Distance from Night Penning Areas as an Effective Proxy to Estimate Site Use Intensity by Grazing Sheep in the Alps
Abstract
:1. Introduction
2. Materials and Methods
- (i)
- the sum of inverse distances from all TNPA (hereafter ‘unweighted distance from TNPA’)
- (ii)
- the sum of inverse distances from all TNPA weighted on the number of consecutive penning nights for each of them (hereafter ‘weighted distance from TNPA’)
- (ii)
- the sum of inverse distances from all water sources (hereafter ‘distance from water’)
- (iv)
- the slope, which is assessed as the average value of the buffer zone using a 10 m resolution digital terrain model [18].
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Metera, E.; Sakowski, T.; Słoniewski, K.; Romanowicz, B. Grazing as a tool to maintain biodiversity of grassland—A review. Anim. Sci. Pap. Rep. 2010, 28, 315–334. [Google Scholar]
- Pittarello, M.; Probo, M.; Lonati, M.; Lombardi, G. Restoration of sub-alpine shrub-encroached grasslands through pastoral practices: Effects on vegetation structure and botanical composition. Appl. Veg. Sci. 2016, 19, 381–390. [Google Scholar] [CrossRef]
- Perotti, E.; Probo, M.; Pittarello, M.; Lonati, M.; Lombardi, G. A 5-year rotational grazing changes the botanical composition of sub-alpine and alpine grasslands. Appl. Veg. Sci. 2018, 21, 647–657. [Google Scholar] [CrossRef]
- Bailey, D.W.; Gross, J.E.; Laca, E.A.; Rittenhouse, L.R.; Coughenour, M.B.; Swift, D.M.; Sims, P.L. Mechanisms That Result in Large Herbivore Grazing Distribution Patterns. J. Range Manag. 1996, 49, 386. [Google Scholar] [CrossRef]
- Svoray, T.; Shafran-Nathan, R.; Ungar, E.D.; Arnon, A.; Perevolotsky, A. Integrating GPS technologies in dynamic spatio-temporal models to monitor grazing habits in dry rangelands. In Recent Advances in Remote Sensing and Geoinformation Processing for Land Degradation Assessment; Taylor and Francis: Leiden, The Netherlands, 2009; pp. 301–312. [Google Scholar]
- Manthey, M.; Peper, J. Estimation of grazing intensity along grazing gradients – the bias of nonlinearity. J. Arid Environ. 2010, 74, 1351–1354. [Google Scholar] [CrossRef]
- Russell, M.L.; Bailey, D.W.; Thomas, M.G.; Witmore, B.K. Grazing Distribution and Diet Quality of Angus, Brangus, and Brahman Cows in the Chihuahuan Desert. Rangel. Ecol. Manag. 2012, 65, 371–381. [Google Scholar] [CrossRef]
- Probo, M.; Lonati, M.; Pittarello, M.; Bailey, D.W.; Garbarino, M.; Gorlier, A.; Lombardi, G. Implementation of a rotational grazing system with large paddocks changes the distribution of grazing cattle in the south-western Italian Alps. Rangel. J. 2014, 36, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Pittarello, M.; Probo, M.; Lonati, M.; Bailey, D.W.; Lombardi, G. Effects of traditional salt placement and strategically placed mineral mix supplements on cattle distribution in the Western Italian Alps. Grass Forage Sci. 2016, 71, 529–539. [Google Scholar] [CrossRef]
- Tarhouni, M.; Ben Salem, F.; Ouled Belgacem, A.; Neffati, M. Acceptability of plant species along grazing gradients around watering points in Tunisian arid zone. Flora Morphol. Distrib. Funct. Ecol. Plants 2010, 205, 454–461. [Google Scholar] [CrossRef]
- Fernandez-Gimenez, M.; Allen-Diaz, B. Vegetation change along gradients from water sources in three grazed Mongolian ecosystems. Plant Ecol. 2001, 157, 101–118. [Google Scholar] [CrossRef]
- Wesuls, D.; Pellowski, M.; Suchrow, S.; Oldeland, J.; Jansen, F.; Dengler, J. The grazing fingerprint: Modelling species responses and trait patterns along grazing gradients in semi-arid Namibian rangelands. Ecol. Indic. 2013, 27, 61–70. [Google Scholar] [CrossRef]
- Putfarken, D.; Dengler, J.; Lehmann, S.; Härdtle, W. Site use of grazing cattle and sheep in a large-scale pasture landscape: A GPS/GIS assessment. Appl. Anim. Behav. Sci. 2008, 111, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, G. Optimum management and quality pastures for sheep and goat in mountain areas. Options Méditerranéennes. Série ASéminaires Méditerranéens 2005, 67, 19–29. [Google Scholar]
- Espuno, N.; Lequette, B.; Poulle, M.-L.; Migot, P.; Lebreton, J.-D. Heterogeneous Response to Preventive Sheep Husbandry during Wolf Recolonization of the French Alps. Wildl. Soc. Bull. 2004, 32, 1195–1208. [Google Scholar] [CrossRef]
- Pittarello, M.; Gorlier, A.; Lonati, M.; Perotti, E.; Lombardi, G. Temporary Night Penning as Effective Tool to Improve Plant Diversity in Nutrient-Poor Dry Grasslands. Proceedings of the 19th Symposium of the European Grassland Federation, Alghero, Italy, 7–10 May 2017; Wageningen Academic Publishers: Wageningen, The Netherlands, 2017; Volume 22, pp. 381–383. [Google Scholar]
- Biancotti, A.; Bellardone, G.; Bovo, S.; Cagnazzi, B.; Giacomelli, L.; Marchisio, C. Distribuzione Regionale delle Piogge e Temperature; Collana Studi Climatologici del Piemonte; Regione Piemonte: Torino, Italy, 1998; Volume 1. [Google Scholar]
- Regione Piemonte Digital Terrain Model with 10 Meters Resolution. Available online: http://www.geoportale.piemonte.it/geonetworkrp/srv/ita/metadata.show?id=2486&currTab=rndt (accessed on 12 February 2019).
- QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation: Beaverton, OR, USA, 2016. [Google Scholar]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models; Chapman and Hall: London, UK, 1983; ISBN 978-0-412-23850-5. [Google Scholar]
- Amiri, F. A model for classification of range suitability for sheep grazing in semi-arid regions of Iran. Livest. Res. Rural Dev. 2009, 21, 241–266. [Google Scholar]
- Dorji, T.; Totland, Ø.; Moe, S.R. Are Droppings, Distance from Pastoralist Camps, and Pika Burrows Good Proxies for Local Grazing Pressure? Rangel. Ecol. Manag. 2013, 66, 26–33. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer-Verlag: New York, NY, USA, 2002; ISBN 978-0-387-95364-9. [Google Scholar]
Variable | Minimum | Mean | Maximum |
---|---|---|---|
Site use intensity (global positioning system (GPS) count) | 0.00 | 35.14 | 434.00 |
Distance from TNPA—unweighted (m−1) (1) | 0.01 | 0.04 | 0.14 |
Distance from TNPA—weighted (m−1) (2) | 0.03 | 0.08 | 0.29 |
Distance from water (m−1) (3) | 0.02 | 0.10 | 1.67 |
Slope (°) | 10.92 | 28.41 | 43.87 |
Generalized Linear Model | Distance from TNPA | Distance from Water | Slope | Residual Deviance | D2 % | AICc | BIC |
---|---|---|---|---|---|---|---|
M1: Distance from TNPA (unweighted) (1) | 1.43 *** | - | - | 111.5 | 63.1 | 892.7 | 898.1 |
M2: Distance from TNPA (unweighted) (1) + distance from water (3) | 1.41 *** | 0.18 ** | - | 102.6 | 66.0 | 885.9 | 894.0 |
M3: Distance from TNPA (unweighted) (1) + slope | 1.40 *** | - | −0.20 * | 109.2 | 63.9 | 892.5 | 900.6 |
M4: Distance from TNPA (unweighted) (1) + distance from water (3) + slope | 1.36 *** | 0.21 ** | −0.21 * | 100.4 | 66.8 | 885.8 | 896.5 |
M5: Distance from TNPA (weighted) (2) | 1.47 *** | - | - | 107.4 | 64.5 | 888.6 | 894.0 |
M6: Distance from TNPA (weighted) (2) + distance from water (3) | 1.43 *** | 0.21 ** | - | 99.2 | 67.2 | 882.5 | 890.6 |
M7: Distance from TNPA (weighted) (2) + slope | 1.44 *** | - | −0.12 ns | 106.5 | 64.8 | 889.7 | 897.8 |
M8: Distance from TNPA (weighted) (2) + distance from water (3) + slope | 1.39 *** | 0.23 ** | −0.15 ns | 98.2 | 67.5 | 883.6 | 894.4 |
M9: Distance from water (3) | - | 0.76 *** | - | 282.6 | 6.5 | 1063.8 | 1069.2 |
M10: Slope | - | - | −0.62 *** | 267.8 | 11.4 | 1048.9 | 1054.4 |
M11: Distance from water (3) + slope | - | 0.96 *** | −0.63 *** | 243.3 | 19.5 | 1026.6 | 1034.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravetto Enri, S.; Gorlier, A.; Nota, G.; Pittarello, M.; Lombardi, G.; Lonati, M. Distance from Night Penning Areas as an Effective Proxy to Estimate Site Use Intensity by Grazing Sheep in the Alps. Agronomy 2019, 9, 333. https://doi.org/10.3390/agronomy9060333
Ravetto Enri S, Gorlier A, Nota G, Pittarello M, Lombardi G, Lonati M. Distance from Night Penning Areas as an Effective Proxy to Estimate Site Use Intensity by Grazing Sheep in the Alps. Agronomy. 2019; 9(6):333. https://doi.org/10.3390/agronomy9060333
Chicago/Turabian StyleRavetto Enri, Simone, Alessandra Gorlier, Ginevra Nota, Marco Pittarello, Giampiero Lombardi, and Michele Lonati. 2019. "Distance from Night Penning Areas as an Effective Proxy to Estimate Site Use Intensity by Grazing Sheep in the Alps" Agronomy 9, no. 6: 333. https://doi.org/10.3390/agronomy9060333
APA StyleRavetto Enri, S., Gorlier, A., Nota, G., Pittarello, M., Lombardi, G., & Lonati, M. (2019). Distance from Night Penning Areas as an Effective Proxy to Estimate Site Use Intensity by Grazing Sheep in the Alps. Agronomy, 9(6), 333. https://doi.org/10.3390/agronomy9060333