Use of Carbonized Fallen Leaves of Jatropha Curcas L. as a Soil Conditioner for Acidic and Undernourished Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production and Analysis of Jatropha Fallen Leaf Biochar
2.2. Experimental Soil
2.3. Plant Material and Monitoring of Growth
2.4. Mineral Nutrient Assays
2.5. Evaluation of the Water-holding Capacities of the Soils
3. Results and Discussion
3.1. Properties of the Jatropha Fallen Leaf Biochar
3.2. Effects of Jatropha Fallen Leaf Biochar on Vegetable Growth in an Acidic and Undernourished Soil
3.3. Effects of Jatropha Fallen Leaf Biochar on the Soil Moisture Content
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Openshaw, K. A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenerg. 2000, 19, 1–15. [Google Scholar] [CrossRef]
- Quinn, L.D.; Straker, K.C.; Guo, J.; Kim, S.; Thapa, S.; Kling, G.; Lee, D.K.; Voigt, T.B. Stress-tolerant feedstocks for sustainable bioenergy production on marginal land. Bioenerg. Res. 2015, 8, 1081–1100. [Google Scholar] [CrossRef]
- Barua, P.K. Biodiesel from seeds of Jatropha found in Assam, India. Int. J. Energy Inf. Commun. 2011, 2, 53–65. [Google Scholar]
- Montes, J.M.; Melchinger, A.E. Domestication and breeding of Jatropha curcas L. Trends Plant Sci. 2016, 21, 1045–1057. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.K.; Pragya, N.; Sahoo, P.K. Life cycle assessment of small-scale high-input Jatropha biodiesel production in India. Appl. Energy 2011, 88, 4831–4839. [Google Scholar] [CrossRef]
- Ye, M.; Li, C.; Francis, G.; Makkar, H.P.S. Current situation and prospects of Jatropha curcas as a multipurpose tree in China. Agrofor. Syst. 2009, 76, 487–497. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Kumar, N.; Cho, H.M. A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends. Energy 2012, 37, 616–622. [Google Scholar] [CrossRef]
- Jongschaap, R.E.E.; Corré, W.J.; Bindraban, P.S.; Brandenburg, W.A. Claims and Facts on Jatropha Curcas L. Global Jatropha Curcas Evaluation, Breeding and Propagation Programme; Report 158; Plant Research International. B.V.: Laren, The Netherlands, October 2007. [Google Scholar]
- Parawira, W. Biodiesel production from Jatropha curcas: A review. Sci. Res. Essays 2010, 5, 1796–1808. [Google Scholar]
- Navarro-Pineda, F.S.; Baz-Rodríguez, S.A.; Handler, R.; Sacramento-Rivero, J.C. Advances on the processing of Jatropha curcas towards a whole-crop biorefinery. Renew. Sust. Energy Rev. 2016, 54, 247–269. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Sri Aprilia, N.A.; Bhat, A.H.; Jawaid, M.; Paridah, M.T.; Rudi, D. A Jatropha biomass as renewable materials for biocomposites and its application. Renew. Sust. Energy Rev. 2013, 22, 667–685. [Google Scholar] [CrossRef]
- Srinophakun, P.; Titapiwatanakun, B.; Sooksathan, I.; Punsuvon, V. Prospect of deoiled Jatropha curcas seedcake as fertilizer for vegetables crops—A case study. J. Agric. Sci. 2012, 4, 211–226. [Google Scholar] [CrossRef]
- Selanon, O.; Saetae, D.; Suntornsuk, W. Utilization of Jatropha curcas seed cake as a plant growth stimulant. Biocatal. Agric. Biotechnol. 2014, 3, 114–120. [Google Scholar] [CrossRef]
- Biradar, C.H.; Subramanian, K.A.; Dastidar, M.G. Production and fuel quality upgradation of pyrolytic bio-oil from Jatropha curcas de-oiled seed cake. Fuel 2014, 119, 81–89. [Google Scholar] [CrossRef]
- Chintala, V.; Kumar, S.; Pandey, J.K.; Sharma, A.K.; Kumar, S. Solar thermal pyrolysis of non-edible seeds to biofuels and their feasibility assessment. Energy Convers. Manag. 2017, 153, 482–494. [Google Scholar] [CrossRef]
- Kongkasawan, J.; Nam, H.; Capareda, S.C. Jatropha waste meal as an alternative energy source via pressurized pyrolysis: A study on temperature effects. Energy 2016, 113, 631–642. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, S. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Ind. Crops Prod. 2008, 28, 1–10. [Google Scholar] [CrossRef]
- Esimone, C.O.; Nworu, C.S.; Jackson, C.L. Cutaneous wound healing activity of herbal ointment containing the leaf extract of Jatropha curcas L. (Euphorbiaceae). Int. J. Appl. Res. Nat. Prod. 2008, 1, 1–4. [Google Scholar]
- Juliet, S.; Ravindran, R.; Ramankutty, S.A.; Gopalan, A.K.K.; Nair, S.N.; Kavillimakkil, A.K.; Bandyopadhyay, A.; Rawat, A.K.S.; Ghosh, S. Jatropha curcas (Linn) leaf extract—A possible alternative for population control of Rhipicephalus (Boophilus) annulatus. Asian Pac. J. Trop. Dis. 2012, 2, 225–229. [Google Scholar] [CrossRef]
- Oskoueian, E.; Abdullah, N.; Saad, W.Z.; Omar, A.R.; Ahmad, S.; Kuan, W.B.; Zolkifli, N.A.; Hendra, R.; Ho, Y.W. Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from Jatropha curcas Linn. J. Med. Plants Res. 2011, 5, 49–57. [Google Scholar]
- Ogura, T.; Date, Y.; Maskujane, M.; Coetzee, T.; Akashi, K.; Kikuchi, J. Improvement of physical, chemical, and biological properties of aridisol from Botswana by the incorporation of torrefied biomass. Sci. Rep. 2016, 6, 28011. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Mateos, P.; Alés-Álvarez, F.J.; García-Martín, J.F. Phytoremediation of highly contaminated mining soils by Jatropha curcas L. and production of catalytic carbons from the generated biomass. J. Environ. Manag. 2019, 231, 886–895. [Google Scholar] [CrossRef]
- García-Martín, J.F.; Alés-Álvarez, F.J.; Torres-García, M.; Feng, C.H.; Álvarez-Mateos, P. Production of oxygenated fuel additives from residual glycerine using biocatalysts obtained from heavy-metal-contaminated Jatropha curcas L. roots. Energies 2019, 12, 740. [Google Scholar] [CrossRef]
- Inafuku-Teramoto, S.; Mazereku, C.; Coetzee, T.; Gwafila, C.; Lekgari, L.A.; Ketumile, D.; Fukuzawa, Y.; Yabuta, S.; Masukujane, M.; George, D.G.M.; et al. Production approaches to establish effective cultivation methods for Jatropha (Jatropha curcas L.) under cold and semi-arid climate conditions. Int. J. Agric. Plant Prod. 2013, 4, 3804–3815. [Google Scholar]
- Ishimoto, Y.; Kgokong, S.; Yabuta, S.; Tominaga, J.; Coetzee, T.; Konaka, T.; Mazereku, C.; Kawamitsu, Y.; Akashi, K. Flowering pattern of biodiesel plant Jatropha in frost- and drought-prone regions of Botswana. Int. J. Green Energy 2017, 14, 908–915. [Google Scholar] [CrossRef]
- Wani, S.P.; Chander, G.C.; Sahrawat, K.L.; Rao, C.S.; Raghvendra, G.; Susanna, P.; Pavani, M. Carbon sequestration and land rehabilitation through Jatropha curcas (L.) plantation in degraded lands. Agric. Ecosyst. Environ. 2012, 161, 112–120. [Google Scholar] [CrossRef]
- Anders, E.; Watzinger, A.; Rempt, F.; Kitzler, B.; Wimmer, B.; Zehetner, F.; Stahr, K.; Zechmeister-Boltenstern, S.; Soja, G. Biochar affects the structure rather than the total biomass of microbial communities in temperate soils. Agric. Food Sci. 2013, 22, 404–423. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; Vasconcelos de Macêdo, J.L.; Blum, W.E.H.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef]
- Asai, H.; Samson, B.K.; Stephan, H.M.; Songyikhangsuthor, K.; Homma, K.; Kiyono, Y.; Inoue, Y.; Shiraiwa, T.; Horie, T. Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res. 2009, 111, 81–84. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Steiner, C.; Harris, K.; Das, K.C.; Bibens, B. Effects of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. Am. Soc. Agric. Biol. Eng. 2008, 51, 2061–2069. [Google Scholar]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.E.; Park, J.H.; Chung, J.W. Adsorption of Pb(II) and Cu(II) by ginkgo-leaf-deriverd biochar produced under various carbonization temperatures and time. Int. J. Environ. Res. Public Health 2017, 14, 1528. [Google Scholar] [CrossRef]
- Nejad, Z.D.; Kim, J.W.; Jung, M.C. Reclamation of arsenic contaminated soils around mining site using solidification/stabilization combined with revegetation. Geosci. J. 2017, 21, 285–396. [Google Scholar]
- Mitchell, P.J.; Dalley, T.S.L.; Helleur, R.J. Preliminary laboratory production and characterization of biochars from lignocellulosic municipal waste. J. Anal. Appl. Pyrolysis 2013, 99, 71–78. [Google Scholar] [CrossRef]
- Singh, B.; Singh, B.P.; Cowie, A.L. Characterisation and evaluation of biochars for their application as a soil amendment. Aust. J. Soil Res. 2010, 48, 516–525. [Google Scholar] [CrossRef]
- Abdel-Fattah, T.M.; Mahmound, M.E.; Ahmed, S.B.; Huff, M.D.; Lee, J.W.; Kumar, S. Biochar from woody biomass for removing metal contaminants and carbon sequestration. J. Ind. Eng. Chem. 2015, 22, 103–109. [Google Scholar] [CrossRef]
- Cobb, A.; Warms, M.; Maurer, E.P.; Chiesa, S. Low-tech coconut shell activated charcoal production. Int. J. Serv. Lean. Eng. 2012, 7, 93–104. [Google Scholar] [CrossRef]
- Ishii, T.; Kadoya, K. Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development. J. Jpn. Soc. Hort. Sci. 1994, 63, 529–535. [Google Scholar] [CrossRef]
- Schollenberger, C.J.; Simon, R.H. Determination of exchange capacity and exchangeable bases in soil – ammonium acetate method. Soil Sci. 1945, 59, 13–24. [Google Scholar] [CrossRef]
- Borden, D.; Giese, R.F. Baseline studies of the clay minerals society source clays: cation exchange capacity measurements by the ammonia-electrode method. Clay Miner. 2001, 49, 444–445. [Google Scholar] [CrossRef]
- Vurayai, R.; Nkoane, B.; Moseki, B.; Chaturvedi, P. Assessment of heavy metal pollution/ contamination in soils east and west Bamangwato Concession Ltd (BCL) Cu/Ni mine smelter in Selebi-Phikwe, Botswana. J. Biol. Environ. Sci. 2015, 7, 111–120. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Robinson, B.H.; Leblanc, M.; Petit, D.; Brooks, R.R.; Kirkman, J.H.; Gregg, P.E.H. The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 1998, 203, 47–56. [Google Scholar] [CrossRef]
- Yamada, M.; Malambane, G.; Yamada, S.; Suharsono, S.; Tsujimoto, H.; Moseki, B.; Akashi, K. Differential physiological responses and tolerance to potentially toxic elements in biodiesel tree Jatropha curcas. Sci. Rep. 2018, 8, 1635. [Google Scholar] [CrossRef]
- Boateng, A.A.; Garcia-Perez, M.; Mašek, O.; Brown, R.; del Campo, B. Biochar production technology. In Biochar for Environmental Management, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: Oxon, UK; New York, NY, USA, 2015; pp. 63–87. [Google Scholar]
- Chia, C.H.; Downie, A.; Munroe, P. Characteristics of biochar: Physical and structural properties. In Biochar for Environmental Management, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: Oxon, UK; New York, NY, USA, 2015; pp. 89–109. [Google Scholar]
- Awasthi, M.K.; Li, J.; Kumar, S.; Awasthi, S.K.; Wang, Q.; Chen, H.; Wang, M.; Ren, X.; Zhang, Z. Effects of biochar amendment on bacterial and fungal diversity for co-composting of gelatin industry sludge mixed with organic faction of municipal soil waste. Bioresour. Technol. 2017, 246, 214–223. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Spokas, K.A.; Novak, J.M.; Lentz, R.D.; Cantrell, K.B. Biochar elemental composition and factors influencing nutrient retention. In Biochar for Environmental Management, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: Oxon, UK; New York, NY, USA, 2015; pp. 139–163. [Google Scholar]
- Kochian, L.V.; Hoekenga, O.A.; Piñeros, M.A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 2004, 55, 459–493. [Google Scholar] [CrossRef]
- Marschner, H. Mechanisms of adaptation of plants to acid soils. Plant Soil 1991, 134, 1–20. [Google Scholar] [CrossRef]
- Bowen, H.J.M. Environmental Chemistry of the Elements; Academic Press: London, UK; New York, NY, USA, 1979; pp. 60–61. [Google Scholar]
- Masiello, C.A.; Dugan, B.; Brewer, C.E.; Spokas, K.A.; Novak, J.M.; Liu, Z.; Sorrenti, G. Biochar effects on soil hydrology. In Biochar for Environmental Management, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: Oxon, UK; New York, NY, USA; pp. 543–562.
- Speratti, A.B.; Johnson, M.S.; Sousa, H.M.; Torres, G.N.; Couto, E.G. Impact of different agricultural waste biochars on maize biomass and soil water content in Brazilian Cerrado Arenosol. Agronomy 2017, 7, 49. [Google Scholar] [CrossRef]
Property | Value 1 |
---|---|
pH | 9.84 ± 0.08 |
EC (μS cm−1) | 575 ± 108 |
CEC (cmol kg−1) | 16.9 ± 1.9 |
Element content (mg kg−1) | |
Al | 52,900 ± 700 |
C | 227,000 ± 12,000 |
Ca | 18,000 ± 1000 |
Cd | 1.19 ± 0.03 |
Co | 16.4 ± 0.2 |
Cr | 29.8 ± 6.8 |
Cu | 9.39 ± 0.66 |
Fe | 5080 ± 340 |
K | 6220 ± 530 |
Mg | 741 ± 62 |
Mn | 617 ± 46 |
N | 15,000 ± 1000 |
Ni | 43.4 ± 3.4 |
P | 1450 ± 230 |
Pb | 18.0 ± 0.5 |
Sn | <0.1 |
Ti | 121 ± 3 |
Zn | 80.1 ± 6.7 |
Property | Value 1 |
---|---|
pH | 3.39 ± 0.03 |
Organic carbon (%) | 0.12 ± 0.00 |
Nitrogen content (mg kg−1) | |
NO3− | 0.12 ± 0.04 |
NH4+ | 0.10 ± 0.01 |
Element content (mg kg−1) | |
Al | 69,400 ± 900 |
Ca | 98.2 ± 8.5 |
Cu | 772 ± 8 |
Fe | 38,300 ± 100 |
K | 5.87 ± 2.76 |
Mg | 20.7 ± 12.0 |
Ni | 249 ± 2 |
P | 2.67 ± 0.91 |
Zn | 40.4 ± 0.2 |
Mineral | Content (mg plant−1)1 | |||
---|---|---|---|---|
Control | 3% Biochar | 5% Biochar | 10% Biochar | |
Al | 5.35 ± 1.75 a | 3.23 ± 1.41 a | 3.72 ± 3.72 a | 4.53 ± 2.82 a |
Ca | 7.79 ± 2.72 a | 6.87 ± 1.96 a | 5.89 ± 2.09 a | 5.98 ± 1.47 a |
Cu | 0.01 ± 0.01 b | 0.02 ± 0.00 ab | 0.02 ± 0.00 a | 0.01 ± 0.00 ab |
Fe | 0.41 ± 0.20 a | 0.19 ± 0.10 a | 0.22 ± 0.21 a | 0.30 ± 0.18 a |
K | 22.0 ± 0.8 c | 47.8 ± 14.5 b | 82.7 ± 14.8 a | 88.1 ± 9.7 a |
Mg | 0.34 ± 0.04 b | 0.48 ± 0.10 ab | 0.68 ± 0.08 a | 0.68 ± 0.05 ab |
Mn | 0.38 ± 0.10 b | 0.72 ± 0.24 ab | 0.89 ± 0.16 a | 0.78 ± 0.07 ab |
Ni | 0.04 ± 0.02 b | 0.15 ± 0.06 ab | 0.20 ± 0.06 a | 0.04 ± 0.01 b |
P | 23.1 ± 1.9 a | 19.9 ± 6.5 a | 19.8 ± 5.7 a | 21.8 ± 8.9 a |
Ti | 0.01 ± 0.01 a | 0.00 ± 0.01 a | 0.01 ± 0.01 a | 0.01 ± 0.01 a |
Zn | 0.27 ± 0.07 a | 0.28 ± 0.07 a | 0.19 ± 0.03 a | 0.15 ± 0.05 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konaka, T.; Yabuta, S.; Mazereku, C.; Kawamitsu, Y.; Tsujimoto, H.; Ueno, M.; Akashi, K. Use of Carbonized Fallen Leaves of Jatropha Curcas L. as a Soil Conditioner for Acidic and Undernourished Soil. Agronomy 2019, 9, 236. https://doi.org/10.3390/agronomy9050236
Konaka T, Yabuta S, Mazereku C, Kawamitsu Y, Tsujimoto H, Ueno M, Akashi K. Use of Carbonized Fallen Leaves of Jatropha Curcas L. as a Soil Conditioner for Acidic and Undernourished Soil. Agronomy. 2019; 9(5):236. https://doi.org/10.3390/agronomy9050236
Chicago/Turabian StyleKonaka, Takafumi, Shin Yabuta, Charles Mazereku, Yoshinobu Kawamitsu, Hisashi Tsujimoto, Masami Ueno, and Kinya Akashi. 2019. "Use of Carbonized Fallen Leaves of Jatropha Curcas L. as a Soil Conditioner for Acidic and Undernourished Soil" Agronomy 9, no. 5: 236. https://doi.org/10.3390/agronomy9050236
APA StyleKonaka, T., Yabuta, S., Mazereku, C., Kawamitsu, Y., Tsujimoto, H., Ueno, M., & Akashi, K. (2019). Use of Carbonized Fallen Leaves of Jatropha Curcas L. as a Soil Conditioner for Acidic and Undernourished Soil. Agronomy, 9(5), 236. https://doi.org/10.3390/agronomy9050236