Interactive Effects of Grafting Techniques and Scion-Rootstocks Combinations on Vegetative Growth, Yield and Quality of Cucumber (Cucumis sativus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grafting Plant Materials
2.2. Nursery of Scion and Rootstocks
2.3. Grafting Techniques and Procedure
2.4. Studied Characteristics
2.4.1. Plant Vegetative Growth
2.4.2. Fruit Growth and Quality Analysis
2.5. Data Processing and Experimental Design
3. Results and Discussion
3.1. Plant Vegetative Growth
3.2. Fruit Growth and Quality
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pina, A.Y.; Errea, P. A review of new advances in mechanism of graft compatibility-incompatibility. Sci. Hortic. 2005, 106, 1–11. [Google Scholar] [CrossRef]
- Mudge, K.; Janick, J.; Scoffield, S.; Goldschmidt, E.E. A history of grafting. Hortic. Rev. 2009, 35, 437–494. [Google Scholar]
- Hartmann, H.T.; Kester, D.E.; Davies, F.T.; Geneve, R.L. Principles of grafting and budding. In Plant Propagation: Principles and Practices, 8th ed.; Pearson: London, UK, 2010; Chapter 11; pp. 415–463. ISBN 978-0-13-501449-3. [Google Scholar]
- Lee, J.M.; Kubota, C.; Tsao, S.J.; Bie, Z.; Hoyos, E.P.; MorraL, O.M. Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci. Hortic. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Lee, J.M. Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. Hortic. Sci. 1994, 29, 235–239. [Google Scholar]
- Hartman, G.; Pawlowski, M.; Herman, T.; Eastburn, D. Organically Grown Soybean Production in the USA: Constraints and Management of Pathogens and Insect Pests. Agronomy 2016, 6, 16. [Google Scholar] [CrossRef]
- Diacono, M.; Persiani, A.; Fiore, A.; Montemurro, F.; Canali, S. Agro-Ecology for Potential Adaptation of Horticultural Systems to Climate Change: Agronomic and Energetic Performance Evaluation. Agronomy 2017, 7, 35. [Google Scholar] [CrossRef]
- St. Amand, P.C.; Wehner, T.C. Crop loss to 14 diseases in cucumber in North Carolina for 1983 to 1988. Cuc. Genet. Coop. Rep. 1999, 14, 15–17. [Google Scholar]
- Pradeep, K.; Youssef, R.; Mariateresa, C.; Giuseppe, C. Vegetable Grafting as a Tool to Improve Drought Resistance and Water Use Efficiency. Front. Plant Sci. 2017, 8, 1130. [Google Scholar] [CrossRef]
- Huang, Y.; Bie, Z.; He, S.; Hua, B.; Zhen, A.; Liu, Z. Improving cucumber tolerance to major nutrients induced salinity by grafting onto Cucurbita ficifolia. Environ. Exp Bot. 2010, 69, 32–38. [Google Scholar] [CrossRef]
- Schwarz, D.; Rouphael, Y.; Colla, G.; Venema, J.H. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Sci. Hortic. 2010, 127, 162–171. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Rea, E.; Cardarelli, M. Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Sci. Hortic. 2012, 135, 177–185. [Google Scholar] [CrossRef]
- Moore, R. A model for graft compatibility-incompatibility in higher plants. Am. J. Bot. 1984, 71, 751–758. [Google Scholar] [CrossRef]
- De Miguel, A.; Cebolla, V. Terralia 53, Unión del Injerto; Terralia: Madrid, Spain, October 2005; pp. 50–60. Available online: https://www.terralia.com/terralias/view_report?magazine_report_id=365 (accessed on 5 January 2018).
- Kumar, R.M.S.; Gao, L.X.; Yuan, H.W.; Xu, D.B.; Liang, Z.; Tao, S.C.; Guo, W.B.; Yan, D.L.; Zheng, B.S.; Edqvist, J. Auxin enhances grafting success in Carya cathayensis (Chinese hickory). Planta 2018, 247, 761–772. [Google Scholar] [CrossRef]
- Melnyk, C.W. Plant grafting: Insights into tissue regeneration. Regeneration 2017, 4, 3–14. [Google Scholar] [CrossRef]
- De Velasco Alvarado, M.J. Anatomía y Manejo Agronómico de Plantas Injertadas en Jitomate. Master’s Thesis, Universidad Autónoma de Chapingo, Chapingo, Mexico, May 2013. Available online: https://chapingo.mx/horticultura/pdf/tesis/TESISMCH2013050810128186.pdf (accessed on 1 June 2018).
- Leonardi, C.; Romano, D. Recent issues on vegetable grafting. Acta Hortic. 2004, 631, 163–174. [Google Scholar] [CrossRef]
- Yang, S.; Xiang, G.; Zhang, S.; Lou, C. Electrical resistance as a measure of graft union. J. Plant Physiol. 1993, 141, 98–104. [Google Scholar] [CrossRef]
- Bletsos, F.A.; Olympios, C.M. Rootstocks and Grafting of Tomatoes, Peppers and Egg plants for Soil-borne Disease Resistance, Improved Yield and Quality. Eur. J. Plant Sci. Biotechnol. 2008, 2, 62–73. Available online: http://www.globalsciencebooks.info/Online/GSBOnline/images/0812/EJPSB_2(SI1)/EJPSB_2(SI1)62-73o.pdf (accessed on 1 June 2018).
- Torii, T.; Kasiwazaki, M.; Okamoto, T.; Kitani, O. Evaluation of graft-take using a thermal camera. Acta Hortic. 1992, 319, 631–634. [Google Scholar] [CrossRef]
- Oda, M.; Maruyama, M.; Mori, G. Water Transfer at Graft Union of Tomato Plants Grafted on to Solanum Rootstocks. J. Jpn. Soc. Hortic. Sci. 2005, 74, 458–463. [Google Scholar] [CrossRef]
- De Miguel, A.; Cebolla, V. Terralia 53, Pages 50–60. Octubre 2005. Unión del Injerto. Available online: https: //sci-hub.tw/http://hortsci.ashspublications.org/content/48/1/34.short (accessed on 5 May 2018).
- Bausher, M.G. Road, South Rock, Pierce, Fort Graft Angle and Its Relationship to Tomato Plant Survival. Hort. Sci. 2013, 48, 34–36. Available online: http://hortsci.ashspublications.org/content/48/1/34.short (accessed on 6 June 2018).
- Turquois, N.; Malone, M. Non-destructive assessment of developing hydraulic connections in the graft union of tomato. J. Exp. Bot. 1996, 47, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Sarafis, V.; Campbell, E.O.; Callaghan, P.T. Noninvasive imaging of water flow in plants by NMR microscopy. Protoplasma 1993, 173, 170–176. [Google Scholar] [CrossRef]
- Hochmuth, R.; Davis, L.L.; Laughlin, W.L.; Simonne, E.H. Evaluation of Organic Nutrient Sources in the Production of Greenhouse Hydroponic Basil; Research Report 2003-08; University of Florida: Gainesville, FL, USA, June 2008; pp. 1–7. [Google Scholar]
- Goh, K.M. Evaluation of potting media for commercial nursery production of container-grown plants. V. Patterns of release of nitrogen fertilizers in different media. N. Z. J. Agr. Res. 1979, 22, 163–171. [Google Scholar] [CrossRef]
- Agricultural Statistics of Pakistan, 2017–2018. Available online: http://www.finance.gov.pk/survey/chapters_14/ (accessed on 1 December 2018).
- Oda, M. Grafting of Vegetable Crops; Scientific Report of Agriculture and Biological Sciences; Osaka Prefecture University: Osaka, Japan, 2002; Volume 54, pp. 49–72. [Google Scholar]
- Davis, A.R.; Perkins-Veazie, P.; Sakata, Y.; López-Galarza, S.; Maroto, J.V.; Lee, S.G.; Huh, Y.C.; Sun, Z.; Miguel, A.; King, S.R.; et al. Cucurbit grafting. Criti. Rev. Plant Sci. 2008, 27, 50–74. [Google Scholar] [CrossRef]
- Sakata, Y.; Ohara, T.; Sugiyama, M. The history of melon and cucumber grafting in Japan. Acta Hortic. 2008, 767, 217–228. [Google Scholar] [CrossRef]
- Ito, T. Present state of transplant production practices in Japanese horticultural industry. In Proceedings of the International Symposiumon Transplant Production Systems, Transplantant Production Systems, Yokohama, Japan, 21–26 July 1992; Kurata, K., Kozai, T., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Kurata, K.; Kozai, T. Transplant Production Systems. In Proceedings of the International Symposium on Transplant Production Systems, Yokohama, Japan, 21–26 July 1992; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK; p. 335. Available online: http://www.springer.com/us/book/9780792317975 (accessed on 15 September 2018).
- Lee, J.M.; Oda, M. Grafting of Herbaceous Vegetable and Ornamental Crops. In Horticulture Reviews; Janick, J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 28, p. 453. [Google Scholar]
- Nishiura, Y.; Murase, H.; Honami, N.; Taira, T. Development of Plug-in Grafting Robotic System Osaka Prefecture University. In Proceedings of the IEEE International Conference on Robotics and Automaton, Nagoya, Japan, 25–27 May 1995; pp. 2510–2517. Available online: http://ieeexplore.ieee.org/abstract/ document/525636/ (accessed on 19 September 2018).
- Oda, M. Grafting of Vegetable Crops; Osaka Prefecture University: Osaka, Japan, March 2002; Volume 54, pp. 49–72. Available online: http://repository.osakafu-u.ac.jp/dspace/bitstream/10466/1053/1/KJ00000052064.pdf (accessed on 22 June 2018).
- Oda, M. Use of Grafted Seedlings for Vegetable Production in Japan. Acta Hortic. 2008, 770, 15–20. [Google Scholar] [CrossRef]
- Lee, J.M.; Bang, H.J.; Ham, H.S. Grafting of Vegetables. Jpn. Soc. Agric. Mach. Food Eng. 1998, 67, 1098–1104. Available online: https://www.jstage.jst.go.jp/article/jjshs1925/67/6/67_6_1098/_pdf (accessed on 22 June 2018). [CrossRef]
- Pavlou, G.; Vakalounakis, D.; Ligoxigakis, E. Control of root and stem rot of cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by grafting onto resistant rootstocks. Plant Dis. 2002, 86, 379–382. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, R.; Cao, Q.; Bie, Z. Improving the fruit yield and quality of cucumber by grafting onto the salt tolerant rootstock under NaCl stress. Sci. Hortic. 1999, 122, 26–31. [Google Scholar] [CrossRef]
- Cansev, A.; Ozgur, M. Grafting cucumber seedlings on Cucurbita spp.: comparison of different grafting methods, scions and their performance. J. Food Agric. Environ. 2010, 8, 804–809. [Google Scholar]
- Uysal, N.; Tuzel, Y.; Oztekin, G.B.; Tuzel, I.H. Effects of different rootstocks on greenhouse cucumber production. Acta Hortic. 2012, 927, 281–289. [Google Scholar] [CrossRef]
- Moradipour, F.; Dashti, F.; Zahedi, B. Effect of grafting on yield and some vegetative characteristics of two greenhouse cucumber cultivar. Iran. J. Hortic. Sci. 2010, 41, 291–300. [Google Scholar]
- Hoyos, P. Influence of different rootstocks on the yield and quality of greenhouses grown cucumbers. Acta Hortic. 2001, 559, 139–143. [Google Scholar] [CrossRef]
- Lee, J.; Bang, H.; Ham, H. Quality of cucumber fruit as affected by rootstock. Acta Hortic. 1999, 483, 117–124. [Google Scholar] [CrossRef]
- Sakata, Y.; Ohara, T.; Sugiyama, M. The history and present state of the grafting of Cucurbitaceous vegetables in Japan. Acta Hortic. 2007, 731, 159–170. [Google Scholar] [CrossRef]
- Davis, A.R.; Perkins-Veazie, P.; Hassell, R.; Levi, A.; King, S.R.; Zhang, X. Grafting effects on vegetable quality. HortScience 2008, 43, 1670–1672. [Google Scholar] [CrossRef]
- Sonneveld, C. Estimating quantities of water-soluble nutrients using a specific 1:2 by volume extract. Soil Sci. Plant Anal. 1990, 21, 1257–1265. [Google Scholar] [CrossRef]
- Oda, M. Grafting of Vegetables to Improve Greenhouse Production; Extension Bulletin 480; Food and Fertilizer Technology Center: Taipei city, China, 1 December 1999; p. 11. [Google Scholar]
- Ishibashi, K. Tongue-approach grafting in cucurbits. Agr. Hort. 1965, 40, 1899–1902. (In Japanese) [Google Scholar]
- Lee, J.M.; Oda, M. Grafting of herbaceous vegetable and ornamental crops. In Horticultural Reviews; Janick, J., Ed.; John Wiley and Sons: New York, NY, USA, 2003; Volume 28, pp. 61–124. [Google Scholar]
- Davis, R.F. Effect of Meloidogyne incognita on watermelon yield. Nematropica 2007, 37, 287–293. [Google Scholar]
- Yadava, I.L. A rapid and nondestructive method to determine chlorophyll in intact leaves. HortScience 1986, 21, 1449. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Agriculture Chemists, 12th ed.; Association of Official Agricultural Chemists: Washington, DC, USA, 1975; p. 870. [Google Scholar]
- Ranganna, S. Manual of Analysis of Fruit and Vegetable Products; Tata McGraw-Hill Publishing: New Delhi, India, 1977; Volume 6, pp. 151–160. [Google Scholar]
- Özarslandan, A.; Söğüt, M.A.; Yetișir, H.; Elekcıoğlu, I.H. Screening of bottle gourds (Lagenaria siceraria (Molina) Standley) genotypes with rootstock potential for watermelon production for resistance against Meloidogyne incognita (Kofoid & White, 1919) Chitwood and Meloidogyne javanica (Treub, 1885) Chitwood. Turk. Entomol. Derg. 2011, 35, 687–697. [Google Scholar]
- Ioannou, N. Integrating soil solarization with grafting on resistant rootstocks for management of soil-borne pathogens of eggplant. J. Hortic. Sci. Biotechnol. 2001, 7, 396–401. [Google Scholar] [CrossRef]
- Salata, A.C.; Bertolini, E.V.; Magro, F.O.; Cardoso, A.; Wilcken, S.R.S. Effect of grafting on cucumber production and reproduction of Meloidogyne javanica and M. incognita. Hortic Bras. 2012, 30, 590–594. [Google Scholar] [CrossRef]
- Netscher, C.; Sikora, R.A. Nematode parasites of vegetables. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture; CAB International: Wallingford, UK, 1990; pp. 237–283. [Google Scholar]
- Walters, S.A.; Wehner, T.C. ‘Lucia’, ‘Manteo’, and ‘Shelby’ root-knot nematode-resistant cucumber inbred lines. HortScience 1997, 32, 1301–1303. [Google Scholar] [CrossRef]
- Chen, Z.D.; Wand, P.S.; Zhou, Y.; Ji, Y.L.; Wan, Z.J.; Peng, L. Effects of rootstock grafting on yield, quality and control of Meloidogyne incognita of cucumber (Cucumis sativus L.). China Veget. 2012, 8, 57–62. [Google Scholar]
- Miguel, A.; Maroto, J.V. El injerto herbáceo en la sandía (Citrullus lanatus) como alternativa a la desinfecció n química del suelo. Invest. Agrar. Prod. Prot. Veg. 1996, 11, 239–253. [Google Scholar]
- Zhu, J.; Bie, Z.L.; Huang, Y.; Han, X.X. Effect of grafting on the growth and ion concentrations of cucumber seedlings under NaCl stress. Soil Sci. Plant Nutr. 2008, 54, 895–902. [Google Scholar] [CrossRef]
- Zhong, Y.Q.; Bie, Z.L. Effects of grafting on the growth and quality of cucumber fruits. Acta Hortic. 2007, 761, 341–347. [Google Scholar] [CrossRef]
- Yetisir, H.; Sari, N. Effect of different rootstock on plant growth, yield and quality of watermelon. Aust. J. Exp. Agric. 2003, 43, 1269–1274. [Google Scholar] [CrossRef]
- Huang, Y.; Bie, Z.L.; Liu, Z.X.; Zhen, A.; Wang, W.J. Protective role of proline against salt stress is partially related to the improvement of water status and peroxidase enzyme activity in cucumber. Soil Sci. Plant Nutr. 2009, 55, 698–704. [Google Scholar] [CrossRef] [Green Version]
- Aloni, B.; Cohen, R.; Karni, L.; Aktas, H.; Edelstein, H. Hormonal signaling in rootstock-scion interactions. Sci Hortic. 2010, 127, 119–126. [Google Scholar] [CrossRef]
- Zhang, J.; Shu, W.S. Mechanisms of heavy metal cadmium tolerance in plants. J. Plant. Physiol. Mol. Biol. 2006, 32, 1–8. [Google Scholar]
- Salehi-Mohammadi, R.; Khasi, A.; Lee, S.G.; Huh, Y.C.; Lee, J.M.; Delshad, M. Assessing survival and growth performance of Iranian melon to grafting onto Cucurbita rootstocks. Korean J. Hortic. Sci. Technol. 2009, 27, 1–6. [Google Scholar]
- Hartmann, H.T.; Kester, D.E.; Davies, F.T.; Geneve, R.L. Plant Propagation: Principles and Practices; Prentice Hall: Upper Saddle River, NJ, USA, 1997; p. 770. [Google Scholar]
- Martínez-Ballesta, M.C.; Alcaraz-López, C.; Muries, B.; Mota-Cadenas, C.; Carvajal, M. Physiological aspects of rootstock-scion interactions. Sci. Hortic. 2010, 127, 112–118. [Google Scholar] [CrossRef]
- Molnar, A.; Melnyk, C.W.; Bassett, A.; Hardcastle, T.J.; Dunn, R.; Baulcombe, D.C. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 2010, 328, 872–875. [Google Scholar] [CrossRef] [PubMed]
- Dunoyer, P.; Brosnan, C.A.; Schott, G.; Wang, Y.; Jay, F.; Alioua, A.; Himber, C.; Voinnet, O. An endogenous, systemic RNAi pathway in plants. Embryol. J. 2010, 29, 1699–1712. [Google Scholar] [CrossRef] [Green Version]
- Harada, T. Grafting and RNA transport via phloem tissue in horticultural plants. Sci. Hortic. 2010, 125, 545–550. [Google Scholar] [CrossRef]
- Yamasaki, A.; Yamashita, M.; Furuya, S. Mineral concentrations and cytokinin activity in the xylem exudates of grafted watermelons as affected by rootstocks and crop load. J. Jpn. Soc. Hortic. Sci. 1994, 62, 817–826. [Google Scholar] [CrossRef]
- Zekri, M. Citrus rootstocks affect scion nutrition, fruit quality, growth, yield and economical return. Fruits 2000, 55, 231–239. [Google Scholar] [CrossRef]
- Economides, C.V.; Gregoriou, C. Growth, yield and fruit quality of nucellar frost ‘Marsh’ Grapefruit on fifteen rootstocks in Cyprus. J. Amer. Soc. Hort. 1993, 118, 326–329. [Google Scholar] [CrossRef]
- Al-Jaleel, A.; Zekri, M.; Hammam, Y. Yield, fruit quality, and tree health of ‘Allen Eureka’ lemon on seven rootstocks in Saudi Arabia. Sci. Hort. 2005, 105, 457–465. [Google Scholar] [CrossRef]
- Reddy, Y.T.N.; Kurian, R.M.; Ramachander, P.R.; Singh, G.; Kohli, R.R. Long-term effects of rootstocks on growth and fruit yielding patterns of ‘Alphonso’ mango (Mangifera indica L.). Sci. Hort. 2003, 97, 95–108. [Google Scholar] [CrossRef]
- Traka-Mavronaa, E.; Metaxia, K.S.M.; Pritsaa, T. Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L.). Sci. Hort. 2000, 83, 353–362. [Google Scholar]
Grafting Technique | Cucurbitaceous Crop | Treatment Description (Scion-Rootstock) | |
---|---|---|---|
G1 = Tongue grafting G2 = Splice grafting G3 = Single cotyledon grafting G4 = Hole insertion Grafting Gn = Non-grafted | Scion; Cucumber cv. Kalaam F1 Rootstock; Ridge gourd (Luffa operculata) Bitter gourd (Momordica charantia) Pumpkin (Cucurbita pepo) Bottle gourd (Lagenaria siceraria) | T1 = Cucumber-Ridge gourd T2 = Cucumber-Bitter gourd T3 = Cucumber-Pumpkin T4 = Cucumber-Bottle gourd Tc = Kalam F1 (real rooted) | |
Replications | R1 | ||
R2 | |||
R3 | |||
R4 | |||
R5 |
Grafting Technique | Rootstock Cultivar | Number of Grafted Plants | 2017 | 2018 | ||||
---|---|---|---|---|---|---|---|---|
Mortality (%) | Plants Survival (%) | Mortality (%) | Plants Survival (%) | |||||
Day, 15 | Day, 30 | Day, 15 | Day, 30 | |||||
Tongue grafting (G1) | Ridge gourd (T1) | 100 | 10.00 ± 0.12f | 18.00 ± 0.53f | 82.00 ± 1.08bc | 8.00 ± 0.15f | 17.00 ± 0.27hi | 83.00 ± 2.31cd |
Bitter gourd (T2) | 100 | 13.00 ± 0.12e | 20.00 ± 0.29ef | 80.00 ± 1.60bc | 14.00 ± 0.24d | 19.00 ± 0.28h | 81.00 ± 0.75cde | |
Pumpkin (T3) | 100 | 20.00 ± 0.36c | 35.00 ± 1.02b | 65.00 ± 1.17f | 19.00 ± 0.55c | 34.00 ± 0.48c | 66.00 ± 2.13hi | |
Bottle gourd (T4) | 100 | 7.00 ± 0.13g | 17.00 ± 0.42f | 83.00 ± 1.95b | 8.00 ± 0.12f | 16.00 ± 0.49ij | 84.00 ± 0.91cd | |
Splice grafting (G2) | Ridge gourd (T1) | 100 | 4.00 ± 0.04h | 7.00 ± 0.08gh | 93.00 ± 0.61a | 3.00 ± 0.10hi | 5.00 ± 0.05k | 95.00 ± 1.15a |
Bitter gourd (T2) | 100 | 3.00 ± 0.04h | 8.00 ± 0.16g | 92.00 ± 1.22a | 2.00 ± 0.05i | 7.00 ± 0.18k | 93.00 ± 1.49ab | |
Pumpkin (T3) | 100 | 7.00 ± 0.10g | 17.00 ± 0.53f | 83.00 ± 1.96b | 5.00 ± 0.06g | 14.00 ± 0.20j | 86.00 ± 0.95bc | |
Bottle gourd (T4) | 100 | 3.00 ± 0.07h | 4.00 ± 0.09h | 96.00 ± 2.77a | 4.00 ± 0.10gh | 5.00 ± 0.12k | 95.00 ± 0.55a | |
Single Cotyledon grafting (G3) | Ridge gourd (T1) | 100 | 11.00 ± 0.36f | 22.00 ± 0.57e | 78.00 ± 1.41bcd | 9.00 ± 0.22f | 23.00 ± 0.37g | 77.00 ± 1.66def |
Bitter gourd (T2) | 100 | 10.00 ± 0.22f | 26.00 ± 0.28d | 74.00 ± 2.38cde | 9.00 ± 0.13f | 26.00 ± 0.38f | 74.00 ± 1.18efg | |
Pumpkin (T3) | 100 | 20.00 ± 0.58c | 37.00 ± 0.90b | 63.00 ± 1.07f | 22.00 ± 0.65b | 37.00 ± 0.75b | 63.00 ± 1.57i | |
Bottle gourd (T4) | 100 | 17.00 ± 0.51d | 23.00 ± 0.62de | 77.00 ± 2.22b-e | 15.00 ± 0.42d | 22.00 ± 0.57g | 78.00 ± 0.56def | |
Hole Insertion grafting (G4) | Ridge gourd (T1) | 100 | 14.00 ± 0.19e | 30.00 ± 0.94c | 70.00 ± 2.27def | 11.00 ± 0.13e | 28.00 ± 0.10ef | 72.00 ± 1.20fgh |
Bitter gourd (T2) | 100 | 16.00 ± 0.26d | 31.00 ± 0.33c | 69.00 ± 1.49ef | 14.00 ± 0.44d | 31.00 ± 0.46d | 69.00 ± 1.83ghi | |
Pumpkin (T3) | 100 | 32.00 ± 0.34a | 58.00 ± 1.62a | 42.00 ± 0.81g | 29.00 ± 0.78a | 56.00 ± 0.79a | 44.00 ± 1.29j | |
Bottle gourd (T4) | 100 | 22.00 ± 0.52b | 31.00 ± 0.60c | 69.00 ± 0.44ef | 20.00 ± 0.22c | 29.00 ± 0.86de | 71.00 ± 0.53fgh | |
Non-grafted (Gn) | Kalaam, F1 (Tc) | 100 | 7.00 ± 0.10g | 18.00 ± 0.45f | 82.00 ± 1.16bc | 5.00 ± 0.12g | 17.00 ± 0.40hi | 83.00 ± 2.28cd |
Grafting Technique | 2017 | 2018 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant Height (cm) | Number/Plant | Stem Diameter (cm) | Flowering Time (Days) | First Fruit Harvesting Time (Days) | Plant Height (cm) | Number/Plant | Stem Diameter (cm) | Flowering Time (Days) | First Fruit Harvesting Time (Days) | ||||
Branches/Plant | Leaves/Plant | Branches/Plant | Leaves/Plant | ||||||||||
Tongue grafting (G1) | Ridge gourd (T1) | 570.0 ± 16.32a–d | 10.00 ± 0.09c | 160.0 ± 2.97cde | 0.95 ± 0.03bc | 34.00 ± 0.84ab | 46.00 ± 1.07a | 574.0 ± 15.11abc | 11.00 ± 0.25bc | 172.0 ± 4.77abc | 0.93 ± 0.03bc | 34.00 ± 0.58ab | 46.00 ± 1.42a |
Bitter gourd (T2) | 566.0 ± 17.87a-d | 9.00 ± 0.14d | 144.0 ± 1.98efg | 0.89 ± 0.02cd | 35.00 ± 0.50ab | 47.00 ± 0.76a | 561.0 ± 9.79abc | 10.00 ± 0.19cd | 159.0 ± 3.08cde | 0.86 ± 0.03cd | 35.00 ± 0.92ab | 47.00 ± 1.02a | |
Pumpkin (T3) | 529.0 ± 10.35cd | 9.00 ± 0.18d | 157.0 ± 0.99cde | 0.70 ± 0.01f–i | 34.00 ± 0.37ab | 46.00 ± 0.68a | 555.0 ± 10.64abc | 9.00 ± 0.21de | 166.0 ± 2.57a–d | 0.72 ± 0.02efg | 34.00 ± 0.33ab | 46.00 ± 0.70a | |
Bottle gourd (T4) | 600.0 ± 13.87ab | 10.00 ± 0.12c | 177.0 ± 3.39b | 1.00 ± 0.03b | 34.00 ± 0.96ab | 46.00 ± 0.56a | 595.0 ± 13.81ab | 10.00 ± 0.28cd | 171.0 ± 2.14abc | 1.01 ± 0.03ab | 35.00 ± 1.14ab | 47.00 ± 0.96a | |
Splice grafting (G2) | Ridge gourd (T1) | 588.0 ± 12.96abc | 11.00 ± 0.21b | 163.0 ± 1.06bcd | 1.00 ± 0.02b | 33.00 ± 0.52b | 45.00 ± 1.18a | 597.0 ± 18.23ab | 12.00 ± 0.33ab | 177.0 ± 4.76ab | 1.01 ± 0.02ab | 33.00 ± 0.58b | 45.00 ± 1.26a |
Bitter gourd (T2) | 567.0 ± 12.14a–d | 11.00 ± 0.08b | 171.0 ± 3.99bc | 0.95 ± 0.01bc | 34.00 ± 0.60ab | 46.00 ± 1.42a | 575.0 ± 16.23abc | 11.00 ± 0.35bc | 176.0 ± 2.97abc | 0.93 ± 0.03bc | 33.00 ± 0.54b | 45.00 ± 0.70a | |
Pumpkin (T3) | 546.0 ± 3.37bcd | 10.00 ± 0.15c | 159.0 ± 0.75cde | 0.85 ± 0.02cde | 34.00 ± 1.10ab | 46.00 ± 0.69a | 561.0 ± 10.87abc | 11.00 ± 0.12bc | 169.5 ± 2.71a–d | 0.81 ± 0.02de | 34.00 ± 0.65ab | 46.00 ± 0.61a | |
Bottle gourd (T4) | 622.0 ± 4.06a | 13.00 ± 0.40a | 194.0 ± 6.32a | 1.13 ± 0.03a | 33.00 ± 0.43b | 45.00 ± 0.64a | 619.0 ± 11.44a | 12.60 ± 0.17a | 182.5 ± 2.70a | 1.10 ± 0.02a | 33.00 ± 0.56b | 45.00 ± 1.25a | |
Single Cotyledon grafting (G3) | Ridge gourd (T1) | 540.0 ± 16.62bcd | 8.00 ± 0.21e | 131.0 ± 2.29ghi | 0.80 ± 0.01def | 34.00 ± 1.09ab | 46.00 ± 1.40a | 534.0 ± 7.80bc | 10.00 ± 0.26cd | 163.0 ± 3.15b–e | 0.73 ± 0.01efg | 34.00 ± 0.82ab | 46.00 ± 1.49a |
Bitter gourd (T2) | 535.0 ± 11.66bcd | 10.00 ± 0.10c | 152.0 ± 0.21def | 0.68 ± 0.02ghi | 35.00 ± 0.82ab | 47.00 ± 0.44a | 543.0 ± 16.06bc | 9.00 ± 0.16de | 140.0 ± 2.99f | 0.73 ± 0.02efg | 35.00 ± 0.39ab | 47.00 ± 1.03a | |
Pumpkin (T3) | 530.0 ± 8.02cd | 8.00 ± 0.10e | 138.0 ± 3.09fgh | 0.73 ± 0.02f–i | 36.00 ± 0.21ab | 48.00 ± 0.60a | 541.0 ± 15.55bc | 9.00 ± 0.11de | 153.0 ± 4.35def | 0.70 ± 0.02fg | 36.00 ± 0.98ab | 48.00 ± 0.50a | |
Bottle gourd (T4) | 570.0 ± 16.36a–d | 9.00 ± 0.17d | 162.0 ± 4.53bcd | 0.90 ± 0.02bcd | 35.00 ± 0.67ab | 47.00 ± 0.66a | 575.0 ± 14.77abc | 10.00 ± 0.22cd | 171.6 ± 4.62abc | 0.92 ± 0.02bc | 35.00 ± 0.51ab | 47.00 ± 0.83a | |
Hole Insertion grafting (G4) | Ridge gourd (T1) | 544.0 ± 15.26bcd | 8.00 ± 0.21e | 127.0 ± 3.06hij | 0.78 ± 0.02efg | 36.00 ± 0.63ab | 48.00 ± 0.94a | 571.0 ± 11.11abc | 10.00 ± 0.32cd | 165.0 ± 3.43a-d | 0.77 ± 0.01d–g | 35.00 ± 0.60ab | 47.00 ± 0.58a |
Bitter gourd (T2) | 509.0 ± 7.95d | 7.00 ± 0.15f | 116.0 ± 2.09ij | 0.67 ± 0.01hi | 37.00 ± 0.59a | 49.00 ± 1.45a | 521.0 ± 9.63c | 8.00 ± 0.12e | 138.0 ± 1.87f | 0.70 ± 0.01fg | 37.00 ± 0.85a | 49.00 ± 1.00a | |
Pumpkin (T3) | 412.0 ± 5.21e | 5.00 ± 0.05g | 111.0 ± 2.76j | 0.63 ± 0.01i | 37.00 ± 0.75a | 49.00 ± 1.45a | 401.0 ± 3.91d | 4.00 ± 0.06f | 103.0 ± 2.09g | 0.67 ± 0.02g | 37.00 ± 0.56a | 49.00 ± 0.32a | |
Bottle gourd (T4) | 565.0 ± 14.22a–d | 9.00 ± 0.12d | 163.0 ± 4.58bcd | 0.75 ± 0.02e–h | 35.00 ± 0.43ab | 47.00 ± 1.12a | 561.0 ± 6.74abc | 8.00 ± 0.16e | 162.0 ± 2.39b–e | 0.78 ± 0.02def | 37.00 ± 0.54a | 49.00 ± 1.23a | |
Non-grafted (Gn) | Kalaam, F1 (Tc) | 552.0 ± 13.96bcd | 8.00 ± 0.26e | 133.0 ± 0.60gh | 0.72 ± 0.02f-i | 34.00 ± 0.65ab | 46.00 ± 0.82a | 571.0 ± 15.82abc | 8.00 ± 0.09e | 147.0 ± 4.36ef | 0.70 ± 0.02fg | 35.00 ± 0.90ab | 47.00 ± 0.36a |
Grafting Technique | Rootstock Cultivar | 2017 | 2018 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Number of Fruit/Plants | Fruit Weight/Cucumber (g) | Fruit Shape Index | TSS (%) | Fruit Dry Matter (%) | Number of Fruit/Plants | Fruit Weight/Cucumber (g) | Fruit Shape Index | TSS (%) | Fruit Dry Matter (%) | ||
Tongue grafting (G1) | Ridge gourd (T1) | 12.60 ± 0.17b | 113.80 ± 1.49a–d | 7.65 ± 0.24ab | 4.70 ± 0.09b–e | 4.35 ± 0.09a–c | 13.00 ± 0.33b–d | 115.90 ± 2.45abc | 7.74 ± 0.12ab | 4.74 ± 0.09ab | 4.32 ± 0.07ab |
Bitter gourd (T2) | 12.00 ± 0.08bc | 101.00 ± 3.24d–g | 6.70 ± 0.20cde | 4.47 ± 0.11c–g | 4.30 ± 0.10abc | 12.00 ± 0.22c–f | 100.50 ± 0.72ef | 6.77 ± 0.12def | 4.43 ± 0.09bcd | 4.2 5± 0.09abc | |
Pumpkin (T3) | 10.00 ± 0.15ef | 90.80 ± 2.12fgh | 6.12 ± 0.06efg | 4.00 ± 0.05ghi | 3.80 ± 0.07def | 11.50 ± 0.18ef | 96.10 ± 1.85f | 6.21 ± 0.10fg | 4.04 ± 0.05de | 3.76 ± 0.07cd | |
Bottle gourd (T4) | 13.00 ± 0.28b | 121.40 ± 3.36ab | 6.88 ± 0.12b-e | 5.00 ± 0.09ab | 4.56 ± 0.11ab | 13.10 ± 0.41bc | 120.10 ± 2.42ab | 6.97 ± 0.10cde | 5.02 ± 0.06a | 4.40 ± 0.14a | |
Splice grafting (G2) | Ridge gourd (T1) | 13.00 ± 0.33b | 116.90 ± 1.94abc | 7.75 ± 0.19a | 4.94 ± 0.07abc | 4.40 ± 0.07abc | 13.90 ± 0.25b | 117.33 ± 1.03ab | 7.71 ± 0.12ab | 4.93 ± 0.13ab | 4.43 ± 0.06a |
Bitter gourd (T2) | 13.00 ± 0.29b | 107.00 ± 2.95cde | 7.11 ± 0.11a–d | 4.66±0.06b-e | 4.45 ± 0.04abc | 12.60 ± 0.27b–e | 105.57 ± 1.80c–f | 7.06 ± 0.23bcd | 4.61 ± 0.09abc | 4.40 ± 0.06a | |
Pumpkin (T3) | 11.00 ± 0.13cde | 89.60 ± 1.98gh | 6.60 ± 0.19de | 4.30 ± 0.06e–h | 4.44 ± 0.12abc | 11.70 ± 0.30def | 97.45 ± 1.78f | 6.67 ± 0.17def | 4.22 ± 0.07cd | 4.40 ± 0.10a | |
Bottle gourd (T4) | 14.60 ± 0.20a | 122.50 ± 2.42a | 7.88 ± 0.22a | 5.20 ± 0.11a | 4.62 ± 0.11a | 15.60 ± 0.38a | 121.29 ± 3.05a | 7.84 ± 0.10a | 5.11 ± 0.15a | 4.50 ± 0.12a | |
Single Cotyledon grafting (G3) | Ridge gourd (T1) | 12.00 ± 0.32bc | 111.00 ± 2.72a–d | 7.50 ± 0.10abc | 4.40 ± 0.12d–g | 4.30 ± 0.06abc | 13.00 ± 0.35b–d | 116.00 ± 2.90abc | 7.59 ± 0.20abc | 4.45 ± 0.09bcd | 4.26 ± 0.12abc |
Bitter gourd (T2) | 11.30 ± 0.24cd | 95.40 ± 2.31efg | 6.80 ± 0.12cde | 4.18 ± 0.05fgh | 4.15 ± 0.04b–d | 12.00 ± 0.26c–f | 98.39 ± 0.89f | 6.79 ± 0.12def | 4.21 ± 0.09cd | 4.10 ± 0.10a–d | |
Pumpkin (T3) | 10.00 ± 0.27ef | 81.00 ± 1.38hi | 5.72 ± 0.14fg | 3.67 ± 0.09i | 3.70 ± 0.05ef | 11.00 ± 0.19fg | 95.21 ± 1.37f | 5.77 ± 0.06gh | 3.65 ± 0.07e | 3.60 ± 0.07de | |
Bottle gourd (T4) | 12.00 ± 0.18bc | 113.80 ± 2.70a–d | 6.60 ± 0.13de | 4.95 ± 0.06ab | 4.32 ± 0.10abc | 12.00 ± 0.14c–f | 116.30 ± 3.43ab | 6.67 ± 0.12def | 4.91 ± 0.10ab | 4.29 ± 0.11ab | |
Hole Insertion grafting (G4) | Ridge gourd (T1) | 12.00 ± 0.35bc | 102.80 ± 3.58def | 6.93 ± 0.13bcd | 4.12 ± 0.10ghi | 4.15 ± 0.08b–d | 12.80 ± 0.12b–e | 110.20 ± 2.47b–e | 7.04 ± 0.18b–d | 4.20 ± 0.09cd | 4.10 ± 0.10a–d |
Bitter gourd (T2) | 11.00 ± 0.11cde | 88.50 ± 1.83gh | 6.47 ± 0.11def | 3.87 ± 0.06hi | 3.86 ± 0.09def | 11.50 ± 0.10ef | 95.80 ± 1.24f | 6.54 ± 0.17def | 3.96 ± 0.05de | 3.83 ± 0.07b–d | |
Pumpkin (T3) | 9.30 ± 0.20f | 74.90 ± 1.41i | 5.40±0.09g | 3.10 ± 0.08j | 3.60 ± 0.05f | 10.00 ± 0.19g | 77.40 ± 1.36g | 5.38 ± 0.08h | 3.12 ± 0.05f | 3.20 ± 0.09e | |
Bottle gourd (T4) | 12.00 ± 0.13bc | 109.20 ± 2.99bcd | 6.31±0.15def | 4.78 ± 0.14a–d | 4.10 ± 0.04cde | 12.60 ± 0.27b–e | 112.90 ± 1.26a–d | 6.30 ± 0.10efg | 4.87 ± 0.15ab | 4.02 ± 0.10a–d | |
Non-grafted (Gn) | Kalaam, F1 (Tc) | 10.30 ± 0.23def | 100.80 ± 1.96d–g | 6.50±0.15def | 4.65 ± 0.11b–f | 4.52 ± 0.08abc | 10.00 ± 0.15g | 103.60 ± 0.84def | 6.45 ± 0.07d–g | 4.62 ± 0.14abc | 4.40 ± 0.12a |
Fruit Quality | DAP (Days) | 2017 | 2018 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ridge Gourd (T1) | Bitter Gourd (T2) | Pumpkin (T3) | Bottle Gourd (T4) | Kalaam, F1 (Tc) | Ridge Gourd (T1) | Bitter Gourd (T2) | Pumpkin (T3) | Bottle Gourd (T4) | Kalaam, F1 (Tc) | ||
Ascorbic Acid (mg/100 g FW) | 3 | 52.70 ± 1.31ab | 48.10 ± 0.96b | 40.80 ± 1.27c | 56.10 ± 0.90a | 49.40 ± 0.31b | 52.90 ± 1.21ab | 48.50 ± 0.63b | 41.50 ± 0.96c | 55.70 ± 0.99a | 49.10 ± 1.08b |
6 | 42.40 ± 0.78ab | 39.10 ± 0.97b | 31.30 ± 0.65c | 44.00 ± 0.67a | 38.80 ± 1.03b | 42.00 ± 0.61ab | 38.40 ± 0.65bc | 32.60 ± 0.92d | 43.50 ± 0.35a | 38.30 ± 1.12c | |
9 | 19.10 ± 0.60b | 17.00 ± 0.47c | 15.80 ± 0.20c | 25.10 ± 0.48a | 17.30 ± 0.29bc | 19.20 ± 0.60b | 17.20 ± 0.42bc | 16.00 ± 0.24c | 25.20 ± 0.60a | 16.90 ± 0.51c | |
Soluble Protein (mg/g FW) | 3 | 15.30 ± 0.21b | 12.90 ± 0.37c | 11.10 ± 0.29d | 17.30 ± 0.47a | 14.10 ± 0.33bc | 15.60 ± 0.40b | 13.20 ± 0.39c | 11.50 ± 0.24d | 17.20 ± 0.26a | 13.50 ± 0.21c |
6 | 12.60 ± 0.14a | 9.50 ± 0.23b | 7.80 ± 0.13c | 5.00 ± 0.06d | 9.60 ± 0.17b | 12.50 ± 0.13a | 9.40 ± 0.26b | 8.10 ± 0.10c | 4.90 ± 0.03d | 9.20 ± 0.16b | |
9 | 10.10 ± 0.17b | 7.50 ± 0.12d | 6.70 ± 0.19e | 12.40 ± 0.14a | 8.50 ± 0.07c | 10.40 ± 0.14b | 7.70 ± 0.20c | 6.80 ± 0.22d | 12.30 ± 0.11a | 8.00 ± 0.21c | |
Free amino acid (mg/100 g FW) | 3 | 3.80 ± 0.06a | 3.40 ± 0.09bc | 3.10 ± 0.04c | 3.70 ± 0.09ab | 3.50 ± 0.06ab | 3.70 ± 0.12a | 3.30 ± 0.02bc | 3.10 ± 0.08c | 3.60 ± 0.05ab | 3.10 ± 0.05c |
6 | 2.80 ± 0.06b | 2.70 ± 0.02b | 2.70 ± 0.02b | 4.20 ± 0.09a | 2.20 ± 0.02c | 2.90 ± 0.03b | 2.80 ± 0.09b | 2.60 ± 0.08b | 4.10 ± 0.09a | 2.60 ± 0.08b | |
9 | 2.20 ± 0.04b | 2.20 ± 0.06b | 2.10 ± 0.05bc | 3.00 ± 0.02a | 1.90 ± 0.05c | 2.10 ± 0.03b | 2.20 ± 0.06b | 2.00 ± 0.06b | 3.10 ± 0.07a | 2.10 ± 0.04b | |
Soluble Sugar (mg/g FW) | 3 | 5.00 ± 0.14a | 4.50 ± 0.12ab | 4.40 ± 0.14b | 5.00 ± 0.12a | 4.40 ± 0.07b | 4.90 ± 0.16a | 4.60 ± 0.08a | 4.50 ± 0.07a | 4.90 ± 0.16a | 4.50 ± 0.08a |
6 | 5.90 ± 0.14a | 5.60 ± 0.09ab | 5.20 ± 0.06b | 5.80 ± 0.18a | 5.20 ± 0.11b | 5.80 ± 0.06a | 5.50 ± 0.12a | 5.10 ± 0.04b | 5.60 ± 0.04a | 5.00 ± 0.04b | |
9 | 6.80 ± 0.11a | 6.20 ± 0.12b | 6.10 ± 0.07b | 7.00 ± 0.06a | 6.30 ± 0.06b | 6.60 ± 0.15ab | 6.30 ± 0.14bc | 6.00 ± 0.06c | 6.90 ± 0.09a | 6.10 ± 0.09bc |
Mineral Composition | 2017 | 2018 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | N | P | K | Ca | Mg | |
Ridge gourd (T1) | 2.34 ± 0.03b | 0.88 ± 0.01a | 4.90 ± 0.11a | 0.37 ± 0.00a | 0.40 ± 0.00a | 2.30 ± 0.05b | 0.80 ± 0.02ab | 4.85 ± 0.11a | 0.33 ± 0.01a | 0.38 ± 0.01a |
Bitter gourd (T2) | 2.17 ± 0.04bc | 0.80 ± 0.02b | 4.40 ± 0.11b | 0.30 ± 0.01b | 0.34 ± 0.00b | 2.10 ± 0.02cd | 0.74 ± 0.02bc | 4.34 ± 0.05b | 0.27 ± 0.00b | 0.31 ± 0.01b |
Pumpkin (T3) | 2.10 ± 0.05c | 0.68 ± 0.01c | 4.27 ± 0.07b | 0.27 ± 0.01b | 0.27 ± 0.00c | 2.00 ± 0.04d | 0.70 ± 0.02c | 4.21 ± 0.11b | 0.22 ± 0.00c | 0.25 ± 0.00c |
Bottle gourd (T4) | 3.00 ± 0.05a | 0.90 ± 0.01a | 4.99 ± 0.09a | 0.37 ± 0.01a | 0.42 ± 0.01a | 2.90 ± 0.04a | 0.87 ± 0.01a | 4.93 ± 0.13a | 0.35 ± 0.00a | 0.40 ± 0.00a |
Kalaam, F1 (Tc) | 2.27 ± 0.04bc | 0.73 ± 0.01c | 4.27 ± 0.10b | 0.30 ± 0.00b | 0.33 ± 0.01b | 2.20 ± 0.02bc | 0.71 ± 0.02c | 4.30 ± 0.08b | 0.26 ± 0.01b | 0.31 ± 0.01b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noor, R.S.; Wang, Z.; Umair, M.; Yaseen, M.; Ameen, M.; Rehman, S.-U.; Khan, M.U.; Imran, M.; Ahmed, W.; Sun, Y. Interactive Effects of Grafting Techniques and Scion-Rootstocks Combinations on Vegetative Growth, Yield and Quality of Cucumber (Cucumis sativus L.). Agronomy 2019, 9, 288. https://doi.org/10.3390/agronomy9060288
Noor RS, Wang Z, Umair M, Yaseen M, Ameen M, Rehman S-U, Khan MU, Imran M, Ahmed W, Sun Y. Interactive Effects of Grafting Techniques and Scion-Rootstocks Combinations on Vegetative Growth, Yield and Quality of Cucumber (Cucumis sativus L.). Agronomy. 2019; 9(6):288. https://doi.org/10.3390/agronomy9060288
Chicago/Turabian StyleNoor, Rana Shahzad, Zhi Wang, Muhammad Umair, Muhammad Yaseen, Muhammad Ameen, Shoaib-Ur Rehman, Muzammil Usman Khan, Muhammad Imran, Waqar Ahmed, and Yong Sun. 2019. "Interactive Effects of Grafting Techniques and Scion-Rootstocks Combinations on Vegetative Growth, Yield and Quality of Cucumber (Cucumis sativus L.)" Agronomy 9, no. 6: 288. https://doi.org/10.3390/agronomy9060288
APA StyleNoor, R. S., Wang, Z., Umair, M., Yaseen, M., Ameen, M., Rehman, S. -U., Khan, M. U., Imran, M., Ahmed, W., & Sun, Y. (2019). Interactive Effects of Grafting Techniques and Scion-Rootstocks Combinations on Vegetative Growth, Yield and Quality of Cucumber (Cucumis sativus L.). Agronomy, 9(6), 288. https://doi.org/10.3390/agronomy9060288