Allelopathic Activity of Spearmint (Mentha spicata L.) and Peppermint (Mentha × piperita L.) Reduces Yield, Growth, and Photosynthetic Rate in a Succeeding Crop of Maize (Zea mays L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Sampling, Measurements, and Methods
2.3.1. Agronomic Parameters
2.3.2. Physiological Parameters
2.4. Statistical Analysis
3. Results
3.1. Physiological Parameters
3.2. Maize Growth
3.3. Yield and Yield Components
3.4. Pearson Correlation Coefficients
4. Discussion
4.1. Physiological Parameters
4.2. Maize Growth
4.3. Yield and Yield Components
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Migliorini, P.; Wezel, A. Converging and diverging principles and practices of organic agriculture regulations and agroecology. A Review. Agron. Sustain. Dev. 2017, 37, 1–18. [Google Scholar] [CrossRef]
- Ntatsi, G.; Karkanis, A.; Yfantopoulos, D.; Pappa, V.; Konosonoka, I.H.; Travlos, I.; Bilalis, D.; Bebeli, P.; Savvas, D. Evaluation of the field performance, nitrogen fixation efficiency and competitive ability of pea landraces grown under organic and conventional farming systems. Arch. Agron. Soil Sci. 2019, 65, 294–307. [Google Scholar] [CrossRef]
- Ntatsi, G.; Karkanis, A.; Yfantopoulos, D.; Olle, M.; Travlos, I.; Thanopoulos, R.; Bilalis, D.; Bebeli, P.; Savvas, D. Impact of variety and farming practices on growth, yield, weed flora and symbiotic nitrogen fixation in faba bean cultivated for fresh seed production. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 68, 619–630. [Google Scholar] [CrossRef]
- Karkanis, A.; Ntatsi, G.; Lepse, L.; Fernández, J.A.; Vågen, I.M.; Rewald, B.; Alsiņa, I.; Kronberga, A.; Balliu, A.; Olle, M.; et al. Faba Bean cultivation—Revealing novel managing practices for more sustainable and competitive European cropping systems. Front. Plant Sci. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Sánchez-Navarro, V.; Zornoza, R.; Faz, Á.; Fernández, J.A. Comparing legumes for use in multiple cropping to enhance soil organic carbon, soil fertility, aggregates stability and vegetables yields under semi-arid conditions. Sci. Hortic. 2019, 246, 835–841. [Google Scholar] [CrossRef]
- Uzoh, I.M.; Igwe, C.A.; Okebalama, C.B.; Babalola, O.O. Legume-maize rotation effect on maize productivity and soil fertility parameters under selected agronomic practices in a sandy loam soil. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Park, S.E.; Webster, T.J.; Horan, H.L.; James, A.T.; Thorburn, P.J. A legume rotation crop lessens the need for nitrogen fertiliser throughout the sugarcane cropping cycle. Field Crop. Res. 2010, 119, 331–341. [Google Scholar] [CrossRef]
- McDonald, G.K.; Peck, D. Effects of crop rotation, residue retention and sowing time on the incidence and survival of ascochyta blight and its effect on grain yield of field peas (Pisum sativum). Field Crop. Res. 2009, 111, 11–21. [Google Scholar] [CrossRef]
- Conner, R.L.; Gillard, C.L.; Mcrae, K.B.; Hwang, S.F.; Chen, Y.Y.; Hou, A.; Penner, W.C.; Turnbull, G.D. Survival of the bean anthracnose fungus (Colletotrichum lindemuthianum) on crop debris in Canada. Can. J. Plant Pathol. 2019, 41, 209–217. [Google Scholar] [CrossRef]
- Wozniak, A.; Soroka, M. Effect of crop rotation and tillage system on the weed infestation and yield of spring wheat and on soil properties. Appl. Ecol. Environ. Res. 2018, 16, 3087–3096. [Google Scholar] [CrossRef]
- Narwal, S.S. Weed management in rice: Wheat Rotation by allelopathy. CRC Crit. Rev. Plant Sci. 2000, 19, 249–266. [Google Scholar] [CrossRef]
- Mamolos, A.; Kalburtji, K. Significance of allelopathy in crop rotation. J. Crop Prod. 2001, 4, 197–218. [Google Scholar] [CrossRef]
- Khanh, T.D.; Chung, M.I.; Xuan, T.D.; Tawata, S. Cropping and forage systems/crop ecology/organic farming the exploitation of crop allelopathy in sustainable agricultural production. J. Agron. Crop Sci. 2005, 191, 172–184. [Google Scholar] [CrossRef]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A Review. Field Crop. Res. 2015, 183, 56–68. [Google Scholar] [CrossRef]
- Rehman, S.; Shahzad, B.; Bajwa, A.A.; Hussain, S.; Rehman, A.; Cheema, S.A.; Abbas, T.; Ali, A.; Shah, L.; Adkins, S.; et al. Utilizing the allelopathic potential of Brassica species for sustainable crop production: A Review. J. Plant Growth Regul. 2019, 38, 343–356. [Google Scholar] [CrossRef]
- Farooq, M.; Nawaz, A.; Ahmad, E.; Nadeem, F.; Hussain, M.; Siddique, K.H.M. Using Sorghum to suppress weeds in dry seeded aerobic and puddled transplanted rice. Field Crop. Res. 2017, 214, 211–218. [Google Scholar] [CrossRef]
- Liu, S.; Wu, F.; Wen, X. Allelopathic effects of root exudates of chinese onion on tomato growth and the pathogen Fusarium oxysporum (Sch1) f.sp. lycopersici. Allelopath. J. 2013, 31, 387–403. [Google Scholar]
- Mominul Islam, A.K.M.; Kato-Noguchi, H. Allelopathic potential of five labiatae plant species on barnyard grass (Echinochloa crus-galli). Aust. J. Crop Sci. 2013, 7, 1369–1374. [Google Scholar]
- Karkanis, A.; Lykas, C.; Liava, V.; Bezou, A.; Petropoulos, S.; Tsiropoulos, N. Weed Interference with peppermint (Mentha × piperita L.) and spearmint (Mentha spicata L.) crops under different herbicide treatments: Effects on Biomass and essential oil yield. J. Sci. Food Agric. 2018, 98, 43–50. [Google Scholar] [CrossRef]
- Argyropoulos, E.I.; Eleftherohorinos, I.G.; Vokou, D. In vitro evaluation of essential oils from Mediterranean aromatic plants of the lamiaceae for weed control in tomato and cotton crops. Allelopath. J. 2008, 22, 69–78. [Google Scholar]
- Azizi, M.; Mosavi, A.; Nazdar, T. Extraction methods affect allelopathic activity of peppermint and thyme extracts on weed seed germination. Acta Hortic. 2008, 767, 97–104. [Google Scholar] [CrossRef]
- Azirak, S.; Karaman, S. Allelopathic effect of some essential oils and components on germination of weed species. Acta Agric. Scand. Sect. B Soil Plant Sci. 2008, 58, 88–92. [Google Scholar] [CrossRef]
- Chalkos, D.; Kadoglidou, K.; Karamanoli, K.; Fotiou, C.; Pavlatou-Ve, A.S.; Eleftherohorinos, I.G.; Constantinidou, H.I.A.; Vokou, D. Mentha spicata and Salvia fruticosa composts as soil amendments in tomato cultivation. Plant Soil 2010, 332, 495–509. [Google Scholar] [CrossRef]
- Islam, A.K.M.M.; Kato-Noguchi, H. Mentha sylvestris: A potential allelopathic medicinal plant. Int. J. Agric. Biol. 2013, 15, 1313–1318. [Google Scholar]
- Naeem, M.; Nisar, U.; Khalid, F.; Mehmood, A.; Ali, H.H. Quantifying allelopathic effect of rapeseed on germination and seedling growth of maize under different salinity levels. Zemdirb. Agric. 2017, 104, 259–266. [Google Scholar] [CrossRef]
- Mahdavikia, F.; Saharkhiz, M.J. Secondary metabolites of peppermint change the morphophysiological and biochemical characteristics of tomato. Biocatal. Agric. Biotechnol. 2016, 7, 127–133. [Google Scholar] [CrossRef]
- Fu, Y.H.; Quan, W.X.; Li, C.C.; Qian, C.Y.; Tang, F.H.; Chen, X.J. Allelopathic effects of phenolic acids on seedling growth and photosynthesis in Rhododendron delavayi Franch. Photosynthetica 2019, 57, 377–387. [Google Scholar] [CrossRef]
- Synowiec, A.; Halecki, W.; Wielgusz, K.; Byczyńska, M.; Czaplicki, S. Effect of fatty acid methyl esters on the herbicidal effect of essential oils on corn and weeds. Weed Technol. 2017, 31, 301–309. [Google Scholar] [CrossRef]
- Skrzypek, E.; Repka, P.; Stachurska-Swakon, A.; Barabasz-Krasny, B.; Mozdzen, K. Allelopathic effect of aqueous extracts from the leaves of peppermint (Mentha × piperita L.) on Selected physiological processes of common sunflower (Helianthus annuus L.). Not. Bot. Horti Agrobot. Cluj Napoca 2015, 43, 335–342. [Google Scholar] [CrossRef]
- Oyerinde, R.O.; Otusanya, O.O.; Akpor, O.B. Allelopathic Effect of Tithonia diversifolia on the germination, growth and chlorophyll contents of maize (Zea mays L.). Sci. Res. Essays 2009, 4, 1553–1558. [Google Scholar]
- Mahdavikia, F.; Saharkhiz, M.J.; Karami, A. Defensive response of radish seedlings to the oxidative stress arising from phenolic compounds in the extract of peppermint (Mentha × piperita L.). Sci. Hortic. (Amsterdam) 2017, 214, 133–140. [Google Scholar] [CrossRef]
- Zhou, G.; Hu, T.; Wu, Z.; Chen, H.; Luo, J.; Li, W. Effects of Juglans Regia leaf litter decomposition on growth and physiological characteristics of spinach (Spinacia oleracea). Chin. J. Appl. Environ. Biol. 2015, 21, 777–782. [Google Scholar]
- Türker, M.; Battal, P.; Aǧar, G.; Güllüce, M.; Şahin, F.; Erez, M.E.; Yildirim, N. Allelopathic effects of plants extracts on physiological and cytological processes during maize seed germination. Allelopath. J. 2008, 21, 273–286. [Google Scholar]
- Ulbrich, A.; Kahle, H.; Krämer, P.; Schulz, M. Mentha × piperita volatiles promote Brassica oleracea—A pilot study for sustainable vegetable production. Allelopath. J. 2018, 43, 93–104. [Google Scholar] [CrossRef]
- Narwal, S.S.; Singh, T.; Hooda, J.S.; Kathuria, M.K. Allelopathic effects of sunflower on succeeding summer crops. I. Field studies and bioassays. Allelopath. J. 1999, 6, 35–48. [Google Scholar]
- Moyer, J.R.; Blackshaw, R.E.; Doram, R.C.; Huang, H.C.; Entz, T. Effect of previous crop and herbicides on weed growth and wheat yield. Can. J. Plant Sci. 2011, 85, 735–746. [Google Scholar] [CrossRef]
- Dalton, B.R.; Blum, U.; Weed, S.B. Plant Phenolic acids in soils: Sorption of ferulic acid by soil and soil components sterilized by different techniques. Soil Biol. Biochem. 1989, 21, 1011–1018. [Google Scholar] [CrossRef]
- Inderjit; Bhowmik, P.C. Sorption of benzoic acid onto soil colloids and its implications for allelopathy studies. Biol. Fertil. Soils 2004, 40, 345–348. [Google Scholar] [CrossRef]
- Real, M.; Gámiz, B.; López-cabeza, R.; Celis, R. Sorption, persistence, and leaching of the allelochemical umbelliferone in soils treated with nanoengineered sorbents. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Jiang, Y. Sorption and retention of phenolic acids in soil poplar plantation in eastern china. In Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 24–26 June 2011; pp. 7836–7840. [Google Scholar] [CrossRef]
- Kobayashi, K. Factors Affecting phytotoxic activity of allelochemicals in soil. Weed Biol. Manag. 2004, 4, 1–7. [Google Scholar] [CrossRef]
- Xiao, Z.; Le, C.; Xu, Z.; Gu, Z.; Lv, J.; Shamsi, I.H. Vertical leaching of allelochemicals affecting their bioactivity and the microbial community of soil. J. Agric. Food Chem. 2017, 65, 7847–7853. [Google Scholar] [CrossRef] [PubMed]
- Vishwajith; Halagalimath, S.P.; Ganajaxi, M. Allelopathic effects of sunflower on succeeding mungbean (Vigna radiata L. Wilczek) crop. Allelopath. J. 2017, 42, 37–48. [Google Scholar] [CrossRef]
- Cheema, Z.; Khaliq, A.; Saeed, S. Weed control in maize (Zea mays L.) through Sorghum alllelopathy. J. Sustain. Agric. 2004, 23, 73–86. [Google Scholar] [CrossRef]
Treatments-Rotation System | SPAD Index Values-Site A | |||
40 DAS 1 | 70 DAS | 84 DAS | 98 DAS | |
fallow-fallow-maize (FFM) | 42.94 a | 54.90 a | 56.80 a | 55.90 a |
spearmint-spearmint-maize (SSM) | 25.63 b | 34.97 b | 46.63 b | 45.67 b |
peppermint-peppermint-maize (PPM) | 27.27 b | 33.49 b | 49.54 b | 44.72 b |
F values | 240.558 *** | 43.202 ** | 159.477 * | 40.680 ** |
LSD5% | 2.418 | 7.143 | 1.628 | 3.816 |
Treatments-Rotation System | SPAD Index Values-Site B | |||
40 DAS | 70 DAS | 84 DAS | 98 DAS | |
fallow-fallow-maize (FFM) | 45.26 a | 52.00 a | 53.56 a | 52.97 a |
spearmint-spearmint-maize (SSM) | 34.99 b | 41.53 b | 48.33 b | 51.85 a |
peppermint-peppermint-maize (PPM) | 37.08 b | 44.07 b | 47.80 b | 53.68 a |
F values | 19.132 ** | 90.054 *** | 12.025 * | 2.138 ns |
LSD5% | 4.871 | 2.259 | 3.602 | - |
Treatments-Rotation System | Site A | |
Photosynthetic Rate (μmol CO2 m−2 s−1) | Stomatal Conductance (mol H2O m−2 s−1) | |
fallow-fallow-maize (FFM) | 35.53 a | 0.49 a |
spearmint-spearmint-maize (SSM) | 24.67 b | 0.29 b |
peppermint-peppermint-maize (PPM) | 25.83 b | 0.33 b |
F values | 42.831 ** | 40.628 ** |
LSD5% | 3.579 | 0.066 |
Treatments-Rotation System | Site B | |
Photosynthetic Rate (μmol CO2 m−2 s−1) | Stomatal Conductance (mol H2O m−2 s−1) | |
fallow-fallow-maize (FFM) | 34.30 a | 0.53 a |
spearmint-spearmint-maize (SSM) | 28.63 b | 0.39 b |
peppermint-peppermint-maize (PPM) | 27.70 b | 0.37 b |
F values | 57.026 *** | 62.384 *** |
LSD5% | 1.857 | 0.043 |
Treatments-Rotation System | Height (m)-Site A | |||
40 DAS 1 | 70 DAS | 84 DAS | 98 DAS | |
fallow-fallow-maize (FFM) | 0.52 a | 1.76 a | 2.42 a | 2.73 a |
spearmint-spearmint-maize (SSM) | 0.36 b | 1.42 b | 2.07 b | 2.28 b |
peppermint-peppermint-maize (PPM) | 0.39 b | 1.46 b | 2.03 b | 2.18 b |
F values | 29.463 ** | 16.824 * | 9.111 * | 96.118 *** |
LSD5% | 0.059 | 0.180 | 0.279 | 0.117 |
Treatments-Rotation System | Height (m)-Site B | |||
40 DAS | 70 DAS | 84 DAS | 98 DAS | |
fallow-fallow-maize (FFM) | 0.44 a | 1.59 a | 2.15 a | 2.44 a |
spearmint-spearmint-maize (SSM) | 0.34 a | 1.32 b | 1.73 b | 2.21 a |
peppermint-peppermint-maize (PPM) | 0.35 a | 1.34 b | 1.84 ab | 2.30 a |
F values | 5.393 ns | 7.943 * | 7.372 * | 3.970 ns |
LSD5% | - | 0.208 | 0.314 | - |
Treatments-Rotation System | Dry Weight (kg ha−1)-Site A | |||
40 DAS 1 | 70 DAS | 84 DAS | 98 DAS | |
fallow-fallow-maize (FFM) | 496 a | 7298 a | 15,145 a | 21,702 a |
spearmint-spearmint-maize (SSM) | 368 b | 4841 b | 10,678 b | 15,297 b |
peppermint-peppermint-maize (PPM) | 375 b | 5028 b | 11,035 b | 16,249 b |
F values | 23.160 ** | 26.283 ** | 21.857 ** | 23.098 ** |
LSD5% | 58.56 | 1619.93 | 2084.78 | 2823.55 |
Treatments-Rotation System | Dry Weight (kg ha−1)-Site B | |||
40 DAS | 70 DAS | 84 DAS | 98 DAS | |
fallow-fallow-maize (FFM) | 570 a | 7195 a | 14,145 a | 19,844 a |
spearmint-spearmint-maize (SSM) | 461 b | 5239 b | 11,652 b | 16,837 b |
peppermint-peppermint-maize (PPM) | 486 b | 5541 b | 12,152 b | 17,238 b |
F values | 22.368 ** | 22.390 ** | 15.149 * | 12.912 ** |
LSD5% | 47.67 | 873.80 | 1330.65 | 1783.89 |
Treatments-Rotation System | Site A | ||
1000-Grain Weight (g) | Ear Length (cm) | Grain Yield (kg ha−1) | |
fallow-fallow-maize (FFM) | 439.7 a | 22.57 a | 13,346 a |
spearmint-spearmint-maize (SSM) | 408.3 c | 16.70 b | 10,200 b |
peppermint-peppermint-maize (PPM) | 419.3 b | 17.83 b | 10,967 b |
F values | 37.507 ** | 60.951 *** | 31.612 ** |
LSD5% | 10.237 | 1.565 | 1145.83 |
Treatments-Rotation System | Site B | ||
1000-Grain Weight (g) | Ear Length (cm) | Grain Yield (kg ha−1) | |
fallow-fallow-maize (FFM) | 398.3 a | 23.47 a | 14,106 a |
spearmint-spearmint-maize (SSM) | 381.0 b | 19.83 b | 11,773 b |
peppermint-peppermint-maize (PPM) | 384.7 b | 20.23 b | 12,391 b |
F values | 11.827 * | 32.087 ** | 24.479 ** |
LSD5% | 10.430 | 1.381 | 959.19 |
Parameters-Site A | H | SPAD | DW | PR | SC | EAR | GW | GY |
Height (H) | - | 0.883 ** | 0.812 ** | 0.919 *** | 0.924 *** | 0.901 *** | 0.791 * | 0.859 ** |
Chlorophyll content (SPAD) | - | - | 0.943 *** | 0.910 *** | 0.890 ** | 0.921 *** | 0.892 ** | 0.824 ** |
Dry weight (DW) | - | - | - | 0.870 ** | 0.863 ** | 0.919 *** | 0.939 *** | 0.848 ** |
Photosynthetic rate (PR) | - | - | - | - | 0.964 *** | 0.987 *** | 0.891 ** | 0.961 *** |
Stomatal conductance (SC) | - | - | - | - | 0.973 *** | 0.899 *** | 0.924 *** | |
Ear length (EAR) | - | - | - | - | - | 0.930 *** | 0.952 *** | |
1000-grain weight (GW) | - | - | - | - | - | - | - | 0.903 *** |
Grain yield (GY) | - | - | - | - | - | - | - | - |
Parameters-Site B | H | SPAD | DW | PR | SC | EAR | GW | GY |
Height (H) | - | 0.477 ns | 0.753 * | 0.687 * | 0.635 ns | 0.484 ns | 0.595 ns | 0.876 ** |
Chlorophyll content (SPAD) | - | - | 0.669 * | 0.812 ** | 0.880 ** | 0.857 ** | 0.737 * | 0.744 * |
Dry weight (DW) | - | - | - | 0.789 * | 0.720 * | 0.473 ns | 0.640 ns | 0.818 ** |
Photosynthetic rate (PR) | - | - | - | - | 0.946 *** | 0.742 * | 0.771 * | 0.897 ** |
Stomatal conductance (SC) | - | - | - | - | 0.850 ** | 0.831 ** | 0.885 ** | |
Ear length (EAR) | - | - | - | - | - | 0.871 ** | 0.726 * | |
1000-grain weight (GW) | - | - | - | - | - | - | - | 0.837 ** |
Grain yield (GY) | - | - | - | - | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karkanis, A.; Alexiou, A.; Katsaros, C.; Petropoulos, S. Allelopathic Activity of Spearmint (Mentha spicata L.) and Peppermint (Mentha × piperita L.) Reduces Yield, Growth, and Photosynthetic Rate in a Succeeding Crop of Maize (Zea mays L.). Agronomy 2019, 9, 461. https://doi.org/10.3390/agronomy9080461
Karkanis A, Alexiou A, Katsaros C, Petropoulos S. Allelopathic Activity of Spearmint (Mentha spicata L.) and Peppermint (Mentha × piperita L.) Reduces Yield, Growth, and Photosynthetic Rate in a Succeeding Crop of Maize (Zea mays L.). Agronomy. 2019; 9(8):461. https://doi.org/10.3390/agronomy9080461
Chicago/Turabian StyleKarkanis, Anestis, Alexandros Alexiou, Christos Katsaros, and Spyridon Petropoulos. 2019. "Allelopathic Activity of Spearmint (Mentha spicata L.) and Peppermint (Mentha × piperita L.) Reduces Yield, Growth, and Photosynthetic Rate in a Succeeding Crop of Maize (Zea mays L.)" Agronomy 9, no. 8: 461. https://doi.org/10.3390/agronomy9080461
APA StyleKarkanis, A., Alexiou, A., Katsaros, C., & Petropoulos, S. (2019). Allelopathic Activity of Spearmint (Mentha spicata L.) and Peppermint (Mentha × piperita L.) Reduces Yield, Growth, and Photosynthetic Rate in a Succeeding Crop of Maize (Zea mays L.). Agronomy, 9(8), 461. https://doi.org/10.3390/agronomy9080461