Anti-Transpirant Effects on Vine Physiology, Berry and Wine Composition of cv. Aglianico (Vitis vinifera L.) Grown in South Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site, Design, and Treatments
2.2. Physiological Measurements
2.3. Growth, Yield, and Grape Composition
2.4. Microvinification and Wine Analysis
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R.; Lo, K.; Lea, D.W.; Medina-Elizade, M. Global temperature change. Proc. Natl. Acad. Sci. USA 2006, 103, 14288–14293. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, D.; Jones, G.V.; Giust, M.; Lovat, L.; Gaiotti, F. Grapevine phenology and climate change: Relationships and trends in the Veneto region of Italy for 1964–2009. Am. J. Enol. Vitic. 2011, 62, 329–339. [Google Scholar] [CrossRef]
- Webb, L. The Impact of Greenhouse Gas-Induced Climate Change on the Australian Wine Industry. Ph.D. Thesis, School of Agriculture and Food Systems, University of Melbourne, Parkville, VIC, Australia, 2006; p. 277. [Google Scholar]
- Schultz, H. Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects. Aust. J. Grape Wine Res. 2000, 6, 2–12. [Google Scholar] [CrossRef]
- Palliotti, A.; Silvestroni, O.; Leoni, F.; Poni, S. Maturazione dell’uva e gestione della chioma in Vitis vinifera: Processi e tecniche da riconsiderare in funzione del cambiamento del clima e delle nuove esigenze di mercato. Italus Hortus 2012, 19, 1–15. [Google Scholar]
- Scafidi, P.; Barbagallo, M.G.; Pisciotta, A.; Mazza, M.; Downey, M.O. Defoliation of two-wire vertical trellis: Effect on grape quality. New Zeal. J. Crop Hort. Sci. 2017, 46, 18–38. [Google Scholar] [CrossRef]
- Pisciotta, A.; Scafidi, P.; Di Lorenzo, R.; Barbagallo, M.G. Manual and mechanical leaf removal in the bunch zone (Vitis vinifera L. ‘Nero d’Avola’): Effects on plant physiology, vegetative parameters, yield and grape quality in a warm area. Acta Hortic. 2013, 978, 285–292. [Google Scholar] [CrossRef]
- Hunter, J.J.; Volschenk, C.G.; Novello, V.; Pisciotta, A.; Booyse, M.; Fouché, G.W. Integrative effects of vine water relations and grape ripeness level of Vitis vinifera L. cv. Shiraz/Richter 99. II. grape composition and wine quality. S. Afr. J. Enol. Vitic. 2014, 35, 359–374. [Google Scholar] [CrossRef]
- Pisciotta, A.; Di Lorenzo, R.; Santalucia, G.; Barbagallo, M.G. Response of grapevine (Cabernet Sauvignon cv) to above ground and subsurface drip irrigation under arid conditions. Agric. Water Manag. 2018, 197, 122–131. [Google Scholar] [CrossRef]
- Jones, G.V.; Davis, R.E. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar]
- Pearce, I.; Coombe, B.G. Grapevine Phenology. In Viticulture Volume 1—Resources; Dry, P., Coombe, B.G., Eds.; Winetitles: Adelaide, South Australia, 2004; pp. 150–166. [Google Scholar]
- McIntyre, G.N.; Lider, L.A.; Ferrari, N.L. The chronological classification of grapevine phenology. Am. J. Enol. Vitic. 1982, 33, 80–85. [Google Scholar]
- Haselgrove, L.; Botting, D.; Heeswijck, R.V.; Høj, P.B.; Dry, P.R.; Ford, C.; Land, P.G.I. Canopy microclimate and berry composition: The effect of bunch exposure on the phenolic composition of Vitis vinifera L cv. Shiraz grape berries. Aust. J. Grape Wine Res. 2000, 6, 141–149. [Google Scholar] [CrossRef]
- Marais, J. Effect of grape temperature and yeast strain on Sauvignon blanc wine aroma composition and quality. S. Afr. J. Enol. Vitic. 2001, 22, 47–51. [Google Scholar] [CrossRef]
- Marais, J.; Calitz, F.; Haasbroek, P.D. Relationship between microclimatic data, aroma component concentrations and wine quality parameters in the prediction of Sauvignon blanc wine quality. S. Afr. J. Enol. Vitic. 2001, 22, 22–26. [Google Scholar] [CrossRef]
- Spayd, S.E.; Tarara, J.M.; Mee, D.L.; Ferguson, J.C. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. Am. J. Enol. Vitic. 2002, 53, 171–182. [Google Scholar]
- Walker, R.P.; Famiani, F. Organic acids in fruits: Metabolism, functions and contents. Hort. Rev. 2018, 45, 371–430. [Google Scholar]
- Smart, R.E.; Alcorso, C.; Hornsby, D.A. A comparison of winegrape performance at the present limits of Australian viticultural climates Alice Springs and Hobart. Aust. Grapegrow. Winemak. 1980, 184, 28–30. [Google Scholar]
- Dry, P.R. Climate change and the Australian grape and wine industry. Aust. Grapegrow. Winemak. 1988, 300, 14–15. [Google Scholar]
- Godden, P.; Gishen, M. The trends in the composition of Australian wine from vintages 1984 to 2004. Austral. New Zealand Wine Ind. J. 2005, 20, 21. [Google Scholar]
- Dokoozlian, N. Integrated canopy management: A twenty year evolution in California. In Recent Advances in Grapevine Canopy Management; University of California: Davis, CA, USA, 16 July 2009; pp. 43–52. [Google Scholar]
- Vierra, G. Pretenders at the table—Are table wines no longer food friendly? Wine Business Monthly 2004, 11, 17–21. [Google Scholar]
- Duchêne, E.; Schneider, C. Grapevine and climatic changes: A glance at the situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef]
- Ganichot, B. Evolution de la date des vendanges dans les Côtes du Rhône méridionales. In Actes des 6e Rencontres Rhodaniennes; Institut Rhodanien: Orange, France, 2002; pp. 38–41. [Google Scholar]
- Di Lena, B.; Silvestroni, O.; Mariani, L.; Parisi, S.; Antenucci, F. European climate variability effects on grapevine harvest date time series in the Abruzzi (Italy). Acta Hortic. 2012, 931, 63–69. [Google Scholar] [CrossRef]
- Scaglione, G.; Graziani, G.; Federico, R.; Di Vaio, C.; Nadal, M.; Formato, A.; Di Lorenzo, R.; Ritieni, A. Effect of canopy managment techniques on the nutritional quality of the Montepulciano grapewine in Puglia (southern Italy). OENO One 2012, 46, 253–261. [Google Scholar] [CrossRef]
- Carnevali, P.; Falcetti, M. Utilizzo di Antitraspiranti a Base di Pinolene per la Modulazione della Maturità Glucidica. In Proceedings of the ‘IV Convegno Nazionale di Viticoltura Asti, Asti, Italy, 10–12 July 2012. [Google Scholar]
- Mattii, G.; Lazzini, F.; Binda, C. Effetto di trattamenti con antitraspiranti sulla maturazione di uve Merlot. In Proceedings of the ‘IV Convegno Nazionale di Viticoltura Asti, Asti, Italy, 10–12 July 2012. [Google Scholar]
- Tittmann, S.; Stöber, V.; Bischoff-Schaefer, M.; Stoll, M. Application of anti-transpirant under greenhouse conditions of grapevines (Vitis vinifera cv. Riesling and cv. Müller-thurgau) reduce photosynthesis under greenhouse conditions. In Proceedings of the 18th International Symposium GiESCO, Porto, Portugal, 7–11 July 2013; Ciência e Técnica Vitivinícola, 28. pp. 276–282. [Google Scholar]
- Palliotti, A.; Panara, F.; Famiani, F.; Sabbatini, P.; Howell, G.S.; Silvestroni, O.; Poni, S. Postveraison application of antitranspirant di-1-p-menthene to control sugar accumulation in Sangiovese grapevines. Am. J. Enol. Vitic. 2013, 64, 378–385. [Google Scholar] [CrossRef]
- Glories, Y.; Agustin, M. Maturité phénolique du raisin, conséquences technologiques: Application aux millésimes 1991 et 1992. In Actes du Colloque Journée Technique du CIVB; CIVB: Bordeaux, France, 21 January 1993; pp. 56–61. [Google Scholar]
- Brillante, L.; Belfiore, N.; Gaiotti, F.; Lovat, L.; Sansone, L.; Poni, S.; Tomasi, D. Comparing Kaolin and Pinolene to Improve Sustainable Grapevine Production during Drought. PLoS ONE 2016, 11, e0156631. [Google Scholar] [CrossRef]
- Palliotti, A.; Poni, S.; Berrios, J.G.; Bernizzoni, F. Vine performance and grape composition as affected by early-season source limitation induced with anti-transpirants in two red Vitis vinifera L. cultivars. Aust. J. Grape Wine Res. 2010, 16, 426–433. [Google Scholar] [CrossRef]
- Davenport, D.C.; Fisher, M.A.; Hagan, R.M. Some counteractive effects of antitranspirants. Plant Physiol. 1972, 49, 722–724. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M.; Picchi, V.; Rossoni, M.; Gomarasca, S.; Ludwig, N.; Gargano, M.; Faoro, F. Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environ. Exp. Bot. 2009, 66, 493–500. [Google Scholar] [CrossRef]
- Moftah, A.E.; Al-Humaid, A.R.I. Effects of antitranspirants on water relations and photosynthetic rate of cultivated tropical plant (Polianthes tuberosa L.). Pol. J. Ecol. 2005, 53, 165–175. [Google Scholar]
- Rosati, A. Physiological effects of kaolin particle film technology: A review. Funct. Plant Sci. Biotech. 2007, 1, 100–105. [Google Scholar]
- Shellie, K.C.; King, B.A. Kaolin-based foliar reflectant and water deficit influence Malbec leaf and berry temperature, pigments, and photosynthesis. Am. J. Enol. Vitic. 2013, 64, 223–230. [Google Scholar] [CrossRef]
- Francini, A.; Lorenzini, G.; Nali, C. The antitranspirant di-1-p-menthene, a potential chemical protectant of ozone damage to plants. Water Air Soil Poll. 2011, 219, 459–472. [Google Scholar] [CrossRef]
- Palliotti, A.; Poni, S.; Petoumenou, D.; Vignaroli, S. Effects of modulated limitation of canopy photoassimilation using anti-traspirant on yield and grape composition. In Proceedings of the ‘II Convegno Nazionale di Viticoltura’, Marsala, Italia, 14–19 luglio 2008. Italus Hortus 2010, 17, 21–26. [Google Scholar]
- Fischer, U.; Noble, A.C. The effect of ethanol, catechin concentration, and pH on sourness and bitterness of wine. Am. J. Enol. Vitic. 1994, 45, 6–10. [Google Scholar]
- Robinson, W.B.; Weirs, L.D.; Bertino, J.J.; Mattick, L.R. The relation of anthocyanin composition to color stability of New York State wines. Am. J. Enol. Vitic. 1966, 17, 178–184. [Google Scholar]
- Price, S.F.; Breen, P.J.; Valladao, M.; Watson, B.T. Cluster sun exposure and quercetin in Pinot noir grapes and wine. Am. J. Enol. Vitic. 1995, 46, 187–194. [Google Scholar]
- Reynolds, A.G.; Price, S.F.; Wardle, D.A.; Watson, B.T. Fruit environment and crop level effects on Pinot noir. I. Vine performance and fruit composition in British Columbia. Am. J. Enol. Vitic. 1994, 45, 452–459. [Google Scholar]
- Yokotsuka, K.; Nagao, A.; Nakazawa, K.; Sato, M. Changes in anthocyanins in berry skins of Merlot and Cabernet Sauvignon grapes grown in two soils modified with limestone or oyster shell versus a native soil over two years. Am. J. Enol. Vitic. 1999, 50, 1–12. [Google Scholar]
- Zoecklein, B.W.; Fugelsang, K.C.; Gump, B.H.; Nury, F.S. Wine Analysis and Production; Chapman & Hall: New York, NY, USA, 1995; pp. 407–409. [Google Scholar]
- Sims, C.A.; Bates, R.P. Effects of skin fermentation time on the phenols, anthocyanins, ellagic acid sediment, and sensory characteristics of a red Vitis rotundifolia wine. Am. J. Enol. Vitic. 1994, 45, 56–62. [Google Scholar]
- Wightman, J.D.; Price, S.F.; Watson, B.T.; Wrolstad, R.E. Some effects of processing enzymes on anthocyanins and phenolics in Pinot noir and Cabernet Sauvignon wines. Am. J. Enol. Vitic. 1997, 48, 39–48. [Google Scholar]
- Goldberg, D.M.; Karumanchiri, A.; Tsang, E.; Soleas, G.J. Catechin and epicatechin concentrations of red wines: Regional and cultivar-related differences. Am. J. Enol. Vitic. 1998, 49, 23–34. [Google Scholar]
- Brossaud, F.; Cheynier, V.; Asselin, C.; Moutounet, M. Flavonoid compositional differences of grapes among site test plantings of Cabernet franc. Am. J. Enol. Vitic. 1999, 50, 277–284. [Google Scholar]
2013 | 2014 | |||||||
---|---|---|---|---|---|---|---|---|
Parameter | C-BT | V G-BT | C+ BT | VG+ BT | C-BT | VG-BT | C+BT | VG+BT |
Yield/vine (kg) | 7.6 b | 8.5 b | 6.2 a | 5.4 a | 7.6 b | 7.1 b | 4.8 a | 4.6 a |
Bunches/vine | 24.8 b | 27.3 b | 14.9 a | 11.6 a | 21.3 b | 20.0 b | 11.5 a | 11.9 a |
Berry weight (g) | 2.67 a | 2.61 a | 2.60 a | 2.71 a | 2.52 a | 2.70 a | 2.52 a | 2.71 a |
°Brix berry | 21.1 a | 19.0 b | 21.9 a | 19.1 b | 20.4 bc | 19.0 a | 21.6 c | 19.9 ab |
Juice pH | 2.88 a | 2.84 a | 2.87 a | 2.85 a | 2.85 a | 2.84 a | 2.96 a | 2.93 a |
Juice TA (g L−1 of tartaric acid) | 11.17 ab | 11.37 a | 10.23 c | 10.93 b | 11.61 b | 11.40 b | 9.67 a | 9.53 a |
2013 | 2014 | |||||||
---|---|---|---|---|---|---|---|---|
Parameter | C-BT | V G-BT | C+ BT | V G+ BT | C-BT | V G-BT | C+BT | VG+ BT |
Total anthocyanins (mg L−1) | 996 a | 1044 b | 992 a | 1108 b | 1124 a | 1224 b | 1228 b | 1476 c |
Extractable anthocyanins (mg L−1) | 902 a | 912 a | 910 a | 923 a | 928 a | 952 a | 964 a | 904 a |
Total phenolics OD | 75.0 a | 64.5 a | 69.0 a | 75.3 a | 60.8 a | 65.9 a | 62.0 a | 64.3 a |
2013 | 2014 | |||||||
---|---|---|---|---|---|---|---|---|
Parameter | C-BT | V G-BT | C+ BT | VG+ BT | C-BT | V G-BT | C+ BT | VG+ BT |
Alcohol (%) | 12.3 b | 11.0 a | 12.9 b | 10.9 a | 12.5 b | 11.0 a | 12.7 b | 10.6 a |
Total anthocyanins (mg kg−1) | 510 a | 490 a | 526 a | 520 a | 181 a | 163 a | 166 a | 197 a |
Total phenolics (mg kg−1) | 1555 a | 1467 a | 1720 a | 1601 a | 1719 a | 1779 a | 1797 a | 1814 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Vaio, C.; Marallo, N.; Di Lorenzo, R.; Pisciotta, A. Anti-Transpirant Effects on Vine Physiology, Berry and Wine Composition of cv. Aglianico (Vitis vinifera L.) Grown in South Italy. Agronomy 2019, 9, 244. https://doi.org/10.3390/agronomy9050244
Di Vaio C, Marallo N, Di Lorenzo R, Pisciotta A. Anti-Transpirant Effects on Vine Physiology, Berry and Wine Composition of cv. Aglianico (Vitis vinifera L.) Grown in South Italy. Agronomy. 2019; 9(5):244. https://doi.org/10.3390/agronomy9050244
Chicago/Turabian StyleDi Vaio, Claudio, Nadia Marallo, Rosario Di Lorenzo, and Antonino Pisciotta. 2019. "Anti-Transpirant Effects on Vine Physiology, Berry and Wine Composition of cv. Aglianico (Vitis vinifera L.) Grown in South Italy" Agronomy 9, no. 5: 244. https://doi.org/10.3390/agronomy9050244
APA StyleDi Vaio, C., Marallo, N., Di Lorenzo, R., & Pisciotta, A. (2019). Anti-Transpirant Effects on Vine Physiology, Berry and Wine Composition of cv. Aglianico (Vitis vinifera L.) Grown in South Italy. Agronomy, 9(5), 244. https://doi.org/10.3390/agronomy9050244