The Influence of Biochar and Solid Digestate on Rose-Scented Geranium (Pelargonium graveolens L’Hér.) Productivity and Essential Oil Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Substrates and Their Components
2.2. Experimental Design
2.3. Sampling and Plant Analysis
2.4. Essential Oil Extraction and GC–MS Analysis
2.5. Statistical Analysis
3. Results
3.1. Characterization of Digestate and Biochar
3.2. Characterization of Growth Media
3.3. Effect on Vegetative Parameters and Foliar Nutrient Content
3.4. Effect on Essential Oil Yield and Quality
4. Discussion
4.1. Characterization of Digestate and Biochar
4.2. Characterization of Growth Media
4.3. Effect on Vegetative Parameters
4.4. Foliar Nutrient Composition
4.5. Essential Oil Yield and Quality
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char Sequestration in Terrestrial Ecosystems—A Review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Kadota, M.; Niimi, Y. Effects of charcoal with pyroligneous acid and barnyard manure on bedding plants. Sci. Hortic. 2004, 101, 327–332. [Google Scholar] [CrossRef]
- Rutto, K.L.; Mizutani, F. Effect of Mycorrhizal Inoculation and Activated Charcoal on Growth and Nutrition in Peach (Prunus persica) Seedlings Treated with Peach Root-Bark Extracts. J. Jpn. Soc. Hortic. Sci. 2006, 75, 463–468. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Speir, R.A.; Harris, K.; Das, K.C.; Lee, R.D.; Morris, L.A.; Fisher, D.S. Effect of Peanut Hull and Pine Chip Biochar on Soil Nutrients, Corn Nutrient Status, and Yield. Agron. J. 2010, 102, 623. [Google Scholar] [CrossRef]
- Deenik, J.L.; McClellan, T.; Uehara, G.; Antal, M.J.; Campbell, S. Charcoal Volatile Matter Content Influences Plant Growth and Soil Nitrogen Transformations. Soil Sci. Soc. Am. J. 2010, 74, 1259–1270. [Google Scholar] [CrossRef]
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J.; et al. Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration. J. Environ. Qual. 2012, 41, 973. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Lv, Y.; Sun, J.; Shao, H.; Wei, L. Recent Advances in Biochar Applications in Agricultural Soils: Benefits and Environmental Implications. Clean Soil Air Water 2012, 40, 1093–1098. [Google Scholar] [CrossRef] [Green Version]
- Monlau, F.; Sambusiti, C.; Ficara, E.; Aboulkas, A.; Barakat, A.; Carrère, H. New opportunities for agricultural digestate valorization: Current situation and perspectives. Energy Environ. Sci. 2015, 8, 2600–2621. [Google Scholar] [CrossRef]
- Zhang, M.; Ok, Y.S. Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration. Carbon Manag. 2014, 5, 255–257. [Google Scholar] [CrossRef]
- Rogovska, N.; Laird, D.; Cruse, R.M.; Trabue, S.; Heaton, E. Germination Tests for Assessing Biochar Quality. J. Environ. Qual. 2012, 41, 1014. [Google Scholar] [CrossRef] [PubMed]
- Ogbonnaya, U.O.; Semple, K.T. Impact of Biochar on Organic Contaminants in Soil: A Tool for Mitigating Risk? Agronomy 2013, 3, 349–375. [Google Scholar] [CrossRef]
- Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M.A.; Sonoki, T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 2014, 11, 6613–6621. [Google Scholar] [CrossRef] [Green Version]
- Inyang, M.; Gao, B.; Ding, W.; Pullammanappallil, P.; Zimmerman, A.R.; Cao, X. Enhanced Lead Sorption by Biochar Derived from Anaerobically Digested Sugarcane Bagasse. Sep. Sci. Technol. 2011, 46, 1950–1956. [Google Scholar] [CrossRef]
- Pages-Díaz, J.; Pereda Reyes, I.; Lundin, M.; Sárvári Horváth, I. Co-digestion of different waste mixtures from agro-industrial activities: Kinetic evaluation and synergetic effects. Bioresour. Technol. 2011, 102, 10834–10840. [Google Scholar] [CrossRef] [PubMed]
- Seadi, T.; Rutz, D.; Prassl, H.; Köttner, M.; Finsterwalder, T.; Volk, S.; Janssen, R. Biogas Handbook; University of Southern Denmark Esbjerg: Esbjerg, Denmark, 2008. [Google Scholar]
- Pituello, C.; Francioso, O.; Simonetti, G.; Pisi, A.; Torreggiani, A.; Berti, A.; Morari, F. Characterization of chemical–physical, structural and morphological properties of biochars from biowastes produced at different temperatures. J. Soils Sediments 2015, 15, 792–804. [Google Scholar] [CrossRef]
- Rao, B.R.R. Biomass yield, essential oil yield and essential oil composition of rose-scented geranium (Pelargonium species) as influenced by row spacings and intercropping with cornmint (Menthaarvensis L.f. piperascens Malinv. ex Holmes). Ind. Crops Prod. 2002, 16, 133–144. [Google Scholar] [CrossRef]
- Ram, M.; Ram, D.; Roy, S. Influence of an organic mulching on fertilizer nitrogen use efficiency and herb and essential oil yields in geranium (Pelargonium graveolens). Bioresour. Technol. 2003, 87, 273–278. [Google Scholar] [CrossRef]
- Saxena, G.; Verma, P.C.; Banerjee, S.; Kumar, S. Field performance of somaclones of rose scented geranium (Pelargonium graveolens L’Her Ex Ait.) for evaluation of their essential oil yield and composition. Ind. Crops Prod. 2008, 27, 86–90. [Google Scholar] [CrossRef]
- Rezaei, N.A.; Ismaili, A. Changes in growth, essential oil yield and composition of geranium (Pelargonium graveolens L.) as affected by growing media. J. Sci. Food Agric. 2014, 94, 905–910. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.; Patra, D.D. Crop productivity, aroma profile and antioxidant activity in Pelargonium graveolens L’Hér. under integrated supply of various organic and chemical fertilizers. Ind. Crops Prod. 2015, 67, 257–263. [Google Scholar] [CrossRef]
- Vaughn, S.F.; Eller, F.J.; Evangelista, R.L.; Moser, B.R.; Lee, E.; Wagner, R.E.; Peterson, S.C. Evaluation of biochar-anaerobic potato digestate mixtures as renewable components of horticultural potting media. Ind. Crops Prod. 2015, 65, 467–471. [Google Scholar] [CrossRef]
- Ahmedna, M.; Marshall, W.E.; Rao, R.M. Production of granular activated carbon from select agricultural by-products and evaluation of their physical, chemical, and adsorption properties. Bioresour. Technol. 2000, 71, 113–123. [Google Scholar] [CrossRef]
- Tian, Y.; Sun, X.; Li, S.; Wang, H.; Wang, L.; Cao, J.; Zhang, L. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Sci. Hortic. 2012, 143, 15–18. [Google Scholar] [CrossRef]
- Grassi, C.; Palchetti, E.; Andreinelli, L. Messa a Punto Di Un Protocollo per l’introduzione in Vitro Di Pelargonium Graveolens. In Un’importante Specie Tropicale per La Produzione Di Olio Essenziale; VITROSOI: Pistoia, Italy, 2017; pp. 35–38. [Google Scholar]
- Boukhatem, M.N.; Kameli, A.; Saidi, F. Essential oil of Algerian rose-scented geranium (Pelargonium graveolens): Chemical composition and antimicrobial activity against food spoilage pathogens. Food Control 2013, 34, 208–213. [Google Scholar] [CrossRef]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 2012, 114, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Yargicoglu, E.N.; Sadasivam, B.Y.; Reddy, K.R.; Spokas, K. Physical and chemical characterization of waste wood derived biochars. Waste Manag. 2015, 36, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Garlapalli, R.K.; Wirth, B.; Reza, M.T. Pyrolysis of hydrochar from digestate: Effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation. Bioresour. Technol. 2016, 220, 168–174. [Google Scholar] [CrossRef]
- Stefaniuk, M.; Oleszczuk, P. Characterization of biochars produced from residues from biogas production. J. Anal. Appl. Pyrolysis 2015, 115, 157–165. [Google Scholar] [CrossRef]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; van der Velde, M.; Diafas, I. Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; European Commission, Joint Research Centre, Institute for Environment and Sustainability, Publications Office: Varese, Italy, 2010. [Google Scholar]
- Pandit, N.R.; Mulder, J.; Hale, S.E.; Martinsen, V.; Schmidt, H.P.; Cornelissen, G. Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil. Sci. Total Environ. 2018, 625, 1380–1389. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef]
- Chong, C.; Rinker, D.L. Use of Spent Mushroom Substrate for Growing Containerized Woody Ornamentals: An Overview. Compost Sci. Util. 1994, 2, 45–53. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: Sterling, VA, USA, 2009; Chapter 9. [Google Scholar]
- Yan, N.; Marschner, P.; Cao, W.; Zuo, C.; Qin, W. Influence of salinity and water content on soil microorganisms. Int. Soil Water Conser. Res. 2015, 3, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Opatokun, S.A.; Kan, T.; Al Shoaibi, A.; Srinivasakannan, C.; Strezov, V. Characterization of Food Waste and Its Digestate as Feedstock for Thermochemical Processing. Energy Fuels 2016, 30, 1589–1597. [Google Scholar] [CrossRef]
- Khanmohammadi, Z.; Afyuni, M.; Mosaddeghi, M.R. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Manag. Res. 2015, 33, 275–283. [Google Scholar] [CrossRef]
- Gundale, M.J.; DeLuca, T.H. Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal. For. Ecol. Manag. 2006, 231, 86–93. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef] [Green Version]
- Novak, J.M.; Lima, I.; Xing, B.; Gaskin, J.W.; Steiner, C.; Das, K.C.; Ahmedna, M.; Rehrah, D.; Watts, D.W.; Busscher, W.J.; et al. Characterization of Designer Biochar Produced at Different Temperatures and Their Effects on a Loamy Sand. Ann. Environ. Sci. 2009, 3, 195–206. [Google Scholar]
- Brewer, C.E.; Unger, R.; Schmidt-Rohr, K.; Brown, R.C. Criteria to Select Biochars for Field Studies based on Biochar Chemical Properties. Bioenergy Res. 2011, 4, 312–323. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.; Zuo, W.; Chen, L.; Cui, Y.; Tan, T. Nitrogen Conversion in Relation to NH3 and HCN during Microwave Pyrolysis of Sewage Sludge. Environ. Sci. Technol. 2013, 47, 3498–3505. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef]
- Bird, M.I.; Wurster, C.M.; de Paula Silva, P.H.; Bass, A.M.; de Nys, R. Algal biochar–production and properties. Bioresour. Technol. 2011, 102, 1886–1891. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef]
- EBC, European Biochar Certificate. Guidelines for Biochar Production, v. 4.2, June 13th 2012; Ithaka Institute: Arbaz, Switzerland, 2012. [Google Scholar]
- ANPA, Agenzia Nazionale per la Protezione dell’Ambiente. I Fertilizzanti Commerciali e Aspetti Normativi, v. 3; ISPRA: Varese, Italy, 2001.
- Andrews, P.H.; Hammer, P.A. Response of zonale and ivy geranium to root medium pH. Hortscience 2006, 41, 1351–1355. [Google Scholar] [CrossRef]
- Ram, M.; Prasad, A.; Gupta, N.; Kumar, S. Effect of soil pH on the essential oil yield in the geranium Pelargonium graveolens. J. Med. Aromat. Plant Sci. 1997, 19, 406–407. [Google Scholar]
- Awad, Y.M.; Lee, S.E.; Ahmed, M.B.M.; Vu, N.T.; Farooq, M.; Kim, I.S.; Kim, H.S.; Vithanage, M.; Usman, A.R.A.; Al-Wabel, M.; et al. Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables. J. Clean. Prod. 2017, 156, 581–588. [Google Scholar] [CrossRef]
- Panda, S.K.; Choudhury, S.; Patra, H.K. Heavy-Metal-Induced Oxidative Stress in Plants: Physiological and Molecular Perspectives. Abiotic Stress Response Plants 2016, 221–236. [Google Scholar] [CrossRef]
- Patel, A.; Patra, D.D. Effect of tannery sludge amended soil on glutathione activity of four aromatic crops: Tagetes minuta, Pelargonium graveolens, Ocimum basilicum and Mentha spicata. Ecol. Eng. 2015, 81, 348–352. [Google Scholar] [CrossRef]
- Boukhris, M.; Ben Nasri-Ayachi, M.; Mezghani, I.; Bouaziz, M.; Boukhris, M.; Sayadi, S. Trichomes morphology, structure and essential oils of Pelargonium graveolens L’Hér. (Geraniaceae). Ind. Crops Prod. 2013, 50, 604–610. [Google Scholar] [CrossRef]
- Lehmann, J.; da Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Conversa, G.; Bonasia, A.; Lazzizera, C.; Elia, A. Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of Pelargonium (Pelargonium zonale L.) plants. Front. Plant Sci. 2015, 6, 429. [Google Scholar] [CrossRef]
- Biernbaum, J.A.; Shoemaker, C.A.; Carlson, W.H. Iron and manganese toxicity of seedling geraniums. HortScience 1987, 22, 1094. [Google Scholar]
- Foy, C.D.; Chaney, R.L.; White, M.C. The Physiology of Metal Toxicity in Plants. Annu. Rev. Plant Physiol. 1978, 29, 511–566. [Google Scholar] [CrossRef]
- Bachman, G.R.; Miller, W.B. Iron chelate inducible iron/manganese toxicity in zonal geranium. J. Plant Nutr. 1995, 18, 1917–1929. [Google Scholar] [CrossRef]
- Lee, C.W.; Choi, J.-M.; Pak, C.-H. Micronutrient Toxicity in Seed Geranium (Pelargonium × hortorum Bailey). J. Am. Soc. Hort. Sci. 1996, 121, 77–82. [Google Scholar] [CrossRef]
- Broschat, T.K.; Moore, K.K. Phytotoxicity of Several Iron Fertilizers and Their Effects on Fe, Mn, Zn, Cu, and P content of African Marigolds and Zonal Geraniums. Hortscience 2004, 9, 595–598. [Google Scholar] [CrossRef]
- Smith, B.R.; Fisher, P.R.; Argo, W.R. Water-Soluble Fertilizer Concentration and pH of a Peat-Based Substrate Affect Growth, Nutrient Uptake, and Chlorosis of Container-Grown Seed Geraniums. J. Plant Nutr. 2004, 27, 497–524. [Google Scholar] [CrossRef]
- Rout, G.R.; Sahoo, S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 2015, 3, 1–24. [Google Scholar] [CrossRef]
- Monteiro, H.P.; Winterbourn, C.C. The superoxide-dependent transfer of iron from ferritin to transferrin and lactoferrin. Biochem. J. 1988, 256, 923–928. [Google Scholar] [CrossRef] [Green Version]
- Arunachala, R.; Paulkumar, K.; Ranjitsin, A.J.A.; Annadurai, G. Environmental Assessment due to Air Pollution near Iron Smelting Industry. J. Environ. Sci. Technol. 2009, 2, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Ram, M.; Kumar, S. Yield and Resource Use Optimization in Late Transplanted Mint (Mentha arvensis). under Subtropical Conditions. J. Agron. Crop Sci. 1998, 180, 109–112. [Google Scholar] [CrossRef]
- Palchetti, E.; Calamai, A.; Valenzi, E.; Vecchio, V. Pelargonio (Pelargonium graveolens). In Oli e Grassi, 1st ed.; Edagricole New Business Media: Milano, Italy, 2019; ISBN 978-88-506-5564-9. [Google Scholar]
Parameters | Primary Components | Growth Media | |||
---|---|---|---|---|---|
Solid Digestate | Biochar | SDS | BCS | CS | |
pH | 7.1 ± 0.12 | 8.5 ± 0.07 | 6.7 ±0.09 | 7.8 ± 0.08 | 5.6 ± 0.09 |
EC (mS cm−1) | 6.21 ± 0.03 | 6.86 ± 0.09 | 1.98 ± 0.02 | 2.11 ± 0.03 | 1.79 ± 0.04 |
Bulk density (kg m−3) | 0.29 ± 0.04 | 0.14 ± 0.10 | 0.16 ± 0.02 | 0.11 ± 0.06 | 0.09 ± 0.10 |
Air space (%) | NA | NA | 29.60 ± 1.71 | 27.40 ± 2.11 | 23.30 ± 0.89 |
Container capacity (%) | NA | NA | 50.20 ± 0.11 | 56.80 ± 1.01 | 65.50 ± 0.65 |
Total porosity (%) | NA | NA | 79.80 ± 0.78 | 84.20 ± 0.29 | 88.80 ± 0.57 |
C (%) | 39.80 ± 0.23 | 55.83 ± 0.64 | 16.11 ± 0.58 | 19.01 ± 0.03 | 13.91 ± 0.09 |
H (%) | 5.68 ± 1.14 | 2.03 ± 0.99 | 0.91 ± 0.68 | 0.94± 0.12 | 0.83 ± 0.28 |
N (%) | 1.23 ± 1.18 | 1.46 ± 0.97 | 0.72 ± 1.89 | 0.84 ± 0.95 | 0.05 ± 1.06 |
S (%) | 0.29 ± 0.09 | ND | ND | ND | ND |
K (%) | 1.41 ± 1.03 | 3.43 ± 0.41 | 1.15 ± 0.83 | 2.53 ± 0.67 | 0.65 ± 0.76 |
P (%) | 0.79 ± 0.51 | 1.91 ± 0.09 | 0.47 ± 0.52 | 0.71 ± 0.29 | 0.15 ± 0.38 |
Ca (%) | 2.00 ±0.39 | 3.93 ± 0.87 | 2.22 ± 0.74 | 2.91 ± 0.03 | 1.76 ± 0.26 |
Mg (%) | 0.47 ± 0.21 | 0.95 ± 0.27 | 2.61 ± 0.63 | 2.69 ± 0.11 | 2.86 ± 0.18 |
As (mg kg−1) | 4.56 ± 0.03 | 8.03 ± 0.29 | 8.67 ± 0.07 | 8.78 ± 0.37 | 8.99 ± 0.09 |
Ba (mg kg−1) | 15.54 ± 0.19 | 35.53 ± 0.12 | 256.15 ± 0.16 | 262.90 ± 0.23 | 319.61 ± 0.31 |
Cd (mg kg−1) | 0.05 ± 0.22 | 0.28 ± 0.7 | 0.43 ± 0.81 | 0.50 ± 0.29 | 0.43 ± 0.41 |
Cr (mg kg−1) | 7.53 ± 1.14 | 14.15 ± 1.28 | 59.47 ± 0.03 | 83.66 ± 0.07 | 79.04 ± 0.56 |
Cu (mg kg−1) | 30.37 ± 2.12 | 61.52 ± 3.47 | 69.13 ± 2.93 | 72.41 ± 4.29 | 89.12 ± 3.49 |
Fe (mg kg−1) | 998.74 ± 0.04 | 1935.00 ± 0.02 | 680.21 ± 0.14 | 880.36 ± 0.75 | 553.02 ± 0.39 |
Mn (mg kg−1) | 168.60 ± 0.17 | 454.60 ± 0.64 | 356.50 ± 0.21 | 429.60 ± 0.22 | 431.80 ± 0.28 |
Na (mg kg−1) | 827.00 ± 0.56 | 1235.00 ± 0.49 | 1675.00 ± 0.79 | 1848.00 ± 0.11 | 1704.00 ± 0.23 |
Ni (mg kg−1) | 3.94 ± 0.03 | 10.58 ± 0.49 | 40.35 ± 0.87 | 42.45 ± 0.76 | 58.35 ± 0.24 |
Pb (mg kg−1) | 1.92 ± 0.98 | 6.07 ± 1.68 | 50.43 ± 3.21 | 56.86 ± 3.23 | 43.01 ± 2.47 |
Zn (mg kg−1) | 170.70 ± 0.86 | 380.70 ± 0.91 | 166.80 ± 0.49 | 228.40 ± 0.73 | 85.40 ± 0.55 |
Vegetative Parameters | Growth Media | ||
SDS | BCS | CS | |
Plant height (cm) | 33.90 ± 2.91 a | 34.91 ± 3.09 a | 35.10 ± 3.20 a |
Number of leaves | 126.81 ± 9.31 ab | 146.23 ± 14.32 a | 105.62 ± 7.59 b |
Number of principal branches | 2.33 ± 1.02 a | 2.55 ± 0.89 a | 1.71 ± 0.64 b |
Number of total branches | 9.38 ± 3.76 b | 16.05 ± 5.06 a | 8.24 ± 2.96 b |
Plant dry weight (g) | 108.67 ± 5.74 ab | 122.70 ± 6.31 a | 82.81 ± 4.49 b |
SPAD | 31.22 ± 4.37 a | 17.89 ± 2.68 b | 29.80 ± 5.19 a |
EO Parameters | Growth Media | ||
SDS | BCS | CS | |
Oil yield (%) | 0.126 ± 1.15 a | 0.122 ± 0.40 a | 0.133 ± 0.63 a |
Oil content (g) | 0.136 ± 0.98 ab | 0.150 ± 0.56 a | 0.110 ± 1.02 b |
Elements | Units | Growth Media | ||
---|---|---|---|---|
SDS | BCS | CS | ||
C | (%) | 40.83 ± 1.51 a | 41.94 ± 1.16 a | 36.46 ± 0.88 b |
H | (%) | 7.36 ± 1.71 a | 7.74 ± 2.01 a | 7.05 ± 1.46 a |
N | (%) | 1.75 ± 0.63 ab | 2.16 ± 0.88 a | 1.23 ± 1.37 b |
S | (%) | 0.07 ± 0.33 a | 0.08 ± 0.10 a | 0.05 ± 0.54 a |
K | (%) | 1.57 ± 2.11 b | 3.01 ± 0.49 a | 1.33 ± 0.69 b |
P | (%) | 0.21 ± 1.36 ab | 0.38 ± 1.76 a | 0.10 ± 0.86 b |
Ca | (%) | 2.97 ± 0.10 a | 3.73 ± 0.44 a | 2.41 ± 0.46 a |
Mg | (%) | 0.41 ± 0.17 a | 0.54 ± 0.27 a | 0.35 ± 0.19 a |
As | (mg kg−1) | 2.13 ± 0.92 a | 1.52 ± 0.41 a | 0.89 ± 0.25 a |
Ba | (mg kg−1) | 24.06 ± 2.09 a | 23.05 ± 1.87 a | 26.50 ± 1.21 a |
Cd | (mg kg−1) | ND | ND | ND |
Cr | (mg kg−1) | 0.47 ± 0.32 a | 0.94 ± 0.13 a | 0.88 ± 0.22 a |
Cu | (mg kg−1) | 3.30 ± 0.74 a | 4.19 ± 0.93 a | 3.78 ± 0.59 a |
Fe | (mg kg−1) | 90.32 ± 1.06 b | 184.74 ± 1.50 a | 90.93 ± 0.98 b |
Mn | (mg kg−1) | 43.39 ± 1.49 b | 79.35 ± 1.32 a | 23.32 ± 1.39 b |
Na | (mg kg−1) | 238.78 ± 0.13 a | 235.26 ± 0.37 a | 190.36 ± 0.28 b |
Ni | (mg kg−1) | 1.08 ± 0.06 a | 1.41± 0.08 a | 2.40 ± 0.04 a |
Pb | (mg kg−1) | 0.11 ± 0.35 a | 0.14 ± 0.16 a | 0.35 ± 0.98 a |
Zn | (mg kg−1) | 42.70 ± 0.75 a | 38.88 ± 0.51 a | 29.17 ± 0.43 b |
Parameters | Units | Growth Media | ||
---|---|---|---|---|
SDS | BCS | CS | ||
Linalool | (%) | 3.04 ± 0.16 a | 2.39 ± 0.09 a | 3.07 ± 0.10 a |
Isomenthone | (%) | 4.38 ± 0.06 a | 5.41 ± 0.02 a | 5.36± 0.01 a |
Citronellol | (%) | 30.2 ± 0.56 ab | 27.86 ± 0.19 b | 33.18 ± 0.29 a |
Geraniol | (%) | 14.28 ± 0.88 ab | 15.62 ± 0.37 a | 13.76 ± 0.48 b |
Citronellyl formate | (%) | 15.87 ± 0.03 a | 16.95 ± 0.34 a | 14.99 ± 0.09 a |
C/G ratio | 2.11 | 1. 78 | 2.41 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calamai, A.; Palchetti, E.; Masoni, A.; Marini, L.; Chiaramonti, D.; Dibari, C.; Brilli, L. The Influence of Biochar and Solid Digestate on Rose-Scented Geranium (Pelargonium graveolens L’Hér.) Productivity and Essential Oil Quality. Agronomy 2019, 9, 260. https://doi.org/10.3390/agronomy9050260
Calamai A, Palchetti E, Masoni A, Marini L, Chiaramonti D, Dibari C, Brilli L. The Influence of Biochar and Solid Digestate on Rose-Scented Geranium (Pelargonium graveolens L’Hér.) Productivity and Essential Oil Quality. Agronomy. 2019; 9(5):260. https://doi.org/10.3390/agronomy9050260
Chicago/Turabian StyleCalamai, Alessandro, Enrico Palchetti, Alberto Masoni, Lorenzo Marini, David Chiaramonti, Camilla Dibari, and Lorenzo Brilli. 2019. "The Influence of Biochar and Solid Digestate on Rose-Scented Geranium (Pelargonium graveolens L’Hér.) Productivity and Essential Oil Quality" Agronomy 9, no. 5: 260. https://doi.org/10.3390/agronomy9050260
APA StyleCalamai, A., Palchetti, E., Masoni, A., Marini, L., Chiaramonti, D., Dibari, C., & Brilli, L. (2019). The Influence of Biochar and Solid Digestate on Rose-Scented Geranium (Pelargonium graveolens L’Hér.) Productivity and Essential Oil Quality. Agronomy, 9(5), 260. https://doi.org/10.3390/agronomy9050260