Inoculation and N Fertilization Affect the Dry Matter, N Fixation, and Bioactive Compounds in Sulla Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Locations, Experimental Design, and Crop Management
2.2. Measurements and Sampling
2.3. Content of Bioactive Compounds and Antioxidant Capacity in Sulla Leaves
2.4. Statistical Analysis
3. Results
3.1. Leaf Contribution, DM Yield, Nitrogen Content, and Yield
3.2. Leaf Atom% 15N Excess, %Ndfa, Fixed N, and Relationships between Leaf Biomass and Fixed Nitrogen
3.3. Leaf Antioxidant Capacity and Bioactive Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rochon, J.J.; Doyle, C.J.; Greef, J.M.; Hopkins, A.; Molle, G.; Sitzia, M.; Scholefield, D.; Smith, C.J. Grazing legumes in Europe: A review of their status, management, benefits, research needs and future prospects. Grass Forage Sci. 2004, 59, 197–214. [Google Scholar] [CrossRef]
- Deligios, P.A.; Tiloca, M.T.; Sulas, L.; Buffa, M.; Caraffini, S.; Doro, L.; Sanna, G.; Spanu, E.; Spissu, E.; Urracci, G.R. Stable nutrient flows in sustainable and alternative cropping systems of globe artichoke. Agron. Sustain. Dev. 2017, 37, 54. [Google Scholar] [CrossRef] [Green Version]
- Peoples, M.; Brockwell, J.; Herridge, D.; Rochester, I.; Alves, B.; Boddey, R.; Dakora, F.; Bhattari, S.; Maskey, S.; Sampet, C.; et al. The contributions of nitrogen fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Vadez, V. The future of grain legumes in cropping systems. Crop Pasture Sci. 2012, 63, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef]
- Choi, B.H.; Ohashi, H. Generic criteria and infrageneric system for Hedysarum and related genera (Papilionoideae-Leguminosae). Taxon 2003, 52, 567–576. [Google Scholar] [CrossRef]
- Sulas, L.; Re, G.A.; Ledda, L.; Caredda, S. The effect of utilization frequency on the forage production of sulla (Hedysarum coronarium L.). Ital. J. Agron. 1997, 2, 89–94. [Google Scholar]
- Borreani, G.; Roggero, P.P.; Sulas, L.; Valente, M.E. Quantifying morphological stage to predict the nutritive value in sulla (Hedysarum coronarium L.). Agron. J. 2003, 95, 1608–1617. [Google Scholar] [CrossRef]
- Sulas, L. The future role of forage legumes in the Mediterranean climatic areas. In Grasslands: Developments Opportunities Perspectives; Reynolds, S.G., Frame, J., Eds.; FAO: Rome, Italy; Science Publishers: Enfield, NH, USA, 2005; pp. 29–54. ISBN 1-57808-359-1. [Google Scholar]
- Sulas, L.; Seddaiu, G.; Muresu, R.; Roggero, P.P. Nitrogen fixation of sulla under Mediterranean conditions. Agron. J. 2009, 101, 1470–1478. [Google Scholar] [CrossRef]
- Amato, G.; Giambalvo, D.; Frenda, A.S.; Mazza, F.; Ruisi, P.; Saia, S.; Di Miceli, G. Sulla (Hedysarum coronarium L.) as potential feedstock for biofuel and protein. Bioenerg. Res. 2016, 9, 711–719. [Google Scholar] [CrossRef]
- Saia, S.; Urso, V.; Amato, G.; Frenda, A.S.; Giambalvo, D.; Ruisi, P.; Di Miceli, G. Mediterranean forage legumes grown alone or in mixture with annual ryegrass: Biomass production, N2 fixation, and indices of intercrop efficiency. Plant Soil 2016, 402, 395–407. [Google Scholar] [CrossRef]
- Bonanno, A.; Di Miceli, G.; Di Grigoli, A.; Frenda, A.S.; Tornambè, G.; Giambalvo, D.; Amato, G. Effects of feeding green forage of sulla (Hedysarum coronarium L.) on lamb growth and carcass and meat quality. Animal 2011, 5, 148–154. [Google Scholar] [CrossRef]
- Piluzza, G.; Sulas, L.; Bullitta, S. Tannins in forage plants and their role in animal husbandry and environmental sustainability: A review. Grass Forage Sci. 2013, 69, 32–48. [Google Scholar] [CrossRef]
- Piluzza, G.; Bullitta, S. The dynamics of phenolic concentration in some pasture species and implications for animal husbandry. J. Sci. Food Agric. 2010, 90, 1452–1459. [Google Scholar] [CrossRef]
- Re, G.A.; Piluzza, G.; Sulas, L.; Franca, A.; Porqueddu, C.; Sanna, F.; Bullitta, S. Condensed tannin accumulation and nitrogen fixation potential of Onobrychis viciifolia Scop. grown in a Mediterranean environment. J. Sci. Food Agric. 2014, 94, 639–645. [Google Scholar] [CrossRef]
- Selmi, H.; Gasmi-Boubaker, A.; Mehdi, W.; Rekik, B.; Salah, Y.B.; Rouissi, H. Chemical composition and in vitro digestibility of leaves of Hedysarum coronarium L., Medicago truncatula L., Pisum sativum L. and Vicia sativa L. Livestock Res. Rural Dev. 2010, 6, 22. [Google Scholar]
- Gasmi-Boubaker, A.; Selmi, H.; Losada, R.M.; Losada, R.M.; Youssef, S.B.; Zoghlami, A.; Mehdi, W.; Rigueiro-Rodriguez, A. Nutritive value of whole plant (stem and leaves) of Hedysarum coronarium L., Medicago truncatula L., Vicia sativa L. and Pisum sativum L. grown under Mediterranean conditions. Livestock Res. Rural Dev. 2012, 24, 1–6. [Google Scholar]
- Di Trana, A.; Bonanno, A.; Cecchini, S.; Giorgio, D.; Di Grigoli, A.; Claps, S. Effects of Sulla forage (Sulla coronarium L.) on the oxidative status and milk polyphenol content in goats. J. Dairy Sci. 2015, 98, 37–46. [Google Scholar] [CrossRef]
- Chagas, F.O.; de Cassia Pessotti, R.; Caraballo-Rodríguez, A.M.; Pupo, M.T. Chemical signaling involved in plant–microbe interactions. Chem. Soc. Rev. 2018, 47, 1652–1704. [Google Scholar] [CrossRef]
- Alonso-Amelot, M.E.; Oliveros-Bastidas, A.; Calcagno-Pisarelli, M.P. Phenolics and condensed tannins of high altitude Pteridium arachnoideum in relation to sunlight exposure, elevation, and rain regime. Biochem. Syst. Ecol. 2007, 35, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sulas, L.; Re, G.A.; Stangoni, A.P.; Ledda, L. Growing cycle of Hedysarum coronarium L. (sulla): Relationship between plant density, stem length, forage yield and phytomass partitioning. Cahiers Options Méditerranéennes 2000, 45, 147–152. [Google Scholar]
- Minneé, E.M.K.; Bluett, S.J.; Woodward, S.L. Harvesting sulla for yield and quality. Agron. Soc. NZ 2004, 34, 83–88. [Google Scholar]
- Casella, S.; Gault, R.R.; Reynolds, K.C.; Dyson, J.R.; Brockwell, J. Nodulation studies on legumes exotic to Australia: Hedysarum coronarium. FEMS Microbiol. Lett. 1984, 22, 37–45. [Google Scholar] [CrossRef]
- Thami Alami, I.; El Mzouri, E.H. Study of the efficacy and persistence of Sulla rhizobium strains. Cahiers Options Méditerranéennes 2000, 45, 321–325. [Google Scholar]
- Gurfel, D.; Löbel, R.; Schiffmann, J. Symbiotic nitrogen-fixing activity and yield potential of inoculated Hedysarum coronarium in Israel. ISR J. Bot. 1982, 31, 296–304. [Google Scholar]
- Rodriguez-Navarro, D.N.; Temprano, F.; Orive, R. Survival of Rhizobium sp. (Hedysarum coronarium L.) on peat-based inoculants and inoculated seeds. Soil Biol. Biochem. 1991, 23, 375–379. [Google Scholar] [CrossRef]
- Yates, R.J.; Howieson, J.G.; Carr, S.J. The role of root-nodule bacteria in the adaptation of two long lived forage legumes from the Mediterranean basin to Western Australia. In Proceedings of the 11th N-fixation Conference, Perth, Australia, 22–27 September 1996; pp. 144–145. [Google Scholar]
- Sulas, L.; Re, G.A.; Loi, A.; Howieson, J.G. The selection of optimal root-nodule bacteria inoculants increases the forage yield of Hedysarum coronarium (sulla). In Proceedings of the 17th General Meeting of the European Grassland Federation, Debrecen, Hungary, 18–21 May 1998; pp. 899–904. [Google Scholar]
- Ewing, M.; Poole, C.; Skinner, P.; Bennett, A. Sulla and Other Forage Species for Southern Australia; RIRDC Publication: Perth, Australia, 2001. [Google Scholar]
- Sulas, L.; Piluzza, G.; Salis, M.; Deligios, P.A.; Ledda, L.; Canu, S. Cropping systems sustainability: Inoculation and fertilisation effect on sulla performances in a new cultivation area. Ital. J. Agron. 2017. [Google Scholar] [CrossRef]
- Yates, R.J.; Howieson, J.H.; De Meyer, S.E.; Tian, R.; Seshadri, R.; Pati, A.; Woyke, T.; Markowitz, V.; Ivanova, N.; Kyrpides, N.; et al. High-quality permanent draft genome sequence of Rhizobium sullae strain WSM1592; a Hedysarum coronarium microsymbiont from Sassari, Italy. Stand. Genom. Sci. 2015, 10, 1. [Google Scholar] [CrossRef]
- Di Paolo, E.; Garofalo, P.; Rinaldi, M. Irrigation and nitrogen fertilization treatments on productive and qualitative traits of broad bean (Vicia faba var. minor L.) in a Mediterranean environment. Legume Res. 2015, 38, 209–218. [Google Scholar] [CrossRef]
- Youseif, S.; Abd El-Megeed, F.; Saleh, S. Improvement of faba bean yield using Rhizobium/Agrobacterium inoculant in low-fertility sandy soil. Agronomy 2017, 7, 2. [Google Scholar] [CrossRef]
- Soil Survey Staff; Usda-Nrcs: Lincoln, NE, USA, 2000.
- Unkovich, M.J.; Herridge, D.; Peoples, M.; Cadisch, G.; Boddey, B.; Giller, K.; Alves, B.; Chalk, P. Measuring plant-associated nitrogen fixation in agricultural systems. ACIAR Monogr. 2008, 136, 1–258. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Porter, L.J.; Hristich, L.N.; Chan, B.G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 1986, 25, 223–230. [Google Scholar] [CrossRef]
- Sulas, L.; Re, G.A.; Bullitta, S.; Piluzza, G. Chemical and productive properties of two Sardinian milk thistle (Silybum marianum L. Gaertn.) populations as sources of nutrients and antioxidants. Genet. Resour. Crop Evol. 2016, 63, 315–326. [Google Scholar] [CrossRef]
- Surveswaran, S.; Cai, Y.Z.; Corke, H.; Sun, M. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem. 2007, 102, 938–953. [Google Scholar] [CrossRef]
- Piluzza, G.; Bullitta, S. Correlation between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm Biol. 2011, 49, 240–247. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Found. Stat. Comput.: Vienna, Austria, 2014. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1984; ISBN 0-4714-87092-7. [Google Scholar]
- Muresu, R.; Porceddu, A.; Sulas, L.; Squartini, A. Nodule-associated microbiome diversity in wild populations of Sulla coronaria reveals clues on the relative importance of culturable rhizobial symbionts and co-infecting endophytes. Microbiol. Res. 2019, 221, 10–14. [Google Scholar] [CrossRef]
- MacDuff, J.H.; David, S.C.; Davidson, I.A. Inhibition of N2 fixation by white clover (Trifolium repens L.) at low concentrations in NO−3 in flowing solution culture. Plant Soil 1996, 180, 287–295. [Google Scholar] [CrossRef]
- Waterer, J.G.; Vessey, J.K. Effect of low static nitrate concentrations on mineral nitrogen uptake nodulation, and nitrogen fixation in field pea. J. Plant Nutr. 1993, 16, 1775–1789. [Google Scholar] [CrossRef]
- Voisin, A.S.; Salon, C.; Munier-Jolain, N.G.; Ney, B. Quantitative effects of soil nitrate, growth potential and phenology on symbiotic nitrogen fixation of pea (Pisum sativum L.). Plant Soil 2002, 243, 31–42. [Google Scholar] [CrossRef]
- Omrane, S.; Chiurazzi, M. A variety of regulatory mechanisms are involved in the nitrogen-dependent modulation of the nodule organogenesis program in legume roots. Plant Signal. Behav. 2009, 4, 1066–1068. [Google Scholar] [CrossRef] [Green Version]
- Naudin, C.; Corre-Hellou, G.; Pineau, S.; Crozat, Y.; Jeuffroy, M.H. The effect of various dynamics of N availability on winter pea-wheat intercrops: Crop growth, N partitioning and symbiotic N2 fixation. Field Crop Res. 2010, 119, 2–11. [Google Scholar] [CrossRef]
- Carlsson, G.; Huss-Danell, K. Nitrogen fixation in perennial forage legumes in the field. Plant Soil 2003, 253, 353–372. [Google Scholar] [CrossRef]
- Beshir, H.; Walley, F.; Bueckert, R.; Tar’an, B. Response of snap bean cultivars to Rhizobium inoculation under dryland agriculture in Ethiopia. Agronomy 2015, 5, 291–308. [Google Scholar] [CrossRef]
- Tena, W.; Wolde-Meskel, E.; Walley, F. Symbiotic efficiency of native and exotic Rhizobium strains nodulating lentil (Lens culinaris Medik.) in soils of Southern Ethiopia. Agronomy 2016, 6, 11. [Google Scholar] [CrossRef]
- Howieson, J.G.; Yates, R.J.; Foster, K.; Real, D.; Besier, B. Prospects for the future use of legumes. In Leguminous Nitrogen-Fixing Symbioses; Dilworth, M.J., James, E.K., Sprent, J.I., Newton, W.E., Eds.; Elsevier: London, UK, 2008; pp. 363–394. ISBN 978-1-4020-3548-7. [Google Scholar]
- Sprent, J.I. Legume Nodulation: A Global Perspective; Wiley-Blackwell: Oxford, UK, 2009; ISBN 978-1-4051-8175-4. [Google Scholar]
- Fitouri, S.D.; Trabelsi, D.; Saïdi, S.; Zribi, K.; Jeddi, F.B.; Mhamdi, R. Diversity of rhizobia nodulating sulla (Hedysarum coronarium L.) and selection of inoculant strains for semi-arid Tunisia. Ann. Microbiol. 2012, 62, 77–84. [Google Scholar] [CrossRef]
- Liu, W.Y.Y.; Ridgway, H.J.; James, T.K.; Premaratne, M.; Andrews, M. Characterisation of rhizobia nodulating Galega officinalis (goat’s rue) and Hedysarum coronarium (sulla). N. Z. Plant Prot. 2012, 65, 192–196. [Google Scholar]
- Razika, G.; Amira, B.; Yacine, B.; Ammar, B. Influence of carbon source on the production of exopolysacharides by Rhizobium sullae and on the nodulation of Hedysarum coronarium L. legume. Afr. J. Microbiol. Res. 2012, 6, 5940–5946. [Google Scholar] [CrossRef]
- Aliliche, K.; Beghalem, H.; Landoulsi, A.; Chriki, A. Molecular phylogenetic analysis of Rhizobium sullae isolated from Algerian Hedysarum flexuosum. A Van Leeuw. J. Microb. 2016, 109, 897–906. [Google Scholar] [CrossRef]
- Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav. 2010, 5, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Woodward, S.L.; Waghorn, G.C.; Lassey, K.R.; Laboyrie, P.G. Does feeding sulla (Hedysarum coronarium) reduce methane emissions from dairy cows? Proc. N. Z. Soc. Anim. Prod. 2002, 66, 227–230. [Google Scholar]
- Ramirez-Restrepo, C.A.; Barry, T.N. Alternative temperate forages containing secondary compounds for improving sustainable productivity in grazing ruminants. Anim. Feed Sci. Technol. 2005, 120, 179–201. [Google Scholar] [CrossRef]
- Molle, G.; Decandia, M.; Giovanetti, V.; Cabiddu, A.; Fois, N.; Sitzia, M. Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep: Part 1: Effects on feeding behaviour, intake, diet digestibility and performance. Livest. Sci. 2009, 123, 138–146. [Google Scholar] [CrossRef]
Leaf Contribution (%) | Vegetative | Flowering | Seed Set | ||||
---|---|---|---|---|---|---|---|
N0 | N100 | N0 | N100 | N0 | N100 | p > F | |
SIN | 0.94 ± 0.02 | 0.94 ± 0.02 | 0.49 ± 0.0 | 0.41 ± 0.02 | 0.25 ± 0.01 | 0.19 ± 0.01 | ** |
LIN | 0.97 ± 0.01 | 0.97 ± 0.01 | 0.80 ± 0.1 | 0.56 ± 0.003 | 0.23 ± 0.003 | 0.21 ± 0.02 | ns |
P1IN | 0.96 ± 0.01 | 0.96 ± 0.01 | 0.50 ± 0.1 | 0.57 ± 0.20 | 0.24 ± 0.01 | 0.21 ± 0.01 | ns |
P2IN | 0.97 ± 0.003 | 0.97 ± 0.003 | 0.45 ± 0.03 | 0.53 ± 0.02 | 0.31 ± 0.05 | 0.22 ± 0.01 | ** |
UNI | 0.97 ± 0.01 | 0.97 ± 0.01 | 0.67 ± 0.2 | 0.55 ± 0.10 | 0.23 ± 0.03 | 0.22 ± 0.003 | ns |
Average | 0.96 | 0.55 | 0.23 | ||||
p > F | p > F | p > F | |||||
Inoculation (I) | 0.242 | 0.055 | 0.244 | ||||
N rates (N) | 1.000 | 0.246 | 0.007 | ||||
I × N | 1.000 | 0.268 | 0.273 |
Dry Matter (kg ha−1) | Vegetative | Flowering | Seed Set | |||||
---|---|---|---|---|---|---|---|---|
N0 | N100 | p > F | N0 | N100 | p > F | N0 | N100 | |
SIN | 2164 ± 340a | 1844 ± 74a | ns | 2003 ± 178b | 3432 ± 433b | * | 2867 ± 461b | 3434 ± 171a |
LIN | 465 ± 21b | 1626 ± 271a | ** | 1460 ± 223c | 1407 ± 234c | ns | 1365 ± 227c | 2199 ± 367b |
P1IN | 1230 ± 225ab | 1243 ± 89b | ns | 2282 ± 380a | 5015 ± 713a | ** | 3096 ± 530b | 1916 ± 109c |
P2IN | 1678 ± 280a | 1843 ± 162a | ns | 2471 ± 323a | 3256 ± 463b | * | 4744 ± 791a | 2458 ± 268b |
UNI | 459 ± 67b | 1529 ± 254ab | ** | 309 ± 52d | 1427 ± 86c | *** | 373 ± 62d | 1554 ± 49c |
Average | 1408 | 2306 | 2401 | |||||
p > F | p > F | p > F | ||||||
Inoculation (I) | 0.014 | <0.001 | <0.001 | |||||
N rates (N) | 0.049 | <0.001 | 0.622 | |||||
I × N | 0.107 | 0.098 | 0.024 |
N Content (%) | Vegetative | Flowering | Seed Set | ||||
---|---|---|---|---|---|---|---|
N0 | N100 | p > F | N0 | N100 | N0 | N100 | |
SIN | 2.00 ± 0.1a | 2.27 ± 0.0a | ns | 3.09 ± 0.1 | 3.55 ± 0.1 | 2.50 ± 0.2c | 2.24 ± 0.3c |
LIN | 1.27 ± 0.1c | 1.77 ± 0.1c | ** | 2.72 ± 0.1 | 3.21 ± 0.2 | 2.03 ± 0.1d | 2.42 ± 0.2b |
P1IN | 1.93 ± 0.1a | 2.23 ± 0.1a | * | 3.22 ± 0.2 | 2.76 ± 0.1 | 2.90 ± 0.0b | 2.73 ± 0.1a |
P2IN | 1.73 ± 0.1b | 2.03 ± 0.1b | * | 2.93 ± 0.3 | 3.73 ± 0.3 | 2.85 ± 0.2b | 2.79 ± 0.2a |
UNI | 1.03 ± 0.2d | 1.73 ± 0.0c | ** | 3.41 ± 0.2 | 2.99 ± 0.3 | 3.29 ± 0.1a | 2.68 ± 0.1a |
Average | 1.80 | 3.16 | 2.64 | ||||
p > F | p > F | p > F | |||||
Inoculation (I) | <0.001 | 0.257 | <0.001 | ||||
N rates (N) | <0.001 | 0.191 | 0.184 | ||||
I × N | 0.250 | 0.016 | 0.063 |
N Content (kg ha−1) | Vegetative | Flowering | Seed set | ||||||
---|---|---|---|---|---|---|---|---|---|
N0 | N100 | p > F | N0 | N100 | p > F | N0 | N100 | ||
SIN | 42.7 ± 5.6a | 42.1 ± 2.0a | ns | 62.3 ± 7.5ab | 122.0 ± 16.5a | *** | 72.5 ± 12.1b | 77.7 ± 13.8a | |
LIN | 5.8 ± 0.4c | 28.4 ± 4.7b | *** | 40.1 ± 6.7b | 45.6 ± 7.6b | ns | 27.7 ± 4.7c | 51.4 ± 8.6b | |
P1IN | 23.3 ± 2.9b | 27.8 ± 2.7b | ns | 70.8 ± 11.7a | 137.9 ± 17.8a | *** | 89.8 ± 15.0b | 52.6 ± 5.6b | |
P2IN | 29.3 ± 7.8b | 37.2 ± 4.4a | * | 70.6 ± 11.3a | 123.3 ± 23.3a | *** | 136.4 ± 22.7a | 67.8 ± 5.4a | |
UNI | 4.7 ± 0.4c | 26.7 ± 6.2b | *** | 10.8 ± 1.8c | 42.3 ± 3.1b | * | 12.1 ± 2.0d | 41.8 ± 2.9c | |
Average | 26.8 | 72.6 | 63.9 | ||||||
p > F | p > F | p > F | |||||||
Inoculation (I) | <0.001 | <0.001 | 0.001 | ||||||
N rates (N) | 0.004 | <0.001 | 0.363 | ||||||
I × N | 0.161 | 0.310 | 0.027 |
15N Excess (%) | Vegetative | Flowering | Seed Set | ||||||
---|---|---|---|---|---|---|---|---|---|
N0 | N100 | p > F | N0 | N100 | p > F | N0 | N100 | ||
SIN | 0.014 ± 0.01c | 0.080 ± 0.01b | *** | 0.003 ± 0.001b | 0.013 ± 0.002b | * | 0.005 ± 0.001 | 0.006 ± 0.002 | ns |
LIN | 0.038 ± 0.01b | 0.135 ± 0.03a | *** | 0.009 ± 0.001b | 0.029 ± 0.001a | ** | 0.007 ± 0.003 | 0.007 ± 0.002 | ns |
P1IN | 0.026 ± 0.003b | 0.048 ± 0.02c | * | 0.003 ± 0.001b | 0.033 ± 0.01a | ** | 0.004 ± 0.001 | 0.007 ± 0.0003 | * |
P2IN | 0.017 ± 0.004c | 0.043 ± 0.01c | * | 0.003 ± 0.001b | 0.009 ± 0.002b | ns | 0.004 ± 0.001 | 0.011 ± 0.002 | * |
UNI | 0.086 ± 0.01a | 0.123 ± 0.002a | ** | 0.024 ± 0.01a | 0.031 ± 0.02a | ns | 0.009 ± 0.0004 | 0.010 ± 0.001 | ns |
Average | 0.061 | 0.016 | 0.007 | ||||||
p > F | p > F | p > F | |||||||
Inoculation (I) | <0.001 | 0.027 | 0.050 | ||||||
N rates (N) | <0.001 | 0.003 | 0.018 | ||||||
I × N | 0.040 | 0.370 | 0.153 |
Ndfa (%) | Vegetative | Flowering | Seed set | |||||
---|---|---|---|---|---|---|---|---|
N0 | N100 | p > F | N0 | N100 | p > F | N0 | N100 | |
SIN | 89.8 ± 3.1a | 51.6 ± 3.9b | * | 97.4 ± 0.8a | 91.6 ± 1.2a | ns | 93.1 ± 1.3a | 92.4 ± 2.2a |
LIN | 64 ± 2.3ab | 25.4 ± 1.0c | * | 92.1 ± 1.6a | 79.8 ± 3.5b | * | 91.8 ± 2.0a | 91.9 ± 2.4a |
P1IN | 77 ± 5.1a | 62.1 ± 6.0a | ns | 97.7 ± 0.4a | 75.0 ± 10.6b | * | 94.7 ± 1.0a | 92.0 ± 0.5a |
P2IN | 87.3 ± 0.5a | 62.1 ± 1.3a | * | 97.5 ± 0.9a | 94.4 ± 1.0a | ns | 93.2 ± 3.2a | 86.2 ± 1.9b |
UNI | 38.5 ± 1.2b | 25.7 ± 0.8c | ns | 76.9 ± 8.5b | 75.2 ± 12.5b | ns | 86.8 ± 2.3b | 87.8 ± 0.9b |
Average | 58.3 | 87.8 | 91.0 | |||||
p > F | p > F | p > F | ||||||
Inoculation (I) | <0.001 | 0.043 | 0.033 | |||||
N rates (N) | <0.001 | 0.034 | 0.141 | |||||
I × N | 0.497 | 0.495 | 0.284 |
Fixed N (kg ha−1) | Vegetative | Flowering | Seed Set | ||||
---|---|---|---|---|---|---|---|
N0 | N100 | N0 | N100 | p > F | N0 | N100 | |
SIN | 38.5 ± 5.5a | 21.6 ± 1.5a | 55.6 ± 9.3b | 111.7 ± 16.0a | *** | 68.5 ± 11.4c | 71.9 ± 12.1a |
LIN | 3.8 ± 1.0c | 3.1± 1.9b | 36.9 ± 6.2c | 38.2 ± 6.4b | ns | 27.0 ± 4.5d | 47.8 ± 8.0b |
P1IN | 18.2 ± 3.5b | 17.6 ± 4.5a | 66.9 ± 10.7a | 102.1 ± 11.6a | ** | 86.0 ± 14.6b | 45.8 ± 6.6b |
P2IN | 25.6 ± 4.3a | 24.1 ± 6.5a | 64.0 ± 6.8a | 113.9 ± 20.6a | ** | 128.3 ± 21.4a | 62.7 ± 3.6a |
UNI | 1.5 ± 0.2c | 3.3 ± 0.8b | 8.9 ± 1.5d | 34.5 ± 5.2b | ** | 11.0 ± 1.8e | 36.3 ± 2.0c |
Average | 15.7 | 63.3 | 58.5 | ||||
p > F | p > F | p > F | |||||
Inoculation (I) | <0.001 | <0.001 | 0.002 | ||||
N rates (N) | 0.173 | <0.001 | 0.271 | ||||
I × N | 0.178 | 0.346 | 0.034 |
TEAC (mmol/100 g DW) | TotP (gGAE/kg DW) | NTP (gGAE/kg DW) | TP (gGAE/kg DW) | TotF (gCE/kg DW) | CT (gDE/kg DW) | |||
---|---|---|---|---|---|---|---|---|
ABTS | DPPH | |||||||
Vegetative | ||||||||
Leaflets | UNI | 30.3 ± 1.0a | 32.7 ± 1.5a | 50.5 ± 0.4a | 12.8 ± 0.1a | 37.6 ± 0.5a | 17.2 ± 1.2a | 25.1 ± 0.6a |
P1IN | 25.0 ± 0.6b | 26.2 ± 0.7b | 37.4 ± 0.8b | 10.1 ± 0.4b | 27.7 ± 0.5b | 14.8 ± 1.2a | 18.9 ± 1.3b | |
p > F | <0.05 | <0.001 | <0.001 | <0.001 | <0.001 | 0.07 | 0.01 | |
Petioles | UNI | 22.3 ± 0.2a | 22.8 ± 0.5a | 29.8 ± 0.6a | 13.0 ± 0.3a | 16.9 ± 0.6a | 9.8 ± 0.2a | 10.2 ± 0.4a |
P1IN | 5.5 ± 0.7b | 5.3 ± 0.1b | 10.6 ± 0.7b | 6.8 ± 0.3b | 3.8 ± 0.7b | 3.6 ± 0.2b | 3.5 ± 0.2b | |
p > F | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Flowering | ||||||||
Leaflets | UNI | 34.9 ± 1.5a | 31.4 ± 1.1a | 50 ± 3.2a | 18.1 ± 0.6a | 31.9 ± 2.7a | 18.5 ± 1.0a | 23.8 ± 1.8a |
P1IN | 28.8 ± 1.3b | 28.9 ± 2.73b | 43.2 ± 1.0b | 14.8 ± 0.8b | 28.5 ± 0.5a | 18.2 ± 0.8a | 25.3 ± 0.8a | |
<0.01 | 0.21 | <0.05 | <0.01 | 0.09 | 0.06 | 0.28 | ||
Petioles | UNI | 25.3 ± 2.03a | 25.7 ± 2.4a | 39.4 ± 0.6a | 12.9 ± 0.4a | 26.5 ± 0.9a | 14.3 ± 0.3a | 17.7 ± 1.2a |
P1IN | 8.7 ± 0.1b | 5.8 ± 0.4b | 12.9 ± 0.3b | 6.8 ± 0.3b | 6.1 ± 0.5b | 5.0 ± 0.4b | 3.5 ± 0.2b | |
p > F | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulas, L.; Campesi, G.; Piluzza, G.; Re, G.A.; Deligios, P.A.; Ledda, L.; Canu, S. Inoculation and N Fertilization Affect the Dry Matter, N Fixation, and Bioactive Compounds in Sulla Leaves. Agronomy 2019, 9, 289. https://doi.org/10.3390/agronomy9060289
Sulas L, Campesi G, Piluzza G, Re GA, Deligios PA, Ledda L, Canu S. Inoculation and N Fertilization Affect the Dry Matter, N Fixation, and Bioactive Compounds in Sulla Leaves. Agronomy. 2019; 9(6):289. https://doi.org/10.3390/agronomy9060289
Chicago/Turabian StyleSulas, Leonardo, Giuseppe Campesi, Giovanna Piluzza, Giovanni A. Re, Paola A. Deligios, Luigi Ledda, and Simone Canu. 2019. "Inoculation and N Fertilization Affect the Dry Matter, N Fixation, and Bioactive Compounds in Sulla Leaves" Agronomy 9, no. 6: 289. https://doi.org/10.3390/agronomy9060289
APA StyleSulas, L., Campesi, G., Piluzza, G., Re, G. A., Deligios, P. A., Ledda, L., & Canu, S. (2019). Inoculation and N Fertilization Affect the Dry Matter, N Fixation, and Bioactive Compounds in Sulla Leaves. Agronomy, 9(6), 289. https://doi.org/10.3390/agronomy9060289