Model Based Study of Crop Evapotranspiration under Canopy Shading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Description
2.2. Meteorological Measurements
2.3. ET and Crop Coefficient Calculations
3. Results and Discussion
3.1. Effect of Temperature
3.2. Effect of Soil Heat Flux
3.3. Effect of Relative Humidity
3.4. Effect of Wind Speed
3.5. Effect of Solar Irradiation
3.5.1. Partially Covering Canopy
3.5.2. Retractable Canopy
3.5.3. Hybrid Canopy System
3.5.4. Effect on Crop Yield
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclatures
specific heat at constant pressure, [MJ/ kg °C] | |
Saturation vapor pressure [kPa] | |
Actual vapor pressure [kPa] | |
Saturation vapor pressure deficit [kPa] | |
Reference evapotranspiration [mm/day] | |
Soil heat flux density [MJ/m2.day] | |
Sensible heat flux (W/m2) | |
atmospheric pressure [kPa] | |
the residual of the closure of the energy balance (W/m2) | |
Net radiation at the crop surface [MJ/m2.day] | |
Total radiation at the crop surface [MJ/m2.day] | |
Net shortwave radiation [MJ/m2.day] | |
Net long wave radiation [MJ/m2.day] | |
Mean daily air temperature at 2 m height [°C] | |
Dew point temperature [°C] | |
Maximum air temperature at 2 m height [°C] | |
Maximum air temperature at 2 m height [°C] | |
Wind speed at 2 m height [m/s] | |
elevation above sea level [m] | |
Latent heat flux (W/m2) | |
Slope vapor pressure curve [kPa/ °C] | |
Psychrometric constant [kPa/ °C] | |
Latent heat of vaporization, 2.45 [MJ/ kg] | |
Ratio molecular weight of water vapor/dry air = 0.622 |
References
- California Department of Food and Agriculture. California Agricultural Statistics Review 2016–2017. Available online: https://www.cdfa.ca.gov/Statistics/PDFs/2016-17AgReport.pdf (accessed on 20 August 2018).
- Wang, D. Water use dynamics of peach trees under postharvest Deficit irrigation. J. Agric. Stud. 2015, 4, 34–54. [Google Scholar] [CrossRef]
- Shapero, M.; Dronova, I.; Macaulay, L. Implications of changing spatial dynamics of irrigated pasture, California’s third largest agricultural water use. Sci. Total Environ. 2017, 605–606, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Han, W.F.; Wu, J.C.; He, F. Summarization on Researches on the crop water Requirement. J. North China Inst. Water Conserv. Hydroelectr. Power 2008, 29, 32–35. [Google Scholar]
- Liu, B.J.; Sha, D.G.; Shen, X.P. The Analysis of Reference Crop Evapotranspiration Methods. J. Irrig. Drain Eng. 2006, 25, 9–12. [Google Scholar]
- Mavi, H.S.; Tupper, G.J. Agrometeorology-Principles and Applications of Climate Studies in Agriculture, 1st ed.; Food Products Press: New York, NY, USA, 2004. [Google Scholar]
- Rosenberg, N.J.; Blad, B.L.; Verma, S.B. Microclimate-The Biological Environment, 2nd ed.; Jon Wiley & Sons: New York, NY, USA, 1983. [Google Scholar]
- Sentelhas, P.C.; Gillespie, T.J.; Santos, E.A. Evaluation of FAO Penman–Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada. Agric. Water Manag. 2010, 97, 635–644. [Google Scholar] [CrossRef]
- Mendonça, J.C.; Sousa, E.F.; de Bernardo, S.; Dias, G.P.; Grippa, S. Comparison of Estimation Methods of Reference Crop Evapotranspiration (ETo) for Northern Region of Rio de Janeiro State. Rev. Bras. Eng. Agrícola Ambient. 2003, 7, 275–279. [Google Scholar]
- Trajkovic, S.; Kolakovic, S. Evaluation of Reference Evapotranspiration Equations under Humid Conditions. Water Resour. Manag. 2009, 23, 3057–3067. [Google Scholar] [CrossRef]
- Jensen, M.E.; Haise, H.R. Estimating Evapotranspiration Radiation. J. Irrig. Drain. Div. 1963, 89, 15–41. [Google Scholar]
- Djaman, K.; Rudnick, D.; Mel, V.C.; Mutiibwa, D.; Diop, L.; Sall, M.; Kabenge, I.; Bodian, A.; Tabari, A.; Irmak, S. Evaluation of the Valiantzas’ Simplified Forms of the FAO-56 Penman–Monteith Reference Evapotranspiration Model under Humid Climate. J. Irrig. Drain. Eng. 2017, 143, 06017005. [Google Scholar] [CrossRef]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements, Fao Irrigation and Drainage Paper; Food and agriculture organization of the united nations: Rome, Italy, 1977. [Google Scholar]
- Richard, G.A.; Luis, S.P.; Terry, A. Evapotranspiration information reporting: II. Recommended documentation. Agric. Water Manag. 2011, 98, 921–929. [Google Scholar]
- Richard, G.A.; Luis, S.P.; Terry, A. Howell Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar]
- Dugas, W.A.; Upchurch, D.R.; Ritchie, J.T. A Weighing Lysimeter for Evapotranspiration and Root Measurements. Agron. J. 1985, 77, 821–825. [Google Scholar] [CrossRef]
- Howell, T.A.; McCormick, R.L.; Phene, C.J. Design and Installation of Large Weighing Lysimeters. Trans. ASAE 1985, 28, 106–117. [Google Scholar] [CrossRef]
- Johnson, R.S.; Handley, D.F.; DeJong, T.M. Long-term Response of Early Maturing Peach Trees to Postharvest Water Deficits. J. Am. Soc. Horticult. Sci. 1992, 117, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Baldocchi, D.D.; Hincks, B.B.; Meyers, T.P. Measuring Biosphere Atmosphere Exchanges of Biologically Related Gases with Micrometeorological Methods. Ecology 1988, 69, 1331–1340. [Google Scholar] [CrossRef]
- Paço, T.A.; Ferreira, M.I.; Conceição, N. Peach orchard evapotranspiration in a sandy soil: Comparison between eddy covariance measurements and estimates by the FAO 56 approach. Agric. Water Manag. 2006, 85, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Testi, L.; Villalobos, F.J.; Orgaz, F. Evapotranspiration of a young irrigated olive orchard in southern Spain. Agric. For. Meteorol. 2004, 121, 1–18. [Google Scholar] [CrossRef]
- Angus, D.E.; Watts, P.J. Evapotranspiration-How good is the Bowen ratio method? Agric. Water Manag. 1984, 8, 133–150. [Google Scholar] [CrossRef]
- De, A.H.; Teixeira, C.; Bastiaanssen, W.G.M.; Bassoi, L.H. Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the São Francisco river basin, Brazil. Agric. Water Manag. 2007, 94, 31–42. [Google Scholar]
- Fuchs, M.; Tanner, C.B. Error analysis of Bowen ratios measured by differential psychrometry. Agric. Meteorol. 1970, 7, 329–334. [Google Scholar] [CrossRef]
- Castellví, F.; Snyder, R.L. Sensible heat flux estimates using surface renewal analysis: A study case over a peach orchard. Agric. For. Meteorol. 2009, 149, 1397–1402. [Google Scholar] [CrossRef]
- Kyaw, T.P.U.; Qiu, J.; Su, H.B. Surface renewal analysis: A new method to obtain scalar fluxes. Agric. For. Meteorol. 1995, 74, 119–137. [Google Scholar] [CrossRef]
- McMahon, T.A.; Finlayson, B.L.; Peel, M.C. Historical developments of models for estimating evaporation using standard meteorological data. Wiley Interdisc. Rev. Water 2016, 3, 788–818. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Estimating Potential Evapotranspiration. J. Irrig. Drain. Eng. 1982, 108, 223–230. [Google Scholar]
- Allen, R.G.; Jensen, M.E.; Wright, J.L.; Burman, R.D. Operational estimates of reference evapotranspiration. Agron. J. 1989, 81, 650–662. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–91. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Irmak, S.; Irmak, A.; Allen, R.G.; Jones, J.W. Solar and Net Radiation Based Equations to Estimate Reference Evapotranspiration in Humid Climates. J. Irrig. Drain. Eng. 2003, 129, 336–347. [Google Scholar] [CrossRef]
- Utset, A.; Farre, I.; Martinez-Cob, A.; Cavero, J. Comparing Penman-Monteith and Priestley-Taylor Approaches as Reference Evapotranspiration Inputs for Modeling Maize Water Use under Mediterranean Conditions. Agric. Water Manag. 2004, 66, 205–219. [Google Scholar] [CrossRef]
- Xystrakis, F.; Matzarakis, A. Evaluation of 13 empirical reference potential evapotranspiration equations on the island of Crete in southern Greece. J. Irrig. Drain. Eng. 2011, 137, 211–222. [Google Scholar] [CrossRef]
- Möller, M.; Tanny, J.; Li, Y.; Cohen, S. Measuring and predicting evapotranspiration in an insect-proof screenhouse. Agric. For. Meteorol. 2004, 127, 35–51. [Google Scholar] [CrossRef]
- Möller, M.; Assouline, S. Effects of a shading screen on microclimate and crop water requirements. Irrig. Sci. 2007, 25, 171–181. [Google Scholar] [CrossRef]
- Siqueira, M.B.; Katul, G.G.; Tanny, J. The effect of the screen on the mass, momentum, and energy exchange rates of a uniform crop situated in an extensive screenhouse. Bound.-Layer Meteorol. 2012, 142, 339–363. [Google Scholar] [CrossRef]
- Ershadi, A.; Mccabe, M.F.; Evans, J.P.; Walker, J.P. Evaluation of energy balance, combination, and complementary schemes for estimation of evaporation. In Proceedings of the Symposium J-H02 Held during IUGG2011, Melbourne, Australia, 28 June–7 July 2011. [Google Scholar]
- Odhiambo, L.O.; Irmak, S. Surface Energy Balance, Evapotranspiration, And Surface Coefcients During Non-Growing Season in A Maize-Soybean Cropping System. Trans. ASABE 2015, 58, 667–684. [Google Scholar]
- Hajare, H.V.; Raman, N.S.; Dharkar, E.R.J. Evapotranspiration studies for Nagpur district. Wseas Trans. Environ. Dev. 2009, 5, 94–103. [Google Scholar]
- Johnson, R.S.; Williams, L.E.; Ayars, J.E.; Trout, T.J. Weighing lysimeters aid study of water relations in tree and vine crops. Calif. Agric. 2005, 59, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Rylski, I.; Spigelman, M. Effect of shading on plant development, yield and fruit quality of sweet pepper grown under conditions of high temperature and radiation. Sci. Horticult. 1986, 29, 31–35. [Google Scholar] [CrossRef]
- Pirkner, M.; Tanny, J. The effect of screen type on crop micro-climate, reference evapotranspiration and yield of a screenhouse banana plantation. Sci. Horticult. 2014, 180, 32–39. [Google Scholar] [CrossRef]
- Diaz-Perez, J.C. Bell Pepper (Capsicum annum L.) Crop as Affected by Shade Level: Microenvironment, Plant Growth, Leaf Gas Exchange, and Leaf Mineral Nutrient Concentration. Horticult. Sci. 2013, 48, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Kittas, C.; Katsoulas, N.; Rigakis, V. Effects on microclimate, crop production and quality of a tomato crop grown under shade nets. J. Horticult. Sci. Biotech. 2012, 87, 7–12. [Google Scholar] [CrossRef]
- Lorenzo, P.; Garcia, M.L.; Sanchez-Guerro, M.C.; Medrano, E. Influence of mobile shading on yield, crop transpiration and water use efficiency. Acta Horticult. 2006, 719, 471–478. [Google Scholar] [CrossRef]
- Weng, D.; Gao, Q. Correlativity between total radiation and net surface radiation. J. Nanjing Inst. Meteorol. 1992, 15, 500–507. [Google Scholar]
- Ilić, Z.S.; Milenković, L.; Stanojević, L.; Cvetković, D.; Fallik, E. Effects of the modification of light intensity by color shade nets on yield and quality of tomato fruits. Sci. Horticult. 2012, 139, 90–95. [Google Scholar] [CrossRef]
- Retamales, J.B.; Montecino, J.M.; Lobos, G.A.; Rojas, L.A. Colored shading nets increase yields and profitability of highbush blueberries. Acta Horticult. 2008, 770, 193–197. [Google Scholar] [CrossRef]
- López-Marín, J.; Gálvez, A.; Egea-Gilabert, C. Effect of shade on yield, quality, and photosynthesis-related parameters of sweet pepper plants. Acta Horticult. 2012, 956, 545–552. [Google Scholar] [CrossRef]
- Marin-Lopez, J.; Gonzalez, A.; Perez-Alfocea, X.Y.; Egea-Galibert, C.; Fernandez, J.A. Effect of shade on quality of greenhouse peppers. Acta Horticult. 2011, 893, 895–900. [Google Scholar] [CrossRef]
- Katsoulas, N.; Kittas, C. Impact of greenhouse microclimate on plant growth and development with special reference to the Solanaceae. Eur. J. Plant Sci. Biotechnol. 2008, 2, 31–44. [Google Scholar]
Month | Tmax (°C) | Tmin (°C) | RG (MJ/m2.day) | Rn (MJ/m2.day) | Rn (S-25%) (MJ/m2.day) | Bright Sunshine (h/day) | ET (no Shading) (mm/month) | ET (25% Shading) (mm/month) | Water Saving (%) |
---|---|---|---|---|---|---|---|---|---|
May | 29.7 | 15.0 | 26.4 | 6.1 | 4.3 | 11.3 | 135.7 | 104.0 | 23.4% |
June | 30.0 | 17.2 | 29.0 | 7.4 | 5.2 | 12.2 | 142.5 | 108.0 | 24.2% |
July | 31.8 | 20.5 | 27.8 | 6.9 | 4.9 | 12.0 | 150.6 | 116.2 | 22.8% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Shah, K.; Wang, D.; Ma, Y.; Wang, Z. Model Based Study of Crop Evapotranspiration under Canopy Shading. Agronomy 2019, 9, 334. https://doi.org/10.3390/agronomy9060334
Yu Q, Shah K, Wang D, Ma Y, Wang Z. Model Based Study of Crop Evapotranspiration under Canopy Shading. Agronomy. 2019; 9(6):334. https://doi.org/10.3390/agronomy9060334
Chicago/Turabian StyleYu, Qiang, Krishna Shah, Dong Wang, Yanbao Ma, and Zhifeng Wang. 2019. "Model Based Study of Crop Evapotranspiration under Canopy Shading" Agronomy 9, no. 6: 334. https://doi.org/10.3390/agronomy9060334
APA StyleYu, Q., Shah, K., Wang, D., Ma, Y., & Wang, Z. (2019). Model Based Study of Crop Evapotranspiration under Canopy Shading. Agronomy, 9(6), 334. https://doi.org/10.3390/agronomy9060334