Development and Application of Seed Coating Agent for the Control of Major Soil-Borne Diseases Infecting Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formatting of Mathematical Components
2.2. Chemicals
2.3. Laboratory Toxicity Evaluation
2.4. Preparation of the Seed Coating Agent
2.5. Seed Film Coating Treatment and Germination Test
2.6. Field Trial for the Seed Coating Agent
2.7. Statistical Analysis
3. Results and Discussion
3.1. Laboratory Selecting of Fungicides for Three Soil-Borne Diseases Control in Wheat
3.2. Effect Analysis of Different Additives on Seed Germination
3.3. The Comparison Result of Field Trial
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2014, 5, 143. [Google Scholar] [CrossRef]
- Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseases—A field perspective. Mol. Plant Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef] [PubMed]
- McMillan, V.; Canning, G.; Moughan, J.; White, R.; Gutteridge, R.; Hammond-Kosack, K.E. Exploring the resilience of wheat crops grown in short rotations through minimising the build-up of an important soil-borne fungal pathogen. Sci. Rep. 2018, 8, 9550. [Google Scholar] [CrossRef] [PubMed]
- Lopes, T.; Hatt, S.; Xu, Q.; Chen, J.; Liu, Y.; Francis, F. Wheat (Triticum aestivum L.) based intercropping systems for biological pest control. Pest. Manag. Sci. 2016, 72, 2193–2202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, H.; Wang, K.; Jiang, L.; Wang, D. Use of Lentinan To Control Sharp Eyespot of Wheat, and the Mechanism Involved. J. Agric. Food Chem. 2017, 65, 10891–10898. [Google Scholar] [CrossRef] [PubMed]
- Lounaci, L.; Guemouri-Athmani, S.; Boureghda, H.; Achouak, W.; Heulin, T. Suppression of crown and root rot of wheat by the rhizobacterium Paenibacillus polymyxa. Phytopathol. Mediterr. 2017, 55, 355–365. [Google Scholar]
- Wang, G.Z.; Li, H.G.; Christie, P.; Zhang, F.S.; Zhang, J.L.; Bever, J.D. Plant-soil feedback contributes to intercropping overyielding by reducing the negative effect of take-all on wheat and compensating the growth of faba bean. Plant. Soil 2017, 415, 1–12. [Google Scholar] [CrossRef]
- Angus, J.; Kirkegaard, J.; Hunt, J.; Ryan, M.; Ohlander, L.; Peoples, M.J.C.; Science, P. Break crops and rotations for wheat. Crop. Pasture Sci. 2015, 66, 523–552. [Google Scholar] [CrossRef]
- Mnasri, N.; Chennaoui, C.; Gargouri, S.; Mhamdi, R.; Hessini, K.; Elkahoui, S.; Djébali, N. Efficacy of some rhizospheric and endophytic bacteria in vitro and as seed coating for the control of Fusarium culmorum infecting durum wheat in Tunisia. Eur. J. Plant Pathol. 2017, 147, 501–515. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Q.; Hussain, S.; Mei, J.; Dong, H.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Pre-sowing Seed Treatments in Direct-seeded Early Rice: Consequences for Emergence, Seedling Growth and Associated Metabolic Events under Chilling Stress. Sci. Rep. 2016, 6, 19637. [Google Scholar] [CrossRef]
- Gálvez, A.; López-Galindo, A.; Peña, A. Effect of different surfactants on germination and root elongation of two horticultural crops: implications for seed coating. N. Z. J. Crop. Hortic. Sci. 2019, 47, 83–98. [Google Scholar] [CrossRef]
- Rundlöf, M.; Andersson, G.K.S.; Bommarco, R.; Fries, I.; Hederström, V.; Herbertsson, L.; Jonsson, O.; Klatt, B.K.; Pedersen, T.R.; Yourstone, J.; et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 2015, 521, 77. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, K.E.; Christman, M.C.; Roberts, P.D. A statistical evaluation of methods of in-vitro growth assessment for Phyllosticta citricarpa: average colony diameter vs. area. PLOS ONE 2017, 12, e0170755. [Google Scholar] [CrossRef] [PubMed]
- Sivan, A.; Ucko, O.; Chet, I. Biological control of Fusarium crown rot of tomato by Trichoderma harzianum under field conditions. Plant Dis. 1987, 71, 587–592. [Google Scholar] [CrossRef]
- Marín, A.; Cháfer, M.; Atarés, L.; Chiralt, A.; Torres, R.; Usall, J.; Teixidó, N. Effect of different coating-forming agents on the efficacy of the biocontrol agent Candida sake CPA-1 for control of Botrytis cinerea on grapes. Biol. Control. 2016, 96, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, M.N.; Sharma, D. Power of Tukey′s Test for Non-Additivity. J. R. Stat. Soc. Ser. B (Methodol.) 1963, 25, 213–219. [Google Scholar]
- Peng, D.; Li, S.D.; Chen, C.J.; Zhou, M.G. Combined application of Bacillus subtilis NJ-18 with fungicides for control of sharp eyespot of wheat. Biol. Control. 2014, 70, 28–34. [Google Scholar] [CrossRef]
- Huang, L.; Körschenhaus, J.W.; Heppner, C.; Buchenauer, H. Effects of seed treatments with a novel fungicide Latitude (silthiofam) on fluorescent pseudomonads and take-all of wheat. Nachr. Des. Dtsch. Pflanzenschutzd. 2015, 53, 165. [Google Scholar]
- Colla, G.; Rouphael, Y.; Bonini, P.; Cardarelli, M. Coating seeds with endophytic fungi enhances growth, nutrient uptake, yield and grain quality of winter wheat. Int. J. Plant. Prod. 2015, 9, 171–190. [Google Scholar]
- Peng, Z.; Ting, W.; Haixia, W.; Min, W.; Xiangping, M.; Siwei, M.; Rui, Z.; Zhikuan, J.; Qingfang, H. Effects of straw mulch on soil water and winter wheat production in dryland farming. Sci. Rep. 2015, 5, 10725. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Ren, A.; Gao, Z.; Wang, P.; Mo, F.; Xue, L.; Lei, M. Long-term evaluation of tillage methods in fallow season for soil water storage, wheat yield and water use efficiency in semiarid southeast of the Loess Plateau. Field Crops Res. 2018, 218, 24–32. [Google Scholar] [CrossRef]
Pesticides | Sharp Eyespot | Take-All | Root Rot | |||
---|---|---|---|---|---|---|
EC50 (mg/L) | 95% FL (mg/L) | EC50 (mg/L) | 95% FL (mg/L) | EC50 (mg/L) | 95% FL (mg/L) | |
Triadimefon | 0.3580 c | 0.1174–0.6693 | 0.4522 c | 0.1171–0.7433 | 3.2551 cd | 1.7432–5.6411 |
Tebuconazole | 0.0398 f | 0.0104–0.0661 | 0.1749 d | 0.0976–0.3451 | 0.0415 g | 0.0221–0.0743 |
Fludioxonil | 0.0651 e | 0.0247–0.0932 | 11.4912 b | 7.4532–17.4431 | 0.0101 h | 0.0071–0.0312 |
Tetraconazole | 0.5651 b | 0.2140–0.9871 | 0.0629 e | 0.0245–0.0932 | 1.8586 e | 0.7433–2.6547 |
Epoxiconazole | 0.1605 d | 0.0562–0.4032 | 0.0656 e | 0.0310–0.0922 | 0.0422 g | 0.0132–0.0663 |
Flusilazole | 0.5307 bc | 0.1774–0.9663 | 0.0569 e | 0.0231–0.0840 | 0.1106 f | 0.0654–0.3043 |
Boscalid | 0.1431 d | 0.0743–0.4176 | - | - | 411.9135 a | 273.1792–604.1447 |
Thifluzamide | 0.0189 d | 0.0092–0.0336 | 27.8623 a | 17.3366–38.2431 | 1346.796 b | 943.8422–1744.3263 |
Pyraclostrobin | 1.3692 a | 0.0741–2.8320 | 0.1931 d | 0.0112–0.4663 | 5.8622 c | 3.3370–8.9132 |
Difenoconazole | 0.1344 d | 0.0782–0.3024 | 6.8654 c | 2.7173–11.3359 | 2.1962 de | 1.4241–4.4203 |
Composition | Dosage (%) | Seedling Quality | |||
---|---|---|---|---|---|
Emergence Rate (%) | Root Length (cm) | Stem Length (cm) | Fresh Weight (g) | ||
Carboxymethyl cellulose (CMC) | 3 | 75.3 | 6.17 | 8.11 | 2.67 |
Polyvinyl alcohol (PVA) | 3 | 77.5 | 6.35 | 9.32 | 2.84 |
Polyacrylamide | 3 | 72.3 | 6.26 | 8.62 | 2.81 |
Polyacrylamide + CMC | 3 | 77.1 | 6.42 | 9.11 | 2.83 |
CK | 74.3 | 6.23 | 8.64 | 2.70 |
Compound | % (g/g) | Properties |
---|---|---|
Fungicides | 6% | Active ingredient |
LAE-9 | 2.65% | Nonionic surfactant |
NNO | 4% | Wetting dispersant |
Polyacrylamide + CMC | 3% | Film former |
Ethylene glycol | 4% | Antifreeze |
Gelatin | 0.225% | Thickener |
Pigment red | 6% | Dye |
Water | 74.125% |
Experimental Sites | Agents | Main Performance Indexes of Wheat | Control Efficiency of Sharp Eyespot | |||||
---|---|---|---|---|---|---|---|---|
Root Length (cm) | Stem Length (cm) | Stem Width (cm) | Fresh Weight (g) | Dry Weight (g) | Disease Index | Control Effect (%) | ||
Longkang | 6% pyraclostrobin · fludioxonil FSC | 11.681 a | 11.404 b | 0.237 a | 0.544 ab | 0.042 bc | 19.60 d | 58.48 cd |
6% pyraclostrobin · thiram FSC | 10.152 a | 14.536 b | 0.251 a | 0.529 ab | 0.043 bc | 12.85 de | 72.78 bc | |
6% pyraclostrobin · thifluzamide FSC | 11.900 a | 13.124 b | 0.227 a | 0.545 ab | 0.039 bc | 20.24 cd | 57.12 cd | |
6% pyraclostrobin · difenoconazole FSC | 10.022 a | 15.211 ab | 0.259 a | 0.545 ab | 0.046 bc | 18.29 d | 61.26 bc | |
6% difenoconazole · fludioxonil FSC | 9.019 a | 12.207 b | 0.198 ab | 0.359 b | 0.034 bc | 8.70 e | 81.57 ab | |
6% difenoconazole · thiram FSC | 10.551 a | 9.377 b | 0.232 a | 0.382 b | 0.032 bc | 26.57 cd | 43.70 d | |
6% azoxystrobin · fludioxonil FSC | 10.754 a | 9.770 b | 0.205 a | 0.378 b | 0.032 bc | 0.70 g | 98.52 a | |
6% phenamacril · fludioxonil FSC | 10.669 a | 9.833 b | 0.204 a | 0.391 b | 0.029 c | 22.08 cd | 53.22 cd | |
6% phenamacril · tebuconazole FSC | 12.871 a | 10.480 b | 0.244 a | 0.478 ab | 0.035 bc | 11.19 de | 76.30 ab | |
CK | 9.977 a | 11.411 b | 0.189 ab | 0.355 b | 0.027 c | 47.20 ab | — | |
Celest Top | 10.702 a | 10.476 b | 0.230 a | 0.383 b | 0.034 bc | 15.52 d | 67.11 bc | |
Yingshang | 6% pyraclostrobin · fludioxonil FSC | 8.04 a | 21.116 a | 0.140 b | 0.615 a | 0.076 ab | 30.16 bc | 54.87 cd |
6% pyraclostrobin · thiram FSC | 9.066 a | 20.276 a | 0.140 b | 0.616 a | 0.078 ab | 37.88 bc | 43.31 d | |
6% pyraclostrobin · thifluzamide FSC | 7.862 a | 19.142 a | 0.162 b | 0.634 a | 0.073 ab | 3.81 f | 94.30 a | |
6% pyraclostrobin · difenoconazole FSC | 9.486 a | 22.186 a | 0.144 b | 0.641 a | 0.075 ab | 31.19 bc | 53.32 cd | |
6% difenoconazole · fludioxonil FSC | 9.648 a | 20.390 a | 0.178 ab | 0.622 a | 0.099 a | 12.14 de | 81.83 ab | |
6% difenoconazole · thiram FSC | 10.57 a | 21.176 a | 0.190 ab | 0.698 a | 0.094 a | 20.32 cd | 69.60 cd | |
6% azoxystrobin · fludioxonil FSC | 9.446 a | 19.816 a | 0.150 ab | 0.540 ab | 0.073 ab | 20.63 cd | 69.12 bc | |
6% phenamacril · fludioxonil FSC | 9.24 a | 19.280 a | 0.180 ab | 0.577 ab | 0.074 ab | 14.17 de | 78.80 ab | |
6% phenamacril · tebuconazole FSC | 9.878 a | 17.098 ab | 0.192 ab | 0.564 ab | 0.065 ab | 2.22 f | 96.67 a | |
CK | 10.508 a | 19.380 a | 0.206 a | 0.691 a | 0.076 ab | 66.82 a | — | |
Celest Top | 10.633 a | 20.047 a | 0.179 ab | 0.603 a | 0.079 ab | 11.26 de | 78.15 ab |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.-X.; Chen, C.; Ye, Z.-H.; Su, X.-Y.; Xiao, J.-J.; Liao, M.; Cao, H.-Q. Development and Application of Seed Coating Agent for the Control of Major Soil-Borne Diseases Infecting Wheat. Agronomy 2019, 9, 413. https://doi.org/10.3390/agronomy9080413
Ren X-X, Chen C, Ye Z-H, Su X-Y, Xiao J-J, Liao M, Cao H-Q. Development and Application of Seed Coating Agent for the Control of Major Soil-Borne Diseases Infecting Wheat. Agronomy. 2019; 9(8):413. https://doi.org/10.3390/agronomy9080413
Chicago/Turabian StyleRen, Xue-Xiang, Chao Chen, Zheng-He Ye, Xian-Yan Su, Jin-Jing Xiao, Min Liao, and Hai-Qun Cao. 2019. "Development and Application of Seed Coating Agent for the Control of Major Soil-Borne Diseases Infecting Wheat" Agronomy 9, no. 8: 413. https://doi.org/10.3390/agronomy9080413
APA StyleRen, X. -X., Chen, C., Ye, Z. -H., Su, X. -Y., Xiao, J. -J., Liao, M., & Cao, H. -Q. (2019). Development and Application of Seed Coating Agent for the Control of Major Soil-Borne Diseases Infecting Wheat. Agronomy, 9(8), 413. https://doi.org/10.3390/agronomy9080413