Serendipita Species Trigger Cultivar-Specific Responses to Fusarium Wilt in Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Cultivation and Inoculum Production
2.2. Plant Cultivation and Inoculation
2.3. Detection of Serendipita spp. in Tomato Roots
2.4. Antagonistic Activity Assay
2.5. Statistical Analysis
3. Results
3.1. Effects of Serendipita spp. and Fol Inoculation on the Phenological Growth Stages of Tomato Plants
3.2. Effects of Serendipita spp. and Fol Inoculation on Tomato Plant Biomass
3.3. Fol Disease Incidence and Severity in Planta
3.4. Detection of Endophytic Fungi in Tomato Roots
3.5. Antagonistic Activity Assay against Fol
4. Discussion
4.1. In Vitro Antagonistic Activity Assay against Fol
4.2. Fol Disease Incidence and Severity in Planta
4.3. Effects of Serendipita spp. and Fol Inoculation on Tomato Plant Biomass
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weiß, M.; Sýkorová, Z.; Garnica, S.; Riess, K.; Martos, F.; Krause, C.; Oberwinkler, F.; Bauer, R.; Redecker, D. Sebacinales everywhere: Previously overlooked ubiquitous fungal endophytes. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, E.; Rillig, M.C.; Wehner, J.; Hegglin, D.; Wittwer, R.; van der Heijden, M.G.A. Sebacinales, but not total root associated fungal communities, are affected by land-use intensity. New Phytol. 2014, 203, 1036–1040. [Google Scholar] [CrossRef] [PubMed]
- Venneman, J.; Audenaert, K.; Verwaeren, J.; Baert, G.; Boeckx, P.; Moango, A.M.; Dhed’a, B.D.; Vereecke, D.; Haesaert, G. Congolese rhizospheric soils as a rich source of new plant growth-promoting endophytic Piriformospora isolates. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Varma, A.; Rexer, K.-H.; Hassel, A.; Kost, G.; Sarbhoy, A.; Bisen, P.; Bütehorn, B.; Franken, P. Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 1998, 90, 896–903. [Google Scholar] [CrossRef]
- Waller, F.; Achatz, B.; Baltruschat, H.; Fodor, J.; Becker, K.; Fischer, M.; Heier, T.; Hückelhoven, R.; Neumann, C.; von Wettstein, D.; et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. USA 2005, 102, 13386–13391. [Google Scholar] [CrossRef] [PubMed]
- Serfling, A.; Wirsel, S.G.R.; Lind, V.; Deising, H.B. Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 2007, 97, 523–531. [Google Scholar] [CrossRef]
- Varma, A.; Savita, V.; Sudha; Sahay, N.; Bütehorn, B.; Franken, P. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl. Environ. Microbiol. 1999, 65, 2741–2744. [Google Scholar] [PubMed]
- Sherameti, I.; Shahollari, B.; Venus, Y.; Altschmied, L.; Varma, A.; Oelmuller, R. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J. Biol. Chem. 2005, 280, 26241–26247. [Google Scholar] [CrossRef]
- Kharkwal, A.C.; Prasad, R.; Kharkwal, H.; Das, A.; Bhatnagar, K.; Varma, A.; Sherameti, I.; Oelmüller, R. Co-Cultivation with Sebacinales. In Advanced Techniques in Soil Microbiology; Varma, A., Oelmüller, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 247–270. [Google Scholar] [CrossRef]
- Peškan-Berghöfer, T.; Shahollari, B.; Giong, P.; Hehl, S.; Markert, C.; Blanke, V.; Varma, A.K.; Oelmüller, R. Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmatic reticulum and at the plasma membrane. Physiol. Plant. 2004, 122, 465–477. [Google Scholar] [CrossRef]
- Deshmukh, S.; Hueckelhoven, R.; Schaefer, P.; Imani, J.; Sharma, M.; Weiss, M.; Waller, F.; Kogel, K.H. The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc. Natl. Acad. Sci. USA 2006, 103, 18450–18457. [Google Scholar] [CrossRef]
- Deshmukh, S.; Kogel, K.H. Piriformospora indica protects barley from root rot caused by Fusarium graminearum. J. Plant Dis. Protect. 2007, 114, 263–268. [Google Scholar] [CrossRef]
- Harrach, B.D.; Baltruschat, H.; Barna, B.; Fodor, J.; Kogel, K.-H. The mutualistic fungus Piriformospora indica protects barley roots from a loss of antioxidant capacity caused by the necrotrophic pathogen Fusarium culmorum. Mol. Plant-Microbe Interact. 2013, 26, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Qiang, X.; Weiss, M.; Kogel, K.H.; Schäfer, P. Piriformospora indica-a mutualistic basidiomycete with an exceptionally large plant host range. Mol. Plant Pathol. 2012, 13, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Fakhro, A.; Andrade-Linares, D.R.; von Bargen, S.; Bandte, M.; Büttner, C.; Grosch, R.; Schwarz, D.; Franken, P. Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 2010, 20, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Warcup, J.H. Mycorrhizal associations of isolates of Sebacina vermifera. New Phytol. 1988, 110, 227–231. [Google Scholar] [CrossRef]
- Barazani, O.; Benderoth, M.; Groten, K.; Kuhlemeier, C.; Baldwin, I.T. Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia 2005, 146, 234–243. [Google Scholar] [CrossRef]
- Ghimire, S.R.; Craven, K.D. Enhancement of switchgrass (Panicum virgatum L.) biomass production under drought conditions by the ectomycorrhizal fungus Sebacina vermifera. Appl. Environ. Microbiol. 2011, 77, 7063–7067. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.; Craven, K.D. Sebacina vermifera: A unique root symbiont with vast agronomic potential. World J. Microbiol. Biotechnol. 2016, 32, 1–10. [Google Scholar] [CrossRef]
- Ray, P.; Ishiga, T.; Decker, S.R.; Turner, G.B.; Craven, K.D. A novel delivery system for the root symbiotic fungus, Sebacina vermifera, and consequent biomass enhancement of low lignin COMT switchgrass lines. Bioenergy Res. 2015, 8, 922–933. [Google Scholar] [CrossRef]
- Ghahfarokhi, R.; Goltapeh, M. Potential of the root endophytic fungus Piriformospora indica; Sebacina vermifera and Trichoderma species in biocontrol of take-all disease of wheat Gaeumannomyces graminis var. tritici in vitro. J. Agric. Technol. 2010, 6, 11–18. [Google Scholar]
- Dolatabadi, H.; Goltapeh, E.; Mohammadi, N.; Rabiey, M.; Rohani, N.; Varma, A. Biocontrol potential of root endophytic fungi and Trichoderma species against Fusarium wilt of lentil under in vitro and greehouse conditions. J. Agric. Sci. Technol. 2012, 14, 407–420. [Google Scholar]
- Sarkar, D.; Rovenich, H.; Jeena, G.; Nizam, S.; Tissier, A.; Balcke, G.U.; Mahdi, L.; Bonkowski, M.; Langen, G.; Zuccaro, A. The inconspicuous gatekeeper: Endophytic Serendipita vermifera acts as extended plant protection barrier in the rhizosphere. New Phytol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.; Guo, Y.; Kolape, J.; Craven, K.D. Non-targeted colonization by the endomycorrhizal fungus, Serendipita vermifera, in three weeds typically co-occurring with switchgrass. Front. Plant Sci. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Riess, K.; Oberwinkler, F.; Bauer, R.; Garnica, S. Communities of endophytic sebacinales associated with roots of herbaceous plants in agricultural and grassland ecosystems are dominated by Serendipita herbamans sp. nov. PLoS ONE 2014, 9, e94676. [Google Scholar] [CrossRef] [PubMed]
- Williams, P. Orchidaceous rhizoctonias in pot cultures of vesicular-arbuscular mycorrhizal fungi. Can. J. Bot. 1985, 63, 1329–1333. [Google Scholar] [CrossRef]
- Basiewicz, M.; Weiss, M.; Kogel, K.H.; Langen, G.; Zorn, H.; Zuccaro, A. Molecular and phenotypic characterization of Sebacina vermifera strains associated with orchids, and the description of Piriformospora williamsii sp. nov. Fungal Biol. 2012, 116, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Banhara, A.; Ding, Y.; Kühner, R.; Zuccaro, A.; Parniske, M. Colonization of root cells and plant growth promotion by Piriformospora indica occurs independently of plant common symbiosis genes. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- McGovern, R.J. Management of tomato diseases caused by Fusarium oxysporum. Crop Protect. 2015, 73, 78–92. [Google Scholar] [CrossRef]
- Takken, F.; Rep, M. The arms race between tomato and Fusarium oxysporum. Mol. Plant Pathol. 2010, 11, 309–314. [Google Scholar] [CrossRef]
- Corrado, G.; Caramante, M.; Piffanelli, P.; Rao, R. Genetic diversity in Italian tomato landraces: Implications for the development of a core collection. Sci. Hortic. 2014, 168, 138–144. [Google Scholar] [CrossRef]
- Rivard, C.L.; Louws, F.J. Grafting to manage soilborne diseases in heirloom tomato production. HortScience 2008, 43, 2104–2111. [Google Scholar] [CrossRef]
- Steinkellner, S.; Hage-Ahmed, K.; Garcia-Garrido, J.M.; Illana, A.; Ocampo, J.A.; Vierheilig, H. A comparison of wild-type, old and modern tomato cultivars in the interaction with the arbuscular mycorrhizal fungus Glomus mosseae and the tomato pathogen Fusarium oxysporum f. sp. lycopersici. Mycorrhiza 2012, 22, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Diogo, R.V.C.; Wydra, K. Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiol. Mol. Plant Pathol. 2007, 70, 120–129. [Google Scholar] [CrossRef]
- Kurabachew, H.; Wydra, K. Induction of systemic resistance and defense-related enzymes after elicitation of resistance by rhizobacteria and silicon application against Ralstonia solanacearum in tomato (Solanum lycopersicum). Crop Protect. 2014, 57, 1–7. [Google Scholar] [CrossRef]
- Hohmann, P.; Messmer, M.M. Breeding for mycorrhizal symbiosis: Focus on disease resistance. Euphytica 2017, 213, 113. [Google Scholar] [CrossRef]
- Hill, T.; Käfer, E. Improved protocols for Aspergillus minimal medium: Trace element and minimal medium salt stock solutions. Fungal Genet. Newsl. 2001, 48, 20–21. [Google Scholar] [CrossRef]
- Goyal, J.P.; Maraite, H.; Meyer, J.A. Abundant production of chlamydospores by Fusarium oxysporum f. sp. melonis in soil extract with glucose. Neth. J. Plant Pathol. 1973, 79, 162–164. [Google Scholar] [CrossRef]
- Bennett, R.S.; Davis, R.M. Method for rapid production of Fusarium oxysporum f. sp. vasinfectum chlamydospores. J. Cotton Sci. 2013, 17, 52–59. [Google Scholar]
- Steineck, O. Nährlösungen der Pflanzenkultur. Die Bodenkultur 1951, 5, 313–324. [Google Scholar]
- Feller, V.C.; Bleiholder, H.; Buhr, L.; Hack, H.; Heß, M.; Klose, R.; Meier, U.; Strauß, R.; van den Boom, T.; Weber, E. Phenological growth stages of vegetable crops—II. Fruit vegetables and pulses. Nachrbl Dtsch Pflanzenschutzd 1995, 47, 217–232. [Google Scholar]
- Wellman, F.L. A technique for studying host resistance and pathogenicity in tomato Fusarium wilt. Phytopathology 1939, 29, 945–956. [Google Scholar]
- Hage-Ahmed, K.; Moyses, A.; Voglgruber, A.; Hadacek, F.; Steinkellner, S. Alterations in root exudation of intercropped tomato mediated by the arbuscular mycorrhizal fungus Glomus mosseae and the soilborne pathogen Fusarium oxysporum f. sp. lycopersici. J. Phytopathol. 2013, 161, 763–773. [Google Scholar] [CrossRef]
- Nelson, P.; Toussoun, T.; Marasas, W. Fusarium Species. An Illustrated Manual for Identification; Pennsylvania State University Press: University Park, PA, USA, 1983; p. 193. [Google Scholar]
- Rahman, M.A.; Begum, M.F.; Alam, M.F. Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing pineapple disease of sugarcane. Mycobiology 2009, 37, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, R. Chapter 7-One-way and higher designs for independent groups. In Introduction to Robust Estimation and Hypothesis Testing, 4th ed.; Wilcox, R., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 319–415. [Google Scholar] [CrossRef]
- R Core Team. RStudio: Integrated development for R; RStudio Inc.: Boston, MA, USA, 2016. [Google Scholar]
- Mair, P.; Wilcox, R. Robust statistical methods in R using the WRS2 package. Behav. Res. Methods 2019. [Google Scholar] [CrossRef] [PubMed]
- Field, A.P.; Miles, J.; Field, Z. Factorial ANOVA (GLM 3). In Discovering Statistics Using R; Sage: London, UK, 2012. [Google Scholar]
- Olivain, C.; Humbert, C.; Nahalkova, J.; Fatehi, J.; L’Haridon, F.; Alabouvette, C. Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strain inoculated together and separately into the soil. Appl. Environ. Microbiol. 2006, 72, 1523–1531. [Google Scholar] [CrossRef] [PubMed]
- Larkin, R.P.; Fravel, D.R. Mechanisms of action and dose-reponse relationships governing biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology 1999, 89, 1152–1161. [Google Scholar] [CrossRef] [PubMed]
- De Lamo, F.J.; Constantin, M.E.; Fresno, D.H.; Boeren, S.; Rep, M.; Takken, F.L.W. Xylem sap proteomics reveals distinct differences between R gene- and endophyte-mediated resistance against Fusarium wilt disease in tomato. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Yadav, V.; Tuteja, N.; Johri, A.K. Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 2009, 155, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Laur, J.; Ramakrishnan, G.B.; Labbé, C.; Lefebvre, F.; Spanu, P.D.; Bélanger, R.R. Effectors involved in fungal–fungal interaction lead to a rare phenomenon of hyperbiotrophy in the tritrophic system biocontrol agent–powdery mildew–plant. New Phytol. 2018, 217, 713–725. [Google Scholar] [CrossRef]
- Atanasova, L.; Crom, S.L.; Gruber, S.; Coulpier, F.; Seidl-Seiboth, V.; Kubicek, C.P.; Druzhinina, I.S. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics 2013, 14, 121. [Google Scholar] [CrossRef]
- Adams, S.R.; Cockshull, K.E.; Cave, C.R.J. Effect of temperature on the growth and development of tomato fruits. Ann. Bot. 2001, 88, 869–877. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Douwstra, P.; Trouwborst, G.; van Ieperen, W.; Harbinson, J. An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. J. Exp. Bot. 2010, 61, 1267–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, R.; Eguchi, T.; Deveci, M.; Kubota, C. Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps. Sci. Hortic. 2016, 213, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Johnson, N.C.; Graham, J.H.; Smith, F.A. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol. 1997, 135, 575–585. [Google Scholar] [CrossRef]
- Takahashi, H.; Shimizu, A.; Arie, T.; Rosmalawati, S.; Fukushima, S.; Kikuchi, M.; Hikichi, Y.; Kanda, A.; Takahashi, A.; Kiba, A.; et al. Catalog of Micro-Tom tomato responses to common fungal, bacterial, and viral pathogens. J. Gen. Plant Pathol. 2005, 71, 8–22. [Google Scholar] [CrossRef]
- Pagán, I.; García-Arenal, F. Tolerance to plant pathogens: Theory and experimental evidence. Int. J. Mol. Sci. 2018, 19, 810. [Google Scholar] [CrossRef] [PubMed]
Treatment | Factor | BBCH Code 1 | Shoot Dry Mass [g] | Root Dry Mass [g] |
---|---|---|---|---|
−F. oxysporum f. sp. lycopersici | ||||
cv. Kremser Perle | Serendipita | 0.0801 | <0.0001 | <0.01 |
trial | <0.0001 2 | <0.0001 | <0.0001 | |
Serendipita × trial | 0.0684 | <0.0001 | 0.0601 | |
cv. Micro-Tom | Serendipita | 0.8331 | <0.05 | <0.05 |
trial | 0.0501 | 0.1235 | <0.05 | |
Serendipita × trial | 0.4007 | <0.0001 | 0.2588 | |
+F. oxysporum f. sp. lycopersici | ||||
cv. Kremser Perle | Serendipita | <0.01 | <0.0001 | <0.0001 |
trial | 0.5643 | <0.0001 | 0.4574 | |
Serendipita × trial | 0.8464 | <0.05 | 0.1252 | |
cv. Micro-Tom | Serendipita | 0.6745 | <0.05 | 0.0551 |
trial | 0.6260 | <0.05 | 0.0918 | |
Serendipita × trial | 0.6795 | 0.3556 | 0.7780 |
Cultivar | Treatment 1 | Disease Incidence [%] | Disease Severity [%] | ||
---|---|---|---|---|---|
Kremser Perle 2 | |||||
Fol | 93 ± 4 | B | 27 ± 4 | A | |
Si + Fol | 87 ± 10 | B | 31 ± 3 | A | |
Sw + Fol | 64 ± 9 | AB | 31 ± 6 | A | |
Sh + Fol | 47 ± 7 | A | 17 ± 3 | A | |
Sv + Fol | 48 ± 7 | A | 28 ± 6 | A | |
F(4,25) = 7.597 p < 0.0001 | F(4,25) = 1.590 p = 0.208 | ||||
Micro-Tom 3 | |||||
Fol | 20 ± 7 | A | 12 ± 5 | A | |
Si + Fol | 3 ± 3 | A | 1 ± 1 | A | |
Sw + Fol | 7 ± 4 | A | 1 ± 1 | A | |
Sh + Fol | 0 ± 0 | A | 0 ± 0 | A | |
Sv + Fol | 18 ± 6 | A | 4 ± 2 | A |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghezel Sefloo, N.; Wieczorek, K.; Steinkellner, S.; Hage-Ahmed, K. Serendipita Species Trigger Cultivar-Specific Responses to Fusarium Wilt in Tomato. Agronomy 2019, 9, 595. https://doi.org/10.3390/agronomy9100595
Ghezel Sefloo N, Wieczorek K, Steinkellner S, Hage-Ahmed K. Serendipita Species Trigger Cultivar-Specific Responses to Fusarium Wilt in Tomato. Agronomy. 2019; 9(10):595. https://doi.org/10.3390/agronomy9100595
Chicago/Turabian StyleGhezel Sefloo, Negar, Krzysztof Wieczorek, Siegrid Steinkellner, and Karin Hage-Ahmed. 2019. "Serendipita Species Trigger Cultivar-Specific Responses to Fusarium Wilt in Tomato" Agronomy 9, no. 10: 595. https://doi.org/10.3390/agronomy9100595
APA StyleGhezel Sefloo, N., Wieczorek, K., Steinkellner, S., & Hage-Ahmed, K. (2019). Serendipita Species Trigger Cultivar-Specific Responses to Fusarium Wilt in Tomato. Agronomy, 9(10), 595. https://doi.org/10.3390/agronomy9100595