Lands in Europe-The SEEMLA Approach. In European Biomass Conference and Exhibition Proceedings; Copenhagen, Denmark, 2018; pp. 31–37. [Google Scholar]
- Krasuska, E.; Cadórniga, C.; Tenorio, J.L.; Testa, G.; Scordia, D. Potential land availability for energy crops production in Europe. Biofuels Bioprod. Bior. 2010, 4, 658–673. [Google Scholar] [CrossRef]
- Ramirez-Almeyda, J.; Elbersen, B.; Monti, A.; Staritsky, I.; Panoutsou, C.; Alexopoulou, E.; Schrijver, R.; Elbersen, W. Assessing the Potentials for Nonfood Crops. In Modeling and Optimization of Biomass Supply Chains, Calliope, P., Ed.; 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 219–251. [Google Scholar]
- Tuck, G.; Glendining, M.J.; Smith, P.; House, J.I.; Wattenbach, M. The potential distribution of bioenergy crops in Europe under present and future climate. Biomass Bioenerg. 2006, 30, 183–197. [Google Scholar] [CrossRef]
- Von Cossel, M.; Iqbal, Y.; Scordia, D.; Cosentino, S.L.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Mantel, S.; Prysiazhniuk, O.; Maliarenko, O.; Lewandowski, I. Low-input agricultural practices for industrial crops on marginal land (D4.1). In MAGIC Project Report; Supported by the EU’s Horizon 2020 programme under GA No. 727698; University of Hohenheim: Stuttgart, Germany, 2018. [Google Scholar]
- Clifton-Brown, J.; Hastings, A.; Mos, M.; McCalmont, J.P.; Ashman, C.; Awty-Carroll, D.; Cerazy, J.; Chiang, Y.-C.; Cosentino, S.; Cracroft-Eley, W.; et al. Progress in upscaling Miscanthus biomass production for the European bio-economy with seed-based hybrids. GCB Bioenerg. 2017, 9, 6–17. [Google Scholar] [CrossRef]
- Ruf, T.; Makselon, J.; Udelhoven, T.; Emmerling, C.; Ruf, T.; Udelhoven, T. Soil quality indicator response to land-use change from annual to perennial bioenergy cropping systems in Germany. GCB Bioenerg. 2018, 10, 444–459. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M.; Mangold, A.; Lask, J.; Petig, E.; Kiesel, A.; Lewandowski, I. Economic and environmental performance of miscanthus cultivated on marginal land for biogas production. GCB Bioenerg. 2018, 11, 34–49. [Google Scholar] [CrossRef]
- Iqbal, Y.; Lewandowski, I. Biomass composition and ash melting behaviour of selected miscanthus genotypes in Southern Germany. Fuel 2016, 180, 606–612. [Google Scholar] [CrossRef]
- Mangold, A.; Lewandowski, I.; Hartung, J.; Kiesel, A. Miscanthus for biogas production: Influence of harvest date and ensiling on digestibility and methane hectare yield. GCB Bioenerg. 2018, 11, 50–62. [Google Scholar] [CrossRef]
- Van der Weijde, T.; Kiesel, A.; Iqbal, Y.; Muylle, H.; Dolstra, O.; Visser, R.G.F.; Lewandowski, I.; Trindade, L.M. Evaluation of Miscanthus sinensis biomass quality as feedstock for conversion into different bioenergy products. GCB Bioenerg. 2017, 9, 176–190. [Google Scholar] [CrossRef]
- Iqbal, Y.; Lewandowski, I. Inter-annual variation in biomass combustion quality traits over five years in fifteen Miscanthus genotypes in south Germany. Fuel Process. Technol. 2014, 121, 47–55. [Google Scholar] [CrossRef]
- Kiesel, A.; Lewandowski, I. Miscanthus as biogas substrate – cutting tolerance and potential for anaerobic digestion. GCB Bioenerg. 2017, 9, 153–167. [Google Scholar] [CrossRef]
- Von Cossel, M.; Möhring, J.; Kiesel, A.; Lewandowski, I. Optimization of specific methane yield prediction models for biogas crops based on lignocellulosic components using non-linear and crop-specific configurations. Ind. Crops Prod. 2018, 120, 330–342. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.; Trindade, L.M.; Linden, V.D.; Schwarz, K.-U.; Müller-Sämann, K.; Anisimov, A.; Chen, C.-L.; Dolstra, O.; Donnison, I.S.; et al. Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC. Front. Plant Sci. 2016, 7, 1620. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, C. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass Bioenerg. 2009, 33, 752–759. [Google Scholar] [CrossRef]
- Bocquého, G.; Jacquet, F. The adoption of switchgrass and miscanthus by farmers: Impact of liquidity constraints and risk preferences. Energy Policy 2010, 38, 2598–2607. [Google Scholar] [CrossRef]
- Olave, R.; Forbes, E.; Munoz, F.; Laidlaw, A.; Easson, D.; Watson, S. Performance of Miscanthus × giganteus (Greef et Deu) established with plastic mulch and grown from a range of rhizomes sizes and densities in a cool temperate climate. Field Crops Res. 2017, 210, 81–90. [Google Scholar] [CrossRef]
- Witzel, C.-P.; Finger, R. Economic evaluation of Miscanthus production—A review. Renew. Sustain. Energy Rev. 2016, 53, 681–696. [Google Scholar] [CrossRef]
- Xue, S.; Kalinina, O.; Lewandowski, I. Present and future options for Miscanthus propagation and establishment. Renew. Sustain. Energy Rev. 2015, 49, 1233–1246. [Google Scholar] [CrossRef]
- Ashman, C.; Mos, M.; Robson, P.; Awty-Carroll, D.; Clifton-Brown, J.; Awty-Carroll, D.; Clifton-Brown, J. Assessing seed priming, sowing date, and mulch film to improve the germination and survival of direct-sown Miscanthus sinensis in the United Kingdom. GCB Bioenerg. 2018, 10, 612–627. [Google Scholar] [CrossRef] [PubMed]
- Zub, H.W.; Brancourt-Hulmel, M. Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agron. Sustain. Dev. 2010, 30, 201–214. [Google Scholar] [CrossRef]
- Soldatos, P. Economic Aspects of Bioenergy Production from Perennial Grasses in Marginal Lands of South Europe. Bioenerg. Res. 2015, 8, 1562–1573. [Google Scholar] [CrossRef]
- Rickenbach, O.; Grüebler, M.U.; Schaub, M.; Koller, A.; Naef-Daenzer, B.; Schifferli, L.; Naef-Daenzer, B. Exclusion of ground predators improves Northern Lapwing Vanellus vanellus chick survival. Ibis 2011, 153, 531–542. [Google Scholar] [CrossRef]
- Xue, S.; Lewandowski, I.; Kalinina, O. Miscanthus establishment and management on permanent grassland in southwest Germany. Ind. Crop. Prod. 2017, 108, 572–582. [Google Scholar] [CrossRef]
- Maksimović, J.; Pivić, R.; Stanojković-Sebić, A.; Vučić-Kišgeci, M.; Kresović, B.; Dinić, Z.; Glamočlija, Đ. Planting density impact on weed infestation and the yield of Miscanthus grown on two soil types. Plant Soil Environ. 2016, 62, 384–388. [Google Scholar] [CrossRef] [Green Version]
- Javanmard, A.; Nasab, A.D.M.; Javanshir, A.; Moghaddam, M.; Janmohammadi, H. Forage yield and quality in intercropping of maize with different legumes as double-cropped. J. Food, Agric. Environ. 2009, 7, 163–166. [Google Scholar]
- Nurk, L.; Graß, R.; Hubert, S.; Pekrun, C.; Wachendorf, M. Mischanbau von Silomais mit Stangenbohnen. Beiträge zur 13. Wissenschaftstagung Ökologischer Landbau; Verlag Dr. Köster: Berlin, Germany, 2015. Available online: http://orgprints.org/26888/ (accessed on 8 May 2019).
- Pekrun, C.; Hubert, S.; Zimmermann, C.; Schmidt, W. Gemengeanbau von Mais mit Stangenbohnen – Erste Ergebnisse aus Feldversuchen 2011. In Mitteilungen der Gesellschaft der Pflanzenbauwissenschaften; Verlag Liddy Halm: Göttingen, Germany, 2012; Volume 24, pp. 333–334. Available online: https://www.gpw.uni-kiel.de/de/jahrestagung/tagungsbaende/tagungsband_2012.pdf (accessed on 8 May 2019).
- Schmidt, W. Erhöhung der Diversität im Energiepflanzenanbau am Beispiel Mais-Bohnen-Gemenge; Gülzower Fachgespräche: Berlin, Germany, 2013; Volume 45, pp. 77–104. Available online: http://mediathek.fnr.de/media/downloadable/files/samples/g/f/gfg_band_45_4_symposium_energiepflanzen_final_1.pdf (accessed on 8 May 2019).
- Von Cossel, M.; Möhring, J.; Kiesel, A.; Lewandowski, I. Methane yield performance of amaranth (Amaranthus hypochondriacus L.) and its suitability for legume intercropping in comparison to maize (Zea mays L.). Ind. Crop. Prod. 2017, 103, 107–121. [Google Scholar] [CrossRef]
- Von Cossel, M. Agricultural diversification of biogas crop cultivation. Dissertation. University of Hohenheim, Institute of Crop Science, Stuttgart, Germany. 2019. Available online: https://www.researchgate.net/publication/332495403_Agricultural_diversification_of_biogas_crop_cultivation (accessed on 8 May 2019).
- Von Cossel, M.; Steberl, K.; Möhring, J.; Kiesel, A.; Lewandowski, I. Etablierungsverfahren mehrjähriger Biogas-Wildpflanzenmischungen im Vergleich: Ohne Mais geht’s nicht? In Mitteilungen der Gesellschaft der Pflanzenbauwissenschaften; Verlag Liddy Halm: Göttingen, Germany, 2017; Volume 29, pp. 58–59. Available online: https://www.researchgate.net/publication/325477300_Etablierungsverfahren_mehrjahriger_Biogas-Wildpflanzenmischungen_im_Vergleich_Ohne_Mais_geht’s_nicht_In_German (accessed on 8 May 2019).
- Von Cossel, M.; Lewandowski, I. Perennial wild plant mixtures for biomass production: Impact of species composition dynamics on yield performance over a five-year cultivation period in southwest Germany. Eur. J. Agron. 2016, 79, 74–89. [Google Scholar] [CrossRef]
- Von Cossel, M.; Steberl, K.; Hartung, J.; Agra Pereira, L.; Kiesel, A.; Lewandowski, I. Methane yield potential and species diversity dynamics of perennial wild plant mixtures established under maize (Zea mays L.)—A five-year field trial in southwest Germany. GCB Bioenerg. Submitted for publication.
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biot. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Maucieri, C.; Camarotto, C.; Florio, G.; Albergo, R.; Ambrico, A.; Trupo, M.; Borin, M. Bioethanol and biomethane potential production of thirteen pluri-annual herbaceous species. Ind. Crop. Prod. 2019, 129, 694–701. [Google Scholar] [CrossRef]
- Schmidt, A.; Lemaigre, S.; Delfosse, P.; Von Francken-Welz, H.; Emmerling, C. Biochemical methane potential (BMP) of six perennial energy crops cultivated at three different locations in W-Germany. Convers. Biorefinery 2018, 8, 873–888. [Google Scholar] [CrossRef]
- Wahid, R.; Nielsen, S.F.; Hernandez, V.M.; Ward, A.J.; Gislum, R.; Jørgensen, U.; Møller, H.B. Methane production potential from Miscanthus sp.: Effect of harvesting time, genotypes and plant fractions. Biosyst. Eng. 2015, 133, 71–80. [Google Scholar] [CrossRef]
- Wolfinger, R. Covariance structure selection in general mixed models. Commun. Stat.—Simul. Comput. 1993, 22, 1079–1106. [Google Scholar] [CrossRef]
- Piepho, H.-P. An Algorithm for a Letter-Based Representation of All-Pairwise Comparisons. J. Comput. Graph. Stat. 2004, 13, 456–466. [Google Scholar] [CrossRef]
- Kenward, M.G.; Roger, J.H. Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood. Biom 1997, 53, 983. [Google Scholar] [CrossRef]
- Kiesel, A.; Wagner, M.; Lewandowski, I. Environmental performance of miscanthus, switchgrass and maize: Can C4 perennials increase the sustainability of biogas production? Sustain. 2017, 9, 5. [Google Scholar] [CrossRef]
- Clifton-Brown, J.C.; Lewandowski, I.; Andersson, B.; Basch, G.; Christian, D.G.; Kjeldsen, J.B.; Jørgensen, U.; Mortensen, J.V.; Riche, A.B.; Schwarz, K.-U. Performance of 15 Miscanthus genotypes at five sites in Europe. Agron. J. 2001, 93, 1013–1019. [Google Scholar] [CrossRef]
- Bullard, M.J.; Heath, M.C.; Nixon, P.M.I. Shoot growth, radiation interception and dry matter production and partitioning during the establishment phase of Miscanthus sinensis ‘Giganteus’ grown at two densities in the UK. Ann. Appl. Boil. 1995, 126, 365–378. [Google Scholar] [CrossRef]
- Christian, D.G.; Haase, E. Agronomy of miscanthus. In Miscanthus: For Energy and Fibre; James & James Ltd.: London, UK, 2001; pp. 21–45. [Google Scholar]
- Lewandowski, I.; Clifton-Brown, J.; Scurlock, J.; Huisman, W. Miscanthus: European experience with a novel energy crop. Biomass Bioenerg. 2000, 19, 209–227. [Google Scholar] [CrossRef]
- Lesur-Dumoulin, C.; Lorin, M.; Bazot, M.; Jeuffroy, M.-H.; Loyce, C. Analysis of young Miscanthus × giganteus yield variability: a survey of farmers’ fields in east central France. GCB Bioenerg. 2016, 8, 122–135. [Google Scholar] [CrossRef]
- Schmidt, A.; Lemaigre, S.; Ruf, T.; Delfosse, P.; Emmerling, C. Miscanthus as biogas feedstock: influence of harvest time and stand age on the biochemical methane potential (BMP) of two different growing seasons. Biomass Convers. Bior. 2018, 8, 245–254. [Google Scholar] [CrossRef]
- Emmerling, C. Impact of land-use change towards perennial energy crops on earthworm population. Appl. Soil Ecol. 2014, 84, 12–15. [Google Scholar] [CrossRef]
- Emmerling, C.; Schmidt, A.; Ruf, T.; Von Francken-Welz, H.; Thielen, S. Impact of newly introduced perennial bioenergy crops on soil quality parameters at three different locations in W-Germany. J. Plant Nutr. Soil Sci. 2017, 180, 759–767. [Google Scholar] [CrossRef]
- Hudiburg, T.W.; Davis, S.C.; Parton, W.; Delucia, E.H. Bioenergy crop greenhouse gas mitigation potential under a range of management practices. GCB Bioenerg. 2015, 7, 366–374. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.-F.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3–34. [Google Scholar] [CrossRef] [Green Version]
- I Dawo, M.; Wilkinson, J.M.; Sanders, F.E.; Pilbeam, D.J. The yield and quality of fresh and ensiled plant material from intercropped maize (Zea mays) and beans (Phaseolus vulgaris). J. Sci. Food Agric. 2007, 87, 1391–1399. [Google Scholar] [CrossRef]
- Fischer, J.; Böhm, H. Ertragsleistung und Silagequalität von Mais im Mischfruchtanbau mit Bohnen. In Mitteilungen der Gesellschaft der Pflanzenbauwissenschaften; Verlag Liddy Halm: Göttingen, Germany, 2012; Volume 24, pp. 325–326. Available online: https://www.researchgate.net/publication/289125401_Ertragsleistung_und_Silagequalitat_von_Mais_im_Mischfruchtanbau_mit_Bohnen (accessed on 8 May 2019).
- Stolzenburg, K.; Bruns, H.; Monkos, A.; Ott, J.; Schickler, J. Produktion von Kosubstraten für die Biogasanlage—Ergebnisse der Versuche mit Durchwachsener Silphie (Silphium perfoliatum L.) in Baden-Württemberg. In Informationen für die Pflanzenproduktion; Landwirtschaftliches Technologiezentrum Augustenberg: Karlsruhe, Germany, 2016; Available online: http://www.ltz-bw.de/pb/site/pbs-bw-new/get/documents/MLR.LEL/PB5Documents/ltz_ka/Service/Schriftenreihen/Informationen%20f%C3%BCr%20die%20Pflanzenproduktion/IfPP_2016-04_Silphie/IFPP%2004-2016%20Durchwachsene%20Silphie.pdf?attachment=true. (accessed on 8 May 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Cossel, M.; Mangold, A.; Iqbal, Y.; Hartung, J.; Lewandowski, I.; Kiesel, A. How to Generate Yield in the First Year—A Three-Year Experiment on Miscanthus (Miscanthus × giganteus (Greef et Deuter)) Establishment under Maize (Zea mays L.). Agronomy 2019, 9, 237. https://doi.org/10.3390/agronomy9050237
von Cossel M, Mangold A, Iqbal Y, Hartung J, Lewandowski I, Kiesel A. How to Generate Yield in the First Year—A Three-Year Experiment on Miscanthus (Miscanthus × giganteus (Greef et Deuter)) Establishment under Maize (Zea mays L.). Agronomy. 2019; 9(5):237. https://doi.org/10.3390/agronomy9050237
Chicago/Turabian Stylevon Cossel, Moritz, Anja Mangold, Yasir Iqbal, Jens Hartung, Iris Lewandowski, and Andreas Kiesel. 2019. "How to Generate Yield in the First Year—A Three-Year Experiment on Miscanthus (Miscanthus × giganteus (Greef et Deuter)) Establishment under Maize (Zea mays L.)" Agronomy 9, no. 5: 237. https://doi.org/10.3390/agronomy9050237
APA Stylevon Cossel, M., Mangold, A., Iqbal, Y., Hartung, J., Lewandowski, I., & Kiesel, A. (2019). How to Generate Yield in the First Year—A Three-Year Experiment on Miscanthus (Miscanthus × giganteus (Greef et Deuter)) Establishment under Maize (Zea mays L.). Agronomy, 9(5), 237. https://doi.org/10.3390/agronomy9050237